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1 Introduction

In his famous unfinished paper [6], Jorgensen gave a description of the combinatorial
structure of the Ford domain of a once-punctured torus Kleinian group. As pointed
out by Sullivan [9], there seems to be a parallel theory if we replace the “puncture”
to a “cone singularity”’ In fact, Jorgensen [7] gave examples of doubly degenerate
groups with cone angle $2\pi/n$ for natural numbers $n$ , and applied them to construct
hyperbolic structures for certain closed surface bundles over the circle. In this article,
I will give an overview of the project to establish a variation of Jorgensen’s theory
for the cone manifolds obtained from the original once-punctured torus by replacing

the puncture to a single cone point of cone angle $\theta\in(0,2\pi)$ .

2 Torus with a single cone point

Let $\theta$ be a real number with $0<\theta<2\pi$ . Let $T$ be the torus and $v$ a point in $T.$

We denote the triplet $(T, \{v\}, \theta)$ by $T_{\theta}$ and call it the torus with a single cone point
$v$ with cone angle $\theta$ . Set $M=T\cross \mathbb{R}$ and $\Sigma=\{v\}\cross \mathbb{R}\subset M$ , and denote the triplet
$(M, \Sigma, \theta)$ by $M_{\theta}$ (see Figure 1).

Let $S_{\theta}$ be the intersection of two half spaces of $\mathbb{H}^{3}$ with dihedral angle $\theta$ at the
intersection $\ell$ of the boundary planes, and $\mathbb{H}_{\theta}^{3}$ the quotient space obtained from $S_{\theta}$

by identifying the pairs of points in $\partial S_{\theta}$ by the rotation about $\ell$ of angle $\theta$ (see
Figure 2). A standard ball of angle $\theta$ is defined to be a ball in $\mathbb{H}_{\theta}^{3}$ centered at a point
in the image of $\ell$ , and a standard horoball of angle $\theta$ is defined to be the projected
image in $\mathbb{H}_{\theta}^{3}$ of the intersection of $S_{\theta}$ and a horoball centered at an endpoint of $\ell.$
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$T_{\theta}$
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Figure 1: The cone manifolds $T_{\theta}$ and $M_{\theta}$

A cone hyperbolic structure on $M_{\theta}$ is a length metric on $M_{\theta}$ such that (i) each

point in $M-\Sigma$ has a neighborhood isometric to a ball in $\mathbb{H}^{3}$ , and (\"u) each point in
$\Sigma$ has a neighborhood isometric to a standard ball of angle $\theta.$

Set $T_{0}=T-\{v\}$ and $M_{0}=M-\Sigma$ . Then the projection $M_{0}arrow T_{0}\cross\{0\}\approx T_{0}$

induces the isomorphism $\pi_{1}(M_{0})\cong\pi_{1}(T_{0})$ ; we denote the group by $G$ . We fix a
peripheral loop in $T_{0}$ and denote it by $\kappa$ (see Figure 3). Associated with a cone
hyperbolic structure on $M_{\theta}$ , we obtain a smooth incomplete hyperbolic structure on
$M_{0}$ , and hence the holonomy representation $\rho$ : $Garrow PSL(2, \mathbb{C})$ . For a holonomy

representation $\rho$ , we have tr $\rho(\kappa)=\pm 2\cos(\theta/2)$ .

3 Space of representations

3.1 Elliptic generators

When we study the space of representations of $G$ into $PSL(2, \mathbb{C})$ or $SL(2, \mathbb{C})$ , it

is convenient to work with the orbifold fundamental group $\hat{G}$ of the orbifold $\mathcal{O}_{0}=$

$(S^{2};\infty, 2,2,2)$ , the orbifold with the once-punctured sphere as underlying space and

with three singular points of order 2, obtained as the quotient of $T_{0}$ by $theelliptic\wedge$

involution. Denote the canonical projection by $pr_{F}:T_{0}arrow \mathcal{O}_{0}$ . The group $G$ has a
presentation

$\hat{G}=\langle P_{0}, Q_{0}, R_{0}|P_{0}^{2}, Q_{0}^{2}, R_{0}^{2}\rangle,$
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Figure 2: Neighborhood of a point in the cone singularity

where each $P_{0},$ $Q_{0}$ and $R_{0}$ is represented by a loop which encircles a singular point,
and $K=R_{0}Q_{0}P_{0}$ is represented by a peripheral loop of $\mathcal{O}_{0}$ such that $pr_{F*}(\kappa)=K^{2}.$

An elliptic generator triple is a triple $(P, Q, R)$ of elements of order 2 in $\hat{G}$ such
that $\hat{G}=\langle P,$ $Q,$ $R\rangle$ and $RQP=K$. Each $P,$ $Q$ and $R$ in an elliptic generator
triple is called an elliptic generator. For any elliptic generator $P$ , the element $KP$ is
contained in $pr_{F*}(G)$ and represented by a simple loop in $T_{0}$ obtained as the image of
a straight line in the universal abelian cover $\mathbb{R}^{2}-\mathbb{Z}^{2}$ whose slope is a rational number
or $\infty$ . We call the slope of the straight line the slope of $P$ and denote by $s(P)$ . Let $\mathcal{D}$

be the Farey complex, namely, $\mathcal{D}$ is the 2-dimensional simplicial complex embedded
in $\overline{\mathbb{H}^{2}}$ such that the set of 2-simplices is $\{\gamma\langle\infty,$ $0,$ $1\rangle|\gamma\in PSL(2,$ $\mathbb{Z}$ where $\partial \mathbb{H}^{2}$ is
identified with $\hat{\mathbb{R}}=\mathbb{R}\cup\{0\}$ , and $\langle\infty,$ $0,$ $1\rangle$ denotes the ideal triangle with vertices
$\infty,$

$0$ and 1 (see Figure 3). The set of vertices of $\mathcal{D}$ is equal to $\hat{\mathbb{Q}}=\mathbb{Q}\cup\{0\}$ . The
following property is well-known (see [2, Section 2.1] for example):

1. If $(P, Q, R)$ is an elliptic generator triple, then any consecutive three elements
in the following sequence is also an elliptic generator triple:

. . . , $R^{K^{-2}},$ $P^{K^{-1}},$ $Q^{K^{-1}},$ $R^{K^{-1}},$ $P,$ $Q,$ $R,$ $P^{K},$ $Q^{K},$ $R^{K},$ $P^{K^{2}}$ , . . .

Here $X^{Y}$ denotes the conjugate $YXY^{-1}.$

2. If $(P, Q, R)$ is an elliptic generator triple, then so are $(P, R, Q^{R})$ and $(Q^{P}, P, R)$ .

3. Any elliptic generator triple is obtained from $(P_{0}, Q_{0}, R_{0})$ by a finite sequence
of operations in 1 and 2.
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$\downarrow$ proj

Figure 3: Punctured torus and the quotient orbifold, and the Farey complex $\mathcal{D}$

4. For any elliptic generator triple $(P, Q, R)$ , $\sigma=\langle \mathcal{S}(P)$ , $s(Q)$ , $s(R)\rangle$ is a triangle
in $\mathcal{D}$ , which is invariant under the operation of 1. The sequence in 1 is called
the sequence of elliptic generators associated with $\sigma.$

3.2 Space of representations containing holonomy represen-
tations

As mentioned in Section 2, the holonomy representation of a cone hyperbolic struc-
ture on $M_{\theta}$ induces the holonomy representation $\rho$ : $Garrow PSL(2, \mathbb{C})$ such that
tr $\rho(\kappa)=\pm 2\cos(\theta/2)$ . We call a representation of a group into $SL(2, \mathbb{C})$ or $PSL(2, \mathbb{C})$

to be elementary if the image has a fixed point in $\overline{\mathbb{H}^{3}}$ . We introduce the following
representation spaces, where the relation $\sim$ is induced from the conjugacy in the
target group and we use the symbol $pr_{M}$ : $SL(2, \mathbb{C})arrow PSL(2, \mathbb{C})$ for the projection:

$\bullet$

$\tilde{\mathcal{R}}_{\theta}=$ { $\tilde{\rho}:Garrow SL(2, \mathbb{C})$ : non elementary $|$ tr $\tilde{\rho}(K)=-2\cos(\theta/2)$ } $/\sim$

$\bullet$
$\mathcal{R}_{\theta}=\{\rho=pr_{M}\circ\tilde{\rho}:Garrow PSL(2, \mathbb{C})|\tilde{\rho}\in\tilde{\mathcal{R}}_{\theta}\}/\sim$

$\bullet$ $\hat{\mathcal{R}}_{\theta}=\{\hat{\rho}:\hat{G}arrow PSL(2, \mathbb{C}):non-$elementary $|\rho(K)=(\theta/2)$-rotation on $\mathbb{H}^{3}\}$

We also denote by $\Phi_{\theta}$ the set of $(2-2\cos(\theta/2))$-Markoff maps in the sense of [10],
namely, we set

$\Phi_{\theta}=\{(x, y, z)\in \mathbb{C}^{3}|x^{2}+y^{2}+z^{2}-xyz-2=-2\cos(\theta/2)\}.$

As in the case of once-punctured torus groups, there is a $\mathbb{Z}_{2}\oplus \mathbb{Z}_{2}$-action on $\tilde{\mathcal{R}}_{\theta}$ which
keeps invariant the representation in $\mathcal{R}_{\theta}$ obtained by the post-composition of $pr_{M}.$
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$\psi_{\rho}(P_{1})$

Figure 4: The values of $\psi_{\rho}$ for a sequence of elliptic generators

This induces the 4 to-l correspondence between $\tilde{\mathcal{R}}_{\theta}$ and $\mathcal{R}_{\theta}$ . We can see that the
map $\hat{\mathcal{R}}_{\theta}arrow \mathcal{R}_{\theta}$ induced from the inclusion $Garrow\hat{G}$ is bijective. Also, there is a subset
$\Phi_{\theta}^{ne}$ of $\Phi_{\theta}$ which is in 1 to-l correspondence with $\tilde{\mathcal{R}}_{\theta}$ by the theory of generalized
Markoff maps [10]. These correspondence provides a framework parallel to that for
once-punctured torus groups.

1 : 1
$\tilde{\mathcal{R}}_{\theta}rightarrow\Phi_{\theta}^{ne}$

$1 :1 \downarrow 4:1$

$\hat{\mathcal{R}}_{\theta}rightarrow \mathcal{R}_{\theta}$

3.3 Geometric parametrization

We can define a geometric parametrization for $\hat{\mathcal{R}}_{\theta}$ which plays the counterpart of
the complex probability introduced by Jorgensen in the theory of once-punctured
torus groups. In what follows, we always use a representative for $\rho\in\hat{\mathcal{R}}_{\theta}$ such that
$\rho(K)$ maps each $z\in \mathbb{C}$ to $e^{i\theta/2}z.$

Let $\mathcal{E}\mathcal{G}$ be the set of elliptic generators. To each $\rho\in\hat{\mathcal{R}}_{\theta}$ , we associate a map
$\psi_{\rho}$ : $\mathcal{E}\mathcal{G}arrow\hat{\mathbb{C}}$ defined by $\psi_{\rho}(P)=\rho(P)(\infty)$ . Rom the choice of representatives, this
map is well-defined up to a multiple of a non-zero complex number. In fact, we have
the following, and hence the map $\psi_{\rho}$ : $\mathcal{E}\mathcal{G}arrow \mathbb{C}$ gives a parametrization for $\hat{\mathcal{R}}_{\theta}$ . (See
Figure 4 which illustrates the values of $\psi_{\rho}$ for a sequence of elliptic generators.)

Proposition 3.1. For $\rho,$

$\rho’\in\hat{\mathcal{R}}_{\theta},$
$\rho=\rho’$ if and only if $\psi_{\rho}=\lambda\psi_{d}$ for some $\lambda\in$

$\mathbb{C}-\{0\}.$
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Figure 5: Switch of sequences of elliptic generators

Idea of Proof. First, suppose that $\rho=\rho’$ , namely, there exists $T\in PSL(2, \mathbb{C})$ such

that $\rho’(9)=T\rho(9)T^{-1}$ for any $9\in\hat{G}$ . Then we obtain $T(\infty)=\infty$ and $T(O)=0$ by
the assumption $0<\theta<2\pi$ . Thus there exists $\lambda\in \mathbb{C}-\{O\}$ such that $T(z)=\lambda z$ for
any $z\in \mathbb{C}$ , and hence $\psi_{\rho}(P)=\lambda\psi_{\rho’}(P)$ for any $P\in \mathcal{E}\mathcal{G}$ . Next, suppose $\psi_{\rho}=\lambda\psi_{\rho’}$

for $\lambda\in \mathbb{C}-\{0\}$ . By taking a suitable conjugate, we may assume that $\psi_{\rho}=\psi_{\rho’}.$

We can show, by using the assumption that $0<\theta<2\pi$ , that there is a sequence of
elliptic generators $\{P_{j}\}$ such that $\psi_{\rho}(P_{j})\neq\infty$ for any $j\in \mathbb{Z}$ . From the property of
a sequence of elliptic generators and the normalization of $\rho$ and $\rho’$ , both $\rho(P_{j})$ and
$\rho’(P_{j})$ enjoy the following same equation on $X\in PSL(2, \mathbb{C})$ for any $j\in \mathbb{Z}$ :

$X(\infty)=\psi_{\rho}(P_{j})$ , $X(\psi_{\rho}(P_{j-1}))=\psi_{\rho}(P_{j+1})$ , $X(\psi_{\rho}(P_{j+1}))=\psi_{\rho}(P_{j-1})$ .

Thus we obtain $\rho(P_{j})=\rho’(P_{j})$ for any $j\in \mathbb{Z}$ . Since $\{P_{j}\}$ is a sequence of elliptic
generators, this implies $\rho=\rho’.$

$\square$

The value of $\psi_{\rho}$ for sequences of elliptic generators associated with adjacent trian-
gles in $\mathcal{D}$ can be calculated by a method analogous to that for complex probabilities
(see Figure 5). Let $\{P_{j}\}$ and $\{P_{j}’\}$ be sequences of elliptic generators with $P_{0}’=P_{0},$

$P_{1}’=P_{2}$ and $P_{2}’=P_{2}P_{1}P_{2}$ . Then these sequences are associated with a pair of

adjacent triangles in $\mathcal{D}$ . Let $\rho\in\hat{\mathcal{R}}_{\theta}$ such that none of $c_{j}=\psi_{\rho}(P_{j})$ and $d_{j}=\psi_{\rho}(P_{j}’)$

for $j\in \mathbb{Z}$ is equal to $\infty$ . Then the sequence $\{c_{j}’\}$ is obtained from $\{c_{j}\}$ as follows.
Let $j=3k+l$ for $k\in \mathbb{Z}$ and $l\in\{0$ , 1, 2 $\}$ . If $l=0$ (resp. $j=1$), then $P_{j}’=P_{j}$

(resp. $P_{j}’=P_{j+1}$ ), and hence $c_{j}’=c_{j}$ (resp. $c_{j}’=c_{j+1}$ ). If $l=2$ , then there is a
orientation-preserving similarity transformation of $\mathbb{C}$ which maps the three points
$c_{j-2},$ $c_{j-1}$ and $c_{j}$ to $c_{j+1}’,$ $c_{j}’$ and $c_{j-1}’$ , respectively. This characterizes $\{c_{j}’\}.$

4 Good fundamental polyhedron

Let $\rho\in\hat{\mathcal{R}}_{\theta}$ . In order to define a good fundamental polyhedron for $\rho$ , we introduce
several conditions analogous to those for once-punctured torus groups (cf. [2]). Fol-
lowing [2], we denote by $I(\gamma)$ (resp. $Ih^{\backslash }(\gamma)$ ) the isometric circle (resp. the isometric
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hemisphere) for $\gamma\in PSL(2, \mathbb{C})$ with $\gamma(\infty)\neq\infty$ . We also denote the inside (resp.
outside) of $I(\gamma)$ by $D(\gamma)$ (resp. $E(\gamma)$ ), and the inside (resp. outside) of $Ih(\gamma)$ by
$Dh(\gamma)$ (resp. $Eh(\gamma)$ ).

Let $\{P_{j}\}$ be a sequence of elliptic generators such that $\psi_{\rho}(P_{j})\neq\infty$ for any $j\in \mathbb{Z}.$

For each $j\in \mathbb{Z}$ , set $c_{j}=\psi_{\rho}(P_{j})$ and denote the segment in $\mathbb{C}$ with endpoints $c_{j}$ and
$c_{j+1}$ by $l_{j}$ , and suppose that $l_{j}$ does not contain the origin. Let $l:\mathbb{R}arrow \mathbb{C}-\{O\}$ be
the map such that the restriction to the closed interval $[j,j+1]$ is the affine map
into $\mathbb{C}$ satisfying $l(j)=c_{j}$ and $l(j+1)=c_{j+1}$ . Then we have $l(t+3k)=e^{ik\theta/2}l(t)$

for any $t\in \mathbb{R}$ and $k\in \mathbb{Z}$ . (See Figure 4.)

Let $exp:\mathbb{C}arrow \mathbb{C}-\{O\}$ be the universal covering, and let $\tilde{d}$ be the metric on $\mathbb{C}$

obtained as the pull-back of the Euclidean metric on $\mathbb{C}-\{O\}$ by the covering map
exp. We denote the metric space $(\mathbb{C},\tilde{d)}$ by $\hat{\mathbb{C}}_{0}$ . Let $\tilde{l}$ : $\mathbb{R}arrow\hat{\mathbb{C}}_{0}$ be a continuous
lift of $l$ by exp. We define the isometric action of the infinite cyclic group $\mathbb{Z}$ on $\mathbb{R}$

(resp. $\hat{\mathbb{C}}_{0}$ ) by 1 $\cdot$ $t=t+3$ $($ resp. 1 $\cdot$ $z=z+i\theta/2).$ Then $\tilde{l}$ is equivariant with respect
to these actions of $\mathbb{Z}$ . Let $S^{1}=\mathbb{R}/\mathbb{Z}$ and $\mathbb{C}_{\theta}=\hat{\mathbb{C}}_{0}/\mathbb{Z}$ equipped with the metrics
so that the covering projections are local isometries. We remark that $\mathbb{C}_{\theta}$ can be
naturally regarded as the

$\langle$

boundary” of the model space $\mathbb{H}_{\theta}^{3}$ . We denote $\mathbb{H}_{\theta}^{3}\cup \mathbb{C}_{\theta}$

by $\overline{\mathbb{H}_{\theta}^{3}}.$ Then $\tilde{l}$ induces the map $l_{\theta}$ : $S^{1}arrow \mathbb{C}_{\theta}$ whose image is the union of three
(geodesic) segments $l_{\theta}([j,j+1])(j\in\{0,1,2$ We denote the image of $l_{\theta}$ in $\mathbb{C}_{\theta}$

by $\mathcal{L}_{\theta}(\rho, \sigma)$ . Under the above notation, we say that $\rho$ satisfies the condition Simple
at $\sigma$ if $l_{\theta}$ : $S^{1}arrow \mathbb{C}_{\theta}$ is a homeomorphism onto its image $\mathcal{L}_{\theta}(\rho, \sigma)$ and also $\mathcal{L}_{\theta}(\rho, \sigma)$

bounds the bounded (resp. unbounded) component of $\mathbb{C}_{\theta}-\mathcal{L}_{\theta}(\rho, \sigma)$ in its left (reap.
right) hand side.

For $\rho\in \mathcal{R}_{\theta}$ which satisfies the condition Simple at $\sigma$ , let $\xi_{j}$ be the length of
$l_{j}$ for each $j\in \mathbb{Z}$ . By definition, $\xi_{j}$ is also equal to the length of the segment
obtained as the image $l_{\theta}([j,j+1$ We say $\rho$ satisfies the triangle inequality at
$\sigma$ if $\sqrt{\xi_{0}},$ $\sqrt{\xi_{1}},$ $\sqrt{\xi_{2}}$ satisfies the triangle inequality. By a parallel argument to the
case of once-punctured torus, $\rho$ satisfies the triangle inequality at $\sigma$ if and only if
$I(\rho(P_{j}))\cap I(\rho(P_{j+1}))$ consists of exactly two points for any $j\in \mathbb{Z}.$

We say that $\rho$ is admissible at $\sigma$ if $\rho$ satisfies the condition Simple and triangle
inequality at $\sigma$ , and also if $D(\rho(P_{j}))$ does not contain the origin for any $j\in \mathbb{Z}.$

The final condition corresponds to the condition NonZero introduced in [2] for the
case of once-punctured torus. For $\rho$ which is admissible at $\sigma$ , we can define the side
parameter $\theta(\rho, \sigma)=(\theta^{-}(\rho), \theta^{+}(\rho))$ by a similar way to the case of once-punctured
torus.

Let $\nu=(\nu^{-}, \nu^{+})$ be a pair of points in $\mathbb{H}^{2}$ , and $\ell$ the geodesic segment in $\mathbb{H}^{2}$

with endpoints $\nu^{\pm}$ . Let $\sigma_{1},$ $\sigma_{2}$ , . . . , $\sigma_{m}$ be the triangles in $\mathcal{D}$ such that the interior of
$\sigma_{k}$ intersects $\ell$ in this order, and denote the sequence $\{\sigma_{1}, . . . , \sigma_{m}\}$ by $\Sigma(\nu)$ , which
is called a chain of triangles in [2]. We also define the 2-dimensional simplicial
complex $\mathcal{L}(\nu)=\mathcal{L}(\Sigma(v))$ associated with $\nu$ following [2]. As the argument in
the above, where we define the condition Simple, there is a natural action of $\mathbb{Z}$
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Figure 6: A developed image of a good fundamental polyhedron in $\mathbb{H}^{3}$

on $\mathcal{L}(\nu)$ . We denote the quotient $\mathcal{L}(v)/\mathbb{Z}$ by $\mathcal{L}_{\theta}(\nu)$ . We say that a pair $(\rho, \nu)$ ,
which is called a labeled representation, satisfies the condition Simple if $\rho$ satisfies
the condition Simple at each $\sigma_{k}$ , and if there is a linear extension of $S^{1}arrow \mathcal{L}_{\theta}(\rho, \sigma_{k})$

$(k\in\{1, \ldots, m\})$ to $\mathcal{L}_{\theta}(v)arrow \mathbb{C}_{\theta}$ which is a homeomorphism onto the image.
Let $(\rho, v)$ be a labeled representation which satisfies the condition Simple. Then

we can define $a^{(}$ polyhedron” $Eh(\rho, \nu)$ in $\overline{\mathbb{H}_{\theta}^{3}}$ as the common exterior” to the family
of isometric hemispheres $\{Ih(\rho(P))|s(P)\in \mathcal{L}(\nu)^{(0)}\}$ . This definition is a slight
modification of that is mentioned in Section 6.4 of [2], where a fundamental domain
modulo the action of the peripheral subgroup is discussed. For the polyhedron
$Eh(\rho, \nu)$ , we define the two conditions Duality and Frontier by simply following
Definitions 6.1.3 and 6.1.4 in [2].

A labeled representation $(\rho, \nu)$ is said to be good if it satisfies the condition
Simple, and if the polyhedron $Eh(\rho, v)$ satisfies the conditions Duality and Frontier.
We call $Eh(\rho, \nu)$ a good fundamental polyhedron for $\rho$ . By following [2], we can see
that a good fundamental polyhedron induces a complete cone hyperbolic structure
on $M_{\theta}$ . See Figure 6, which illustrates a developed image of a good fundamental
polyhedron for the cone angle $\theta=4\pi/7$ . We remark that the developed image does
not make sense if the cone angle $\theta$ is an irrational multiple of $\pi$ (see Figure 7).

By comparing the numerical results done by Yamashita based on his joint work
with Tan [12] and by the author, we proposed the following conjecture.

Conjecture 4.1 (Akiyoshi-Yamashita). For $\rho\in\hat{\mathcal{R}}_{\theta},$

$\rho$ has a good fundamental
polyhedron if and only if $\rho$ satisfies the $BQ$-condition.

Except for the real representations described in the next section, this conjecture
is still open.
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$\theta$ : rational with $\pi$
$\theta$ : irrational with $\pi$

Figure 7: Rationality of cone angle with $\pi$ and developed image

5 Real representations

In this section, we see a partial affirmative answer to Conjecture 4.1. To this end, we
introduce the real slices of the representation spaces. Let $\tilde{\mathcal{R}}_{\theta}^{\mathbb{R}}$ be the subspace of $\tilde{\mathcal{R}}_{\theta}$

consisting of the representations with $SL(2, \mathbb{R})$-representations as representatives.
Let $\mathcal{R}_{\theta}^{\mathbb{R}}$ be the subspace of $\mathcal{R}_{\theta}$ consisting of the representations $pr_{M}\circ\tilde{\rho}$ for $\tilde{\rho}\in\tilde{\mathcal{R}}_{\theta}^{\mathbb{R}},$

and let $\hat{\mathcal{R}}_{\theta}^{\mathbb{R}}$ be the subspace of $\hat{\mathcal{R}}_{\theta}$ corresponding to $\mathcal{R}_{\theta}^{\mathbb{R}}$ . Goldman and Tan-Wong-
Zhang made intensive studies on the space $\tilde{\mathcal{R}}_{\theta}^{\mathbb{R}}$ , in which they showed the following
theorems.

Theorem 5.1 (Goldman [8]). For $\rho\in \mathcal{R}_{\theta}^{\mathbb{R}}$ , either (i) $\rho$ is realized as the holonomy
representation of a cone hyperbolic structure on $T_{\theta}$ , or (ii) $\rho$ is elementary.

Theorem 5.2 (Tan-Wong-Zhang [10]). For $\rho\in \mathcal{R}_{\theta}^{R},$
$\rho$ satisfies the $BQ$-condition if

and only if $\rho$ is realized as the holonomy representation of a cone hyperbolic structure
on $T_{\theta}.$

The following is the main theorem of [1].

Theorem 5.3. Any non-elementaw $\rho\in \mathcal{R}_{\theta}^{R}$ has a good fundamental polyhedron.

Summarizing the above three theorems, we obtain a partial affirmative answer
to Conjecture 4.1 on $\mathcal{R}_{\theta}^{\mathbb{R}}.$

The proof of Theorem 5.3 uses a specialization of the geometric parameterization
for $\hat{\mathcal{R}}_{\theta}$ to $\hat{\mathcal{R}}_{\theta}^{R}$ , which enables us to simplify the condition of good fundamental
polyhedra to a certain algebraic condition for the parameter. Then we obtain the
theorem by following the argument of Bowditch [4] and using the results of [10].
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6Uniqueness of a good fundamental polyhedron

In this section, we observe that a good fundamental polyhedron has a property
similar to $tha_{l}t$ for the Ford domain of a Kleinian group. In what follows, we suppose
that $M_{\theta}$ is equipped with the complete hyperbolic structure induced from a good
fundamental polyhedron $Eh$ . Then there is a horoball $\tilde{H}$ centered at $\infty$ such that
the intersection $\tilde{H}\cap Eh$ projects onto the subset $H$ of $M_{\theta}$ isometric to a standard
horoball with cone angle $\theta$ . Let $C$ be the subset of $M_{\theta}$ obtained as the image of
$\partial Eh.$

Let $x\in M_{\theta}-H$ . Then the closed $r$-neighborhood $B(x, r)$ of $x$ in $M_{\theta}$ intersects $H$

for a sufficiently large positive number $r$ . Since $M_{\theta}$ is a complete length space which
is locally compact, $B(x, r)$ is compact by the Hopf-Rinow theorem. Thus there is
an arc $\gamma$ in $B(x, r)$ which connects $x$ to $\partial H$ such that the length of $\gamma$ is equal to
the distance between $x$ and $H$ . From the minimality of the length of $\gamma$ , we see that
either (i) $\gamma$ is contained entirely in $\Sigma$ , or (ii) $\gamma$ is a geodesic disjoint from $\Sigma$ which
intersects $\partial H$ perpendicularly at an endpoint. Then $C$ is characterized as the cut
locus of $M_{\theta}$ with respect to $H$ , namely, the following holds. For any $\tilde{x}\in Eh$ , let $\tilde{\gamma}_{\tilde{x}}$

be the vertical geodesic segment in $Eh$ connecting $\tilde{x}$ to $\partial\tilde{H}$ , and $\gamma_{\tilde{x}}$ be the projected
image of $\tilde{\gamma}_{\tilde{x}}$ in $\Lambda I_{\theta}.$

Proposition 6.1. Let $\tilde{x}\in Eh$ which project onto $x\in M_{\theta}-H.$

1. Suppose that $\tilde{x}$ is a point in the interior of $Eh$ . Then $\gamma_{\tilde{x}}$ is the unique shortest
arc in $M_{\theta}$ connecting $x$ to $H.$

2. Suppose that $Xs$ a point in $\partial Eh$ . Let $\tilde{x}_{1}$ , . . . , $\tilde{x}_{k}$ be the points in $\partial Eh$ which
project onto $x$ , where $k\in\{2$ , 3, 4 $\}$ . Then $\gamma_{\tilde{x}1}$ , . . . , $\gamma_{\tilde{x}_{k}}$ is the complete list of
shortest arcs in $M_{\theta}$ connecting $x$ to $H.$

Idea of proof. We give the idea of the proof for the assertion 1. The assertion 2 can
be proved by a similar argument. In the proof, we use the following property of
good fundamental polyhedra:

(i) The boundary of a good fundamental polyhedron $Eh$ is a union of isometric
hemispheres.

(ii) For any point $x\in Eh$ , there are at most three more points in $Eh$ which are
identified with $x$ by the side pairings.

(iii) The points in $\partial Eh$ that are identified by the side pairings have the same height
in the upper half space model.

Let $x$ be a point in $M_{\theta}-H$ such that there is a point $\tilde{x}$ in the interior of $Eh$

projecting onto $x$ . Suppose to the contrary that there is a path $\delta$ distinct from $\gamma_{\tilde{x}}$
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Figure 8: Shortcut between $\tilde{\delta}_{0}’$ and $\tilde{\delta}_{1}$ exists.

such that the length of $\delta$ is less than or equal to that of $\gamma_{\tilde{x}}$ . We may suppose that
the length of $\delta$ is equal to the distance between $x$ and $H$ , and so $\delta$ is a geodesic
which intersects $\partial H$ perpendicularly at an endpoint $y\in\partial H$ . Let $\tilde{y}$ be the unique
lift of $y$ contained in $\partial\tilde{H}\cap Eh$ , and $\tilde{\delta}_{0}$ be the connected component of the lift of $\delta$

in $Eh$ containing $\tilde{y}$. Then we can see that $\tilde{y}$ is not contained in $\tilde{\gamma}_{\tilde{x}}$ , and $\tilde{\delta}_{0}$ connects
$\tilde{y}$ to a point, $\tilde{z}$, in $\partial Eh$ , where it intersects a face of $Eh$ transversely. Then there
is a point $\hat{z}^{\gamma}$ in $\partial Eh$ and the component, $\tilde{\delta}_{1}$ , of the lift of $\delta$ such that $\tilde{z}$ and $\sim z$ are
identified by the side pairing and that $\tilde{\delta}_{1}$ contains $\tilde{z}^{\gamma}$ as an endpoint (see Figure 8).

Let $\tilde{\delta}_{0}’$ be the vertical geodesic segment connecting $\tilde{z}’$ to $\partial\tilde{H}.$ Since $\tilde{z}$ and $\tilde{z}^{f}$ have

the same heights, the lengths of $\tilde{\delta}_{0}$ and $\tilde{\delta}_{0}’$ are the same. Thus we can obtain an arc
$\delta’$ which has the same length with $\delta$ by replacing $\tilde{\delta}_{0}$ with $\tilde{\delta}_{0}’$ . However, there is a
shortcut between $\tilde{\delta}_{0}’$ and $\tilde{\delta}_{1}$ . This contradicts the assumption that $\delta$ is the shortest
arc connecting $x$ to H. $\square$

Remark 6.2. We can see that a good fundamental polyhedron is unique for the
hyperbolic structure it induces. However, since we have not seen the uniqueness of
the hyperbolic structures for a given representation, there is a possibility that two
distinct good fundamental polyhedra induce the same holonomy representation.
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