Towards the variation of Jorgensen's theory for the torus with a single cone point^{*}

Hirotaka Akiyoshi[†]

1 Introduction

In his famous unfinished paper [6], Jorgensen gave a description of the combinatorial structure of the Ford domain of a once-punctured torus Kleinian group. As pointed out by Sullivan [9], there seems to be a parallel theory if we replace the "puncture" to a "cone singularity". In fact, Jorgensen [7] gave examples of doubly degenerate groups with cone angle $2\pi/n$ for natural numbers n, and applied them to construct hyperbolic structures for certain closed surface bundles over the circle. In this article, I will give an overview of the project to establish a variation of Jorgensen's theory for the cone manifolds obtained from the original once-punctured torus by replacing the puncture to a single cone point of cone angle $\theta \in (0, 2\pi)$.

2 Torus with a single cone point

Let θ be a real number with $0 < \theta < 2\pi$. Let T be the torus and v a point in T. We denote the triplet $(T, \{v\}, \theta)$ by T_{θ} and call it the torus with a single cone point v with cone angle θ . Set $M = T \times \mathbb{R}$ and $\Sigma = \{v\} \times \mathbb{R} \subset M$, and denote the triplet (M, Σ, θ) by M_{θ} (see Figure 1).

Let S_{θ} be the intersection of two half spaces of \mathbb{H}^3 with dihedral angle θ at the intersection ℓ of the boundary planes, and \mathbb{H}^3_{θ} the quotient space obtained from S_{θ} by identifying the pairs of points in ∂S_{θ} by the rotation about ℓ of angle θ (see Figure 2). A standard ball of angle θ is defined to be a ball in \mathbb{H}^3_{θ} centered at a point in the image of ℓ , and a standard horoball of angle θ is defined to be the projected image in \mathbb{H}^3_{θ} of the intersection of S_{θ} and a horoball centered at an endpoint of ℓ .

^{*}This work was supported by JSPS KAKENHI Grant Number 23740064.

[†]Department of Mathematics, Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku Osaka, 558-8585 Japan

 M_{θ}

Figure 1: The cone manifolds T_{θ} and M_{θ}

A cone hyperbolic structure on M_{θ} is a length metric on M_{θ} such that (i) each point in $M - \Sigma$ has a neighborhood isometric to a ball in \mathbb{H}^3 , and (ii) each point in Σ has a neighborhood isometric to a standard ball of angle θ .

Set $T_0 = T - \{v\}$ and $M_0 = M - \Sigma$. Then the projection $M_0 \to T_0 \times \{0\} \approx T_0$ induces the isomorphism $\pi_1(M_0) \cong \pi_1(T_0)$; we denote the group by G. We fix a peripheral loop in T_0 and denote it by κ (see Figure 3). Associated with a cone hyperbolic structure on M_{θ} , we obtain a smooth incomplete hyperbolic structure on M_0 , and hence the holonomy representation $\rho : G \to PSL(2, \mathbb{C})$. For a holonomy representation ρ , we have tr $\rho(\kappa) = \pm 2\cos(\theta/2)$.

3 Space of representations

3.1 Elliptic generators

When we study the space of representations of G into $PSL(2,\mathbb{C})$ or $SL(2,\mathbb{C})$, it is convenient to work with the orbifold fundamental group \widehat{G} of the orbifold $\mathcal{O}_0 = (S^2; \infty, 2, 2, 2)$, the orbifold with the once-punctured sphere as underlying space and with three singular points of order 2, obtained as the quotient of T_0 by the elliptic involution. Denote the canonical projection by $\operatorname{pr}_F : T_0 \to \mathcal{O}_0$. The group \widehat{G} has a presentation

$$\widehat{G} = \langle P_0, Q_0, R_0 \, | \, P_0^2, Q_0^2, R_0^2 \rangle,$$

Figure 2: Neighborhood of a point in the cone singularity

where each P_0 , Q_0 and R_0 is represented by a loop which encircles a singular point, and $K = R_0 Q_0 P_0$ is represented by a peripheral loop of \mathcal{O}_0 such that $\operatorname{pr}_{F*}(\kappa) = K^2$. An elliptic generator triple is a triple (P, Q, R) of elements of order 2 in \widehat{G} such that $\widehat{G} = \langle P, Q, R \rangle$ and RQP = K. Each P, Q and R in an elliptic generator triple is called an elliptic generator. For any elliptic generator P, the element KP is contained in $\operatorname{pr}_{F*}(G)$ and represented by a simple loop in T_0 obtained as the image of a straight line in the universal abelian cover $\mathbb{R}^2 - \mathbb{Z}^2$ whose slope is a rational number or ∞ . We call the slope of the straight line the slope of P and denote by s(P). Let \mathcal{D} be the Farey complex, namely, \mathcal{D} is the 2-dimensional simplicial complex embedded in $\overline{\mathbb{H}^2}$ such that the set of 2-simplices is $\{\gamma(\infty, 0, 1) \mid \gamma \in PSL(2, \mathbb{Z})\}$, where $\partial \mathbb{H}^2$ is identified with $\widehat{\mathbb{R}} = \mathbb{R} \cup \{0\}$, and $\langle \infty, 0, 1 \rangle$ denotes the ideal triangle with vertices ∞ , 0 and 1 (see Figure 3). The set of vertices of \mathcal{D} is equal to $\widehat{\mathbb{Q}} = \mathbb{Q} \cup \{0\}$. The following property is well-known (see [2, Section 2.1] for example):

1. If (P, Q, R) is an elliptic generator triple, then any consecutive three elements in the following sequence is also an elliptic generator triple:

$$\dots, R^{K^{-2}}, P^{K^{-1}}, Q^{K^{-1}}, R^{K^{-1}}, P, Q, R, P^{K}, Q^{K}, R^{K}, P^{K^{2}}, \dots$$

Here X^{Y} denotes the conjugate YXY^{-1} .

- 2. If (P, Q, R) is an elliptic generator triple, then so are (P, R, Q^R) and (Q^P, P, R) .
- 3. Any elliptic generator triple is obtained from (P_0, Q_0, R_0) by a finite sequence of operations in 1 and 2.

Figure 3: Punctured torus and the quotient orbifold, and the Farey complex \mathcal{D}

4. For any elliptic generator triple (P, Q, R), $\sigma = \langle s(P), s(Q), s(R) \rangle$ is a triangle in \mathcal{D} , which is invariant under the operation of 1. The sequence in 1 is called the sequence of elliptic generators associated with σ .

3.2 Space of representations containing holonomy representations

As mentioned in Section 2, the holonomy representation of a cone hyperbolic structure on M_{θ} induces the holonomy representation $\rho : G \to PSL(2, \mathbb{C})$ such that $\operatorname{tr} \rho(\kappa) = \pm 2 \cos(\theta/2)$. We call a representation of a group into $SL(2, \mathbb{C})$ or $PSL(2, \mathbb{C})$ to be *elementary* if the image has a fixed point in $\overline{\mathbb{H}^3}$. We introduce the following representation spaces, where the relation \sim is induced from the conjugacy in the target group and we use the symbol $\operatorname{pr}_M : SL(2, \mathbb{C}) \to PSL(2, \mathbb{C})$ for the projection:

• $\widetilde{\mathcal{R}}_{\theta} = \{\widetilde{\rho}: G \to SL(2,\mathbb{C}): \text{ non-elementary} \mid \operatorname{tr} \widetilde{\rho}(K) = -2\cos(\theta/2)\}/\sim$

•
$$\mathcal{R}_{\theta} = \{ \rho = \mathrm{pr}_{M} \circ \widetilde{\rho} : G \to PSL(2, \mathbb{C}) \, | \, \widetilde{\rho} \in \widetilde{\mathcal{R}}_{\theta} \} / \sim$$

• $\widehat{\mathcal{R}}_{\theta} = \{\widehat{\rho} : \widehat{G} \to PSL(2, \mathbb{C}) : \text{ non-elementary } | \rho(K) = (\theta/2) \text{-rotation on } \mathbb{H}^3 \}$

We also denote by Φ_{θ} the set of $(2 - 2\cos(\theta/2))$ -Markoff maps in the sense of [10], namely, we set

$$\Phi_{\theta} = \{ (x, y, z) \in \mathbb{C}^3 \, | \, x^2 + y^2 + z^2 - xyz - 2 = -2\cos(\theta/2) \}.$$

As in the case of once-punctured torus groups, there is a $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ -action on $\widetilde{\mathcal{R}}_{\theta}$ which keeps invariant the representation in \mathcal{R}_{θ} obtained by the post-composition of pr_M .

Figure 4: The values of ψ_{ρ} for a sequence of elliptic generators

This induces the 4-to-1 correspondence between $\widetilde{\mathcal{R}}_{\theta}$ and \mathcal{R}_{θ} . We can see that the map $\widehat{\mathcal{R}}_{\theta} \to \mathcal{R}_{\theta}$ induced from the inclusion $G \to \widehat{G}$ is bijective. Also, there is a subset $\Phi_{\theta}^{\text{ne}}$ of Φ_{θ} which is in 1-to-1 correspondence with $\widetilde{\mathcal{R}}_{\theta}$ by the theory of generalized Markoff maps [10]. These correspondence provides a framework parallel to that for once-punctured torus groups.

$$\begin{array}{ccc}
\widetilde{\mathcal{R}}_{\theta} & \stackrel{1:1}{\longleftrightarrow} \Phi_{\theta}^{\mathrm{ne}} \\
& & \downarrow 4:1 \\
\widehat{\mathcal{R}}_{\theta} & \stackrel{1:1}{\longleftrightarrow} \mathcal{R}_{\theta}
\end{array}$$

3.3 Geometric parametrization

We can define a geometric parametrization for $\widehat{\mathcal{R}}_{\theta}$ which plays the counterpart of the *complex probability* introduced by Jorgensen in the theory of once-punctured torus groups. In what follows, we always use a representative for $\rho \in \widehat{\mathcal{R}}_{\theta}$ such that $\rho(K)$ maps each $z \in \mathbb{C}$ to $e^{i\theta/2}z$.

Let \mathcal{EG} be the set of elliptic generators. To each $\rho \in \widehat{\mathcal{R}}_{\theta}$, we associate a map $\psi_{\rho} : \mathcal{EG} \to \widehat{\mathbb{C}}$ defined by $\psi_{\rho}(P) = \rho(P)(\infty)$. From the choice of representatives, this map is well-defined up to a multiple of a non-zero complex number. In fact, we have the following, and hence the map $\psi_{\rho} : \mathcal{EG} \to \mathbb{C}$ gives a parametrization for $\widehat{\mathcal{R}}_{\theta}$. (See Figure 4 which illustrates the values of ψ_{ρ} for a sequence of elliptic generators.)

Proposition 3.1. For $\rho, \rho' \in \widehat{\mathcal{R}}_{\theta}$, $\rho = \rho'$ if and only if $\psi_{\rho} = \lambda \psi_{\rho'}$ for some $\lambda \in \mathbb{C} - \{0\}$.

Figure 5: Switch of sequences of elliptic generators

Idea of Proof. First, suppose that $\rho = \rho'$, namely, there exists $T \in PSL(2, \mathbb{C})$ such that $\rho'(g) = T\rho(g)T^{-1}$ for any $g \in \widehat{G}$. Then we obtain $T(\infty) = \infty$ and T(0) = 0 by the assumption $0 < \theta < 2\pi$. Thus there exists $\lambda \in \mathbb{C} - \{0\}$ such that $T(z) = \lambda z$ for any $z \in \mathbb{C}$, and hence $\psi_{\rho}(P) = \lambda \psi_{\rho'}(P)$ for any $P \in \mathcal{EG}$. Next, suppose $\psi_{\rho} = \lambda \psi_{\rho'}$ for $\lambda \in \mathbb{C} - \{0\}$. By taking a suitable conjugate, we may assume that $\psi_{\rho} = \psi_{\rho'}$. We can show, by using the assumption that $0 < \theta < 2\pi$, that there is a sequence of elliptic generators $\{P_j\}$ such that $\psi_{\rho}(P_j) \neq \infty$ for any $j \in \mathbb{Z}$. From the property of a sequence of elliptic generators and the normalization of ρ and ρ' , both $\rho(P_j)$ and $\rho'(P_j)$ enjoy the following same equation on $X \in PSL(2, \mathbb{C})$ for any $j \in \mathbb{Z}$:

$$X(\infty) = \psi_{\rho}(P_j), \quad X(\psi_{\rho}(P_{j-1})) = \psi_{\rho}(P_{j+1}), \quad X(\psi_{\rho}(P_{j+1})) = \psi_{\rho}(P_{j-1}).$$

Thus we obtain $\rho(P_j) = \rho'(P_j)$ for any $j \in \mathbb{Z}$. Since $\{P_j\}$ is a sequence of elliptic generators, this implies $\rho = \rho'$.

The value of ψ_{ρ} for sequences of elliptic generators associated with adjacent triangles in \mathcal{D} can be calculated by a method analogous to that for complex probabilities (see Figure 5). Let $\{P_j\}$ and $\{P'_j\}$ be sequences of elliptic generators with $P'_0 = P_0$, $P'_1 = P_2$ and $P'_2 = P_2P_1P_2$. Then these sequences are associated with a pair of adjacent triangles in \mathcal{D} . Let $\rho \in \widehat{\mathcal{R}}_{\theta}$ such that none of $c_j = \psi_{\rho}(P_j)$ and $c'_j = \psi_{\rho}(P'_j)$ for $j \in \mathbb{Z}$ is equal to ∞ . Then the sequence $\{c'_j\}$ is obtained from $\{c_j\}$ as follows. Let j = 3k + l for $k \in \mathbb{Z}$ and $l \in \{0, 1, 2\}$. If l = 0 (resp. j = 1), then $P'_j = P_j$ (resp. $P'_j = P_{j+1}$), and hence $c'_j = c_j$ (resp. $c'_j = c_{j+1}$). If l = 2, then there is a orientation-preserving similarity transformation of \mathbb{C} which maps the three points c_{j-2}, c_{j-1} and c_j to c'_{j+1}, c'_j and c'_{j-1} , respectively. This characterizes $\{c'_j\}$.

4 Good fundamental polyhedron

Let $\rho \in \mathcal{R}_{\theta}$. In order to define a good fundamental polyhedron for ρ , we introduce several conditions analogous to those for once-punctured torus groups (cf. [2]). Following [2], we denote by $I(\gamma)$ (resp. $Ih(\gamma)$) the isometric circle (resp. the isometric hemisphere) for $\gamma \in PSL(2, \mathbb{C})$ with $\gamma(\infty) \neq \infty$. We also denote the inside (resp. outside) of $I(\gamma)$ by $D(\gamma)$ (resp. $E(\gamma)$), and the inside (resp. outside) of $Ih(\gamma)$ by $Dh(\gamma)$ (resp. $Eh(\gamma)$).

Let $\{P_j\}$ be a sequence of elliptic generators such that $\psi_{\rho}(P_j) \neq \infty$ for any $j \in \mathbb{Z}$. For each $j \in \mathbb{Z}$, set $c_j = \psi_{\rho}(P_j)$ and denote the segment in \mathbb{C} with endpoints c_j and c_{j+1} by l_j , and suppose that l_j does not contain the origin. Let $l : \mathbb{R} \to \mathbb{C} - \{0\}$ be the map such that the restriction to the closed interval [j, j + 1] is the affine map into \mathbb{C} satisfying $l(j) = c_j$ and $l(j+1) = c_{j+1}$. Then we have $l(t+3k) = e^{ik\theta/2}l(t)$ for any $t \in \mathbb{R}$ and $k \in \mathbb{Z}$. (See Figure 4.)

Let $\exp : \mathbb{C} \to \mathbb{C} - \{0\}$ be the universal covering, and let d be the metric on \mathbb{C} obtained as the pull-back of the Euclidean metric on $\mathbb{C} - \{0\}$ by the covering map exp. We denote the metric space (\mathbb{C}, \tilde{d}) by $\widehat{\mathbb{C}}_0$. Let $\tilde{l} : \mathbb{R} \to \widehat{\mathbb{C}}_0$ be a continuous lift of l by exp. We define the isometric action of the infinite cyclic group \mathbb{Z} on \mathbb{R} (resp. $\widehat{\mathbb{C}}_0$) by $1 \cdot t = t + 3$ (resp. $1 \cdot z = z + i\theta/2$). Then \tilde{l} is equivariant with respect to these actions of \mathbb{Z} . Let $S^1 = \mathbb{R}/\mathbb{Z}$ and $\mathbb{C}_{\theta} = \widehat{\mathbb{C}}_0/\mathbb{Z}$ equipped with the metrics so that the covering projections are local isometries. We remark that \mathbb{C}_{θ} can be naturally regarded as the "boundary" of the model space \mathbb{H}^3_{θ} . We denote $\mathbb{H}^3_{\theta} \cup \mathbb{C}_{\theta}$ by $\overline{\mathbb{H}^3_{\theta}}$. Then \tilde{l} induces the map $l_{\theta} : S^1 \to \mathbb{C}_{\theta}$ whose image is the union of three (geodesic) segments $l_{\theta}([j, j + 1])$ ($j \in \{0, 1, 2\}$). We denote the image of l_{θ} in \mathbb{C}_{θ} by $\mathcal{L}_{\theta}(\rho, \sigma)$. Under the above notation, we say that ρ satisfies the condition Simple at σ if $l_{\theta} : S^1 \to \mathbb{C}_{\theta}$ is a homeomorphism onto its image $\mathcal{L}_{\theta}(\rho, \sigma)$ in its left (reap. right) hand side.

For $\rho \in \mathcal{R}_{\theta}$ which satisfies the condition Simple at σ , let ξ_j be the length of l_j for each $j \in \mathbb{Z}$. By definition, ξ_j is also equal to the length of the segment obtained as the image $l_{\theta}([j, j + 1])$. We say ρ satisfies the triangle inequality at σ if $\sqrt{\xi_0}, \sqrt{\xi_1}, \sqrt{\xi_2}$ satisfies the triangle inequality. By a parallel argument to the case of once-punctured torus, ρ satisfies the triangle inequality at σ if and only if $I(\rho(P_j)) \cap I(\rho(P_{j+1}))$ consists of exactly two points for any $j \in \mathbb{Z}$.

We say that ρ is *admissible* at σ if ρ satisfies the condition Simple and triangle inequality at σ , and also if $D(\rho(P_j))$ does not contain the origin for any $j \in \mathbb{Z}$. The final condition corresponds to the condition NonZero introduced in [2] for the case of once-punctured torus. For ρ which is admissible at σ , we can define the *side parameter* $\theta(\rho, \sigma) = (\theta^-(\rho), \theta^+(\rho))$ by a similar way to the case of once-punctured torus.

Let $\boldsymbol{\nu} = (\nu^{-}, \nu^{+})$ be a pair of points in \mathbb{H}^{2} , and ℓ the geodesic segment in \mathbb{H}^{2} with endpoints ν^{\pm} . Let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}$ be the triangles in \mathcal{D} such that the interior of σ_{k} intersects ℓ in this order, and denote the sequence $\{\sigma_{1}, \ldots, \sigma_{m}\}$ by $\Sigma(\boldsymbol{\nu})$, which is called a chain of triangles in [2]. We also define the 2-dimensional simplicial complex $\mathcal{L}(\boldsymbol{\nu}) = \mathcal{L}(\Sigma(\boldsymbol{\nu}))$ associated with $\boldsymbol{\nu}$ following [2]. As the argument in the above, where we define the condition Simple, there is a natural action of \mathbb{Z}

Figure 6: A developed image of a good fundamental polyhedron in \mathbb{H}^3

on $\mathcal{L}(\boldsymbol{\nu})$. We denote the quotient $\mathcal{L}(\boldsymbol{\nu})/\mathbb{Z}$ by $\mathcal{L}_{\theta}(\boldsymbol{\nu})$. We say that a pair $(\rho, \boldsymbol{\nu})$, which is called a *labeled representation*, satisfies the condition *Simple* if ρ satisfies the condition Simple at each σ_k , and if there is a linear extension of $S^1 \to \mathcal{L}_{\theta}(\rho, \sigma_k)$ $(k \in \{1, \ldots, m\})$ to $\mathcal{L}_{\theta}(\boldsymbol{\nu}) \to \mathbb{C}_{\theta}$ which is a homeomorphism onto the image.

Let $(\rho, \boldsymbol{\nu})$ be a labeled representation which satisfies the condition Simple. Then we can define a "polyhedron" $Eh(\rho, \boldsymbol{\nu})$ in $\overline{\mathbb{H}_{\theta}^3}$ as the "common exterior" to the family of isometric hemispheres $\{Ih(\rho(P)) \mid s(P) \in \mathcal{L}(\boldsymbol{\nu})^{(0)}\}$. This definition is a slight modification of that is mentioned in Section 6.4 of [2], where a fundamental domain modulo the action of the peripheral subgroup is discussed. For the polyhedron $Eh(\rho, \boldsymbol{\nu})$, we define the two conditions *Duality* and *Frontier* by simply following Definitions 6.1.3 and 6.1.4 in [2].

A labeled representation (ρ, ν) is said to be good if it satisfies the condition Simple, and if the polyhedron $Eh(\rho, \nu)$ satisfies the conditions Duality and Frontier. We call $Eh(\rho, \nu)$ a good fundamental polyhedron for ρ . By following [2], we can see that a good fundamental polyhedron induces a complete cone hyperbolic structure on M_{θ} . See Figure 6, which illustrates a developed image of a good fundamental polyhedron for the cone angle $\theta = 4\pi/7$. We remark that the developed image does not make sense if the cone angle θ is an irrational multiple of π (see Figure 7).

By comparing the numerical results done by Yamashita based on his joint work with Tan [12] and by the author, we proposed the following conjecture.

Conjecture 4.1 (Akiyoshi-Yamashita). For $\rho \in \widehat{\mathcal{R}}_{\theta}$, ρ has a good fundamental polyhedron if and only if ρ satisfies the BQ-condition.

Except for the real representations described in the next section, this conjecture is still open.

Figure 7: Rationality of cone angle with π and developed image

5 Real representations

In this section, we see a partial affirmative answer to Conjecture 4.1. To this end, we introduce the real slices of the representation spaces. Let $\widetilde{\mathcal{R}}_{\theta}^{\mathbb{R}}$ be the subspace of $\widetilde{\mathcal{R}}_{\theta}$ consisting of the representations with $SL(2,\mathbb{R})$ -representations as representatives. Let $\mathcal{R}_{\theta}^{\mathbb{R}}$ be the subspace of \mathcal{R}_{θ} consisting of the representations pr_M $\circ \widetilde{\rho}$ for $\widetilde{\rho} \in \widetilde{\mathcal{R}}_{\theta}^{\mathbb{R}}$, and let $\widehat{\mathcal{R}}_{\theta}^{\mathbb{R}}$ be the subspace of $\widehat{\mathcal{R}}_{\theta}$ corresponding to $\mathcal{R}_{\theta}^{\mathbb{R}}$. Goldman and Tan-Wong-Zhang made intensive studies on the space $\widetilde{\mathcal{R}}_{\theta}^{\mathbb{R}}$, in which they showed the following theorems.

Theorem 5.1 (Goldman [8]). For $\rho \in \mathcal{R}^{\mathbb{R}}_{\theta}$, either (i) ρ is realized as the holonomy representation of a cone hyperbolic structure on T_{θ} , or (ii) ρ is elementary.

Theorem 5.2 (Tan-Wong-Zhang [10]). For $\rho \in \mathcal{R}^{\mathbb{R}}_{\theta}$, ρ satisfies the BQ-condition if and only if ρ is realized as the holonomy representation of a cone hyperbolic structure on T_{θ} .

The following is the main theorem of [1].

Theorem 5.3. Any non-elementary $\rho \in \mathcal{R}^{\mathbb{R}}_{\theta}$ has a good fundamental polyhedron.

Summarizing the above three theorems, we obtain a partial affirmative answer to Conjecture 4.1 on $\mathcal{R}^{\mathbb{R}}_{\theta}$.

The proof of Theorem 5.3 uses a specialization of the geometric parameterization for $\widehat{\mathcal{R}}_{\theta}$ to $\widehat{\mathcal{R}}_{\theta}^{\mathbb{R}}$, which enables us to simplify the condition of good fundamental polyhedra to a certain algebraic condition for the parameter. Then we obtain the theorem by following the argument of Bowditch [4] and using the results of [10].

6 Uniqueness of a good fundamental polyhedron

In this section, we observe that a good fundamental polyhedron has a property similar to that for the Ford domain of a Kleinian group. In what follows, we suppose that M_{θ} is equipped with the complete hyperbolic structure induced from a good fundamental polyhedron Eh. Then there is a horoball \tilde{H} centered at ∞ such that the intersection $\tilde{H} \cap Eh$ projects onto the subset H of M_{θ} isometric to a standard horoball with cone angle θ . Let C be the subset of M_{θ} obtained as the image of ∂Eh .

Let $x \in M_{\theta} - H$. Then the closed *r*-neighborhood B(x, r) of x in M_{θ} intersects Hfor a sufficiently large positive number r. Since M_{θ} is a complete length space which is locally compact, B(x, r) is compact by the Hopf-Rinow theorem. Thus there is an arc γ in B(x, r) which connects x to ∂H such that the length of γ is equal to the distance between x and H. From the minimality of the length of γ , we see that either (i) γ is contained entirely in Σ , or (ii) γ is a geodesic disjoint from Σ which intersects ∂H perpendicularly at an endpoint. Then C is characterized as the cut locus of M_{θ} with respect to H, namely, the following holds. For any $\tilde{x} \in Eh$, let $\tilde{\gamma}_{\tilde{x}}$ be the vertical geodesic segment in Eh connecting \tilde{x} to $\partial \tilde{H}$, and $\gamma_{\tilde{x}}$ be the projected image of $\tilde{\gamma}_{\tilde{x}}$ in M_{θ} .

Proposition 6.1. Let $\tilde{x} \in Eh$ which project onto $x \in M_{\theta} - H$.

- 1. Suppose that \tilde{x} is a point in the interior of Eh. Then $\gamma_{\tilde{x}}$ is the unique shortest arc in M_{θ} connecting x to H.
- 2. Suppose that \widetilde{x} is a point in ∂Eh . Let $\widetilde{x}_1, \ldots, \widetilde{x}_k$ be the points in ∂Eh which project onto x, where $k \in \{2, 3, 4\}$. Then $\gamma_{\widetilde{x}_1}, \ldots, \gamma_{\widetilde{x}_k}$ is the complete list of shortest arcs in M_{θ} connecting x to H.

Idea of proof. We give the idea of the proof for the assertion 1. The assertion 2 can be proved by a similar argument. In the proof, we use the following property of good fundamental polyhedra:

- (i) The boundary of a good fundamental polyhedron Eh is a union of isometric hemispheres.
- (ii) For any point $x \in Eh$, there are at most three more points in Eh which are identified with x by the side pairings.
- (iii) The points in ∂Eh that are identified by the side pairings have the same height in the upper half space model.

Let x be a point in $M_{\theta} - H$ such that there is a point \tilde{x} in the interior of Eh projecting onto x. Suppose to the contrary that there is a path δ distinct from $\gamma_{\tilde{x}}$

Figure 8: Shortcut between $\widetilde{\delta}'_0$ and $\widetilde{\delta}_1$ exists.

such that the length of δ is less than or equal to that of $\gamma_{\widetilde{x}}$. We may suppose that the length of δ is equal to the distance between x and H, and so δ is a geodesic which intersects ∂H perpendicularly at an endpoint $y \in \partial H$. Let \widetilde{y} be the unique lift of y contained in $\partial \widetilde{H} \cap Eh$, and $\widetilde{\delta}_0$ be the connected component of the lift of δ in Eh containing \widetilde{y} . Then we can see that \widetilde{y} is not contained in $\widetilde{\gamma}_{\widetilde{x}}$, and $\widetilde{\delta}_0$ connects \widetilde{y} to a point, \widetilde{z} , in ∂Eh , where it intersects a face of Eh transversely. Then there is a point \widetilde{z}' in ∂Eh and the component, $\widetilde{\delta}_1$, of the lift of δ such that \widetilde{z} and \widetilde{z}' are identified by the side pairing and that $\widetilde{\delta}_1$ contains \widetilde{z}' as an endpoint (see Figure 8).

Let $\widetilde{\delta}'_0$ be the vertical geodesic segment connecting \widetilde{z}' to $\partial \widetilde{H}$. Since \widetilde{z} and \widetilde{z}' have the same heights, the lengths of $\widetilde{\delta}_0$ and $\widetilde{\delta}'_0$ are the same. Thus we can obtain an arc δ' which has the same length with δ by replacing $\widetilde{\delta}_0$ with $\widetilde{\delta}'_0$. However, there is a shortcut between $\widetilde{\delta}'_0$ and $\widetilde{\delta}_1$. This contradicts the assumption that δ is the shortest arc connecting x to H.

Remark 6.2. We can see that a good fundamental polyhedron is unique for the hyperbolic structure it induces. However, since we have not seen the uniqueness of the hyperbolic structures for a given representation, there is a possibility that two distinct good fundamental polyhedra induce the same holonomy representation.

References

- [1] H. Akiyoshi; Canonical polygons for the hyperbolic structures on the torus with a single cone point, Topology and its Applications, to appear.
- [2] H. Akiyoshi, M. Sakuma, M. Wada, Y. Yamashita; Punctured torus groups and 2-bridge knot groups I, Lecture Notes in Mathematics, 1909. Springer, Berlin, 2007.

- [3] M. Boileau, B. Leeb, J. Porti; Geometrization of 3-dimensional orbifolds, Ann. of Math. (2) 162 (2005), no. 1, 195–290.
- B. Bowditch; Markoff triples and quasifuchsian groups, Proc. London Math. Soc. (3) 77 (1998), 697–736.
- [5] M. R. Bridson and A. Haefliger; Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, **319**. Springer-Verlag, Berlin, 1999.
- [6] T. Jørgensen; On pairs of once-punctured tori, Kleinian groups and hyperbolic 3-manifolds (Warwick, 2001), 183–207, London Math. Soc. Lecture Note Ser., 299, Cambridge Univ. Press, Cambridge, 2003.
- [7] T. Jørgensen; Compact 3-manifolds of constant negative curvature fibering over the circle, Ann. of Math. (2) **106** (1977), no. 1, 61–72.
- [8] W. M. Goldman; The modular group action on real SL(2)-characters of a oneholed torus, Geom. Topol. 7 (2003), 443–486.
- [9] D. Sullivan; Travaux de Thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension 3 fibrées sur S¹, Bourbaki Seminar, Vol. 1979/80, pp. 196–214, Lecture Notes in Math., 842, Springer, Berlin-New York, 1981.
- [10] S. P. Tan, Y. L. Wong, Y. Zhang; Generalized Markoff maps and McShane's identity, Adv. Math. 217 (2008), no. 2, 761–813.
- [11] S. P. Tan, Y. L. Wong, Y. Zhang; End invariants for $SL(2,\mathbb{C})$ characters of the one-holed torus, Amer. J. Math. **130** (2008), no. 2, 385–412.
- [12] Y. Yamashita; OHT a software for the dynamics of the modular group action on the character variety, Complex dynamics and related topics, RIMS kokyuroku 1586, (2008) 18–25.