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A SURVEY ON SOME RESULTS OF VALUED FIELDS IN
RECENT MODEL THEORY
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GENERAL EDUCATION, NATIONAL INSTITUTE OF TECHNOLOGY, TOKUYAMA
COLLEGE

ABSTRACT. We begin with basic theory on valued fields based on the book
“Valued fields” written by A.J.Engeler, A.Prestel, published in 2005, Springer
Monographs in Mathematics. And then we introduce two results on quantifier
elimination of henselian valued fields having nice languages. Finally we present
some results on NTP; related to henselian valued fields.

1. INTRODUCTION

This survey is organized as follows. In section 2 we recall the definitions of
valued fields and valuation rings. In section 3 we review completions of valued
fields and a rank of orderd abelian groups giving by the number of proper convex
subgroups. In section 4 we discuss extensions of valued fields and a characterization
of henselian valued fields. In section 5 we introduce henselizations of valued fields,
inertia fields and ramification fields in the separable closure. In section 6, we present
a characterization of non-trivial henselian valued fields by galois groups. In section
7, we offer a generalization of Hasse-Minkowski Principle by using henselizations
instead of completions. The above sections are completely based on the book
“Valued fields” [EP], we only prove easy facts and try to introduce important
theorems avoiding technical lemmas in the book. In section 8, we discuss quantifier
elimination. For p-adically closed fields we use Macintyre language and for henselian
fields we use Denef-Pas language. In final section, we give some definitions in recent
model theory and present recent results that Q,, is dp-minimal in a proper language
and the depth of inp-pattern of henselian valued fields is bounded by the depth of
inp-patterns of their value groups and residue class fields in Denef-pas language.

2. DEFINITIONS OF VALUED FIELDS, VALUATION RING

Definition 2.1. Let K be a field, I' be an ordered abelian group. We say that
(K,v,T) is a valued field, if v : K — I' U {oo} satisfies
(1) viz) =00 z=0
(2) v(K*)=T
v(zy) = v(z) +v(y) forall z,y € K
ie. v:(KX,:) —» (T,+) is an epimorphism.
(3) v(z +y) > min{v(z),v(y)} for all z,y € K
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The following are easy facts.

Fact 2.2. (1) v(+1) =0

(2) v(z7!) = ~v(x)

(3) v(—z) = v(z)

(9) v(z) < (y) = v(z +1) = v(z)
Proof. (1) : (1) = v(1-1) = v(1) + v(1) and 0 = v(1) = v((=1) - (=1))
v(-1) +v(-1). (2): 0=2v(1) =v(z-z71) = v(z) + o). (3): v(—z)
v(=1) +v(z) =0+ v(z) = v(z). (4): v(z+y) > min{v(z),v(y)} = v(z)
Ifv(z+y) > v(z), then v(z) = v((z+y) ~y) = min{v(z+y), v(~y) = v(y)} > v(a),
a contradiction. O

I

Example 2.3. (1) p-adic valuation : v, : Q » Z U {oc}
Ly M
’Up(p ;L—) =V,

where p is a prime number and p fm,n € Z
(2) p(X)-adic valuation : vyx) : k(X) - ZU {oo}

XY _,
o (s007L80) =,
where p(X) € k[X] is irreducible and p(X) ff(X),9(X) € k[X]

Let (K,v,T) be a valued field. Then O, := {z € K : v(z) > 0} is a subring
of K, My := {z € K : v(z) > 0} C O, is a maximal ideal and the unit of @, is
Oy = Oy \ M,. We also have z € O, or z7! € O, for any z € K*.

Definition 2.4. We say that a subring @ of a field K is called a valuation ring of
K,ifzeOorz 1e€Oforany z € K*.

Fact 2.5. If O is a valuation ring of a field K, then there ezxists a valuation v on
K such that O = O,..

Proof. T := (K* JO*,+,<): an ordered abelian group as follows:

zO* + yO* = zyO*
20" < yO* & :Z- €0
Put v(z) := zO* €T. If v(z) < v(y), then % €0. As ?—1———3/ =1+ % €0, we
have v(z + y) > v(z) = min{v(z), v(y)}

We also have z € O, & v(z) > 0in ' & 10* _<_:c(9"<=>%60. O

3. COMPLETIONS OF VALUED FIELDS

Definition 3.1. Let (K,v,T) be a valued field and (an)n<. be a sequence in K.
(1) nluréo an, = a <> for any v € I" there exists ng < w such that for all n > ng

v(an —a) >y

(2) (@n)n<w is a Cauchy sequence <> for any 7 € I' there exists ny < w for all
n,m > no :
v(an — am) >
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(3) (K,v,I) is complete, if any Cauchy sequence in K converges in K

Fact 3.2. (Completion) Any valued field (K,v,T") can be embedded into a complete
valued field (K,9,T") such that

(1) K is dense in K
(2) T~T
(3) Op/ My =03/ Ms

Definition 3.3. Let I' be an ordered abelian group. A subgroup A <T is convex
ifyeT with0 <y <4Jd €A, thenye€A.

Remark 3.4. (1) Convex subgroups are linearly ordered by inclusion: If A, Ag <
I" are convex, then A; < Aj or Az < A;.
(2) We define the rank of I, rk(I') = n if there are exactly n-many proper
convex subgroups of T, ie. {0} =A; <A< - <A, <Tandif A<T
is convex, then A = A; for some 1 < i < n.
(3) If T is archimedian, then rk(I') = 1, in particular rk(Z) = 1.

Proof. (1) : Otherwise there exist 03 € Ay \ Ag,d2 € Az \ A;. As -6 € Ay \
Ag, —02 € Az \ Aj, we may assume d;,02 > 0. Then 0 < §; < §; implies §; € A;,
a contradiction. (3) : Let {0} < A <TI'be convex. Fixa 0 < J € A. AsTis
archimedian, for any 0 < v € T, there exists n € N such that 0 < v < néd € A. So
A=T.0 .

Fact 3.5. (1) k(') =1 iff T is order-isomorphic to a non-trivial subgroup of
R, +,<).
(2) The lezicographic product tk(Z X - -- X Z) = n.

n times

For (K,v,T), K, = 0,/M, is called the residue class field. For ¢ € O,, @
denotes a + M,, € 7{—,, N .
For f(X) = Y1 o aiX* € Oy[X], f(X) denotes Y ;- @ X* € K,[X]

Fact 3.6. (1) If k() = 1 and (K,v,I') is complete, then Henselian Lemma
holds in (K,v,T). i.e. If f(X) € Oy[X] and f(a5) = 0, f'(ag) # O for some
ap € Oy, then there exists a € O, such that f(a) =0 and @ = ap.

(2) It is known that the above fact does not holds in case of tk(I') = 2. See
Remark 2.4.6. on pp.58 in [EP].

4. HENSELIAN FIELDS

Let K; C K, be fields, O; C K;(i = 1,2) be valuation rings. We say O, is
an extension of O; if O N K; = O;. We write (K;,0;) C (Ka2,03) if Oq is an
extension of O;.

Fact 4.1. Let K; C K3 be fields and Oy C K; be a valuation ring.

(1) There ezists an extension Oy C Ky of Oy. See Theorem 8.1.1 on pp.57 in
[EP]. ,

(2) If (K1,01) C (K2,02) (i.e. O2N Ky = O1), we have
(a) ManNO; =M,
(b) O N Ky = Of



Proof. We only prove (2). For (a): As Ma;N©O; C O is a ideal and M, is a
maximal ideal of Oy, Mo NOy C M,. If z € M, \ (Mz N 01) then 271 & Oy, so
z € Oy, a contradiction.
For (b) O; ﬂKl = 02 ﬂMgnKl = OgﬂKl NnMs§ = 01 ﬂMg (as OQHKl = 01)
=01 \O1NMz=0,\ M, (by(a))zOf.D v

By (a) M3 NO; = M;, we have

Ki=01/M; = O0/My =K,
By (b) O N Ky = Of, we have
Ty o KX JO) — K} JOF =Ty

We call e((O2/®,) := [T : ;] the ramification index, and f(O2/01) = [K3 : K1
the residue degree.

Fact 4.2. If [Ky: K1) =n < w then
e(02/01)f(02/01) < n.
Let K*® be separable closure of K.

Fact 4.3. (Finite multiplicity)

Let L be an algebraic extension of K and suppose that [LN K® : K| < w. Let O
be a valuation ring of K. THEN |[{O' : (K,0) C (L,O")}l < [LNK®: K] < w.
In particular if L/K is purely inseparable, the extension of O to L is unique. (As
[LNK?®: K] =1) Since L/LNK?* is purely inseparable, the extension of a valuation
ring of L N K* to L is unique. Recall that dcl(K) = Kins/K is purely inseparable
in the field language.

Theorem 4.4. (Conjugation Theorem) 5 _
Suppose that N/K is NORMAL. (6(N) = N for any o € Aut(K/K), where K
is ‘an algebraic closure of K) If (K,O) C (N,0’),(N,0"), then there erists 0 €
Aut(N/K) such that o(O’) = O”. Moreover -

(1) Letv',v"” be valuations on N such that O’ = Oy ,0(0') = 0" = Oyr. Then

'U” —_ ,vl o 0,—1
(2) e(O0'/0) =€(0"/0), f(O'/0) = f(O"]O)
(3) Ny /K, is also NORMAL, where v is a valuation on K such that O = O,.

Fact 4.5. Let (K,O) be a valued field. Then the following are equivalent, and such
a valued field is called henselian.
(1) Henselian Lemma holds in (K,0): If f(X) € O[X] and f(@o) = 0, f'(Gp) #
0 for some ag € O, then there exists a € O such that f(a) =0 and @ = ag.
(2) If L/K is algebraic, then O has a unique extension to L. (cf. It is known
that O has many extensions to K(X) if K(X)/K is transcendental.)

Remark 4.6. (K, Q) is henselian < O has a unique extension to K?.

Proof. (=) is clear.
(«=) : Let L/K be algebraic and suppose that O has a unique extension O° to K?,
then O has a unique extension O* N LN K® to LN K*. As L/L N K? is purely
inseparable, O° N L N K* has a unique extension O to L, and Of, is a unique
extension of O to L.
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5. HENSELIZATION OF VALUED FIELD

Let G(K*®/K) denotes the galois group of K*® over K. G(K*®/K) is a profinite
group, a compact Hausdorff totally disconnected topological group.
For a valued field (K, ©) and an extension O° of O to K*, we have the following.

Fact 5.1. (Henselization K*(0?) of (K, 0®))
(1) G*0?) := {0 € G(K*/K) : 0(0%) = 0°} < G(K*®/K) is closed.
(2) K*(0®) := Fix(G"(0®)) is henselian and the residue fields of K and
K" (0®) are same and so are value groups of K and K*(0?%).
(3) If (K1,01) is a henselian extension of (K,O), then there exists a K-
embedding

vz (KPM(0%),0° N KM0°) < (K1,0;)
i.e. L(O° N KM0O?)) = Oy Ny (KMO?)).

Proof. Here we only check that K*(0?) := Fix(G"*(©*)) is henselian.

Recall that (K,O) is henselian iff O has a unique extension to K°. And we
have K®/K"(0®)/K as {id} < GM0*) < G(K*/K). So, if (K?,0*), (K*,0) 2
(K*(0%), 0 N K*(0*)),then we need to show that

0°=0

By conjugation theorem on normal extensions, there exists ¢ € G(K*/K"(0?))
such that

o(0°) =0.
As G(K*/K"*(0°))=G"(0*) we have O’ = 0(0*)=0" as desired. O

Theorem 5.2. (More on conjugation theorem)

Let N/K be normal and (N,0’) 2 (K,0). If o € Aut(N/K) be such that o(?’) =
O’, then put 5(z + M’) := o(z) = o(z) + M’ for each z € O. Then we have
7 € Aut(N/K).

As g € GM0%) < G(K*/K) satisfies 0(0*) = O%, we have & € G(K*/K). Then
we have the following fact.

Fact 5.3. (1) ¥: GM0O®) » G(K*/K) is continuous epimorphism, where g —
o ;
(2) G*H(O?) := ker(¥) Q GP(O?®) is closed.
(3) G*(0?)/G}0*) ~ G(K?*/K).
(4) We call K*(0®) := Fix(G*(0?)) the inertia field of O° over K.
We also have K°/K'O*)/K*(©%)/K as {id} < G{0O®) < GM0?) <
G(K°/K). :
Moreover if K*(O®)/N/L/K?*(©®) with [N : L] < w, then the ramification
index
e(O°NN/O°NL)=1
and f(O°NN/O*NL)=[N:L], so N/L is an UNRAMIFIED extension.
Theorem 5.4. (A part of conjugation theorem)

Let N/K be normal. Let v',v" be valuations on N such that O' = O,,0(0') =
O" =QOyr. Then v" =v' oo™ 1.
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So if 0 € G(K*/K) and o(0%) = O° i.e. 0 € G, then v* 0o 0 = v°, where
®: K° — I'* be a valuation corresponding to 0°. So v*(z) = v*(c(z)) for all
x € (K®)*.
In particular, For any o € G*,z € (K*)*,

29 ¢ 00y, %) e (g~

Fact 5.5. Let v*: K* - I'* be a valuation corresponding to O L
Then there exists a well-defined epimorphism v : Gt - Hom(A®/At, (K?)%),

$(0)(8 + AY) = i‘iz"fl e (K7)*

, where v*(z) =6 € A® and z € (K*)*.
And G¥ = ker(v) < G? is closed.
We have
G'/G” ~ Hom(A®/At, (K?)%)
We call KV := Fix(G") the ramification field of O* over K.
As we G* A G* 4 G* < G(K*/K), we have
K*/K/K'/K"/K.
It is known that K¥/K" is galois and if K?/N/L/K* and [N/L] < w then the
ramificatin index
e(O°NN/O°NL)=[N:L]
and f(O°NN/O*NL)=1, so N/L is an RAMIFIED extension.

Compare that if K*/N/L/K" and [N/L] < w then the ramificatin index e(0°N
N/O°NL)=1and f(O°NN/O°NL) =[N : L], N/L is unramified.

6. GALOIS CHARACTERIZATION OF HENSELIAN FIELDS

There exist a non-trivial henselian valued field K, a field L without any non-
trivial henselian valuation such that
G(K°/K) ~G(L*/L)
in the following each case. (See pp.136-137 in [EP))

(1) Ik is divisible.
(2) I'is p—d1v1s1b1e for any prime p # ch(K).
(3) G(K’°/K) # {id} and (T : p'x) = p # ch(K)
By informations on galois group of K, it is hard to see whether a non-trivial
henselian valuation on K exists or not, but for the following well-extracted valued
fields, so-called “tamely branching valued fields at p”, we have a characterization

on the existence of a non-trivial henselian valuation.
Excluding the above bad cases (1), (2), (3), we define the following.

Definition 6.1. We say that (K, v,T’) is tamely branching at p, if p # ch(K) and
I is not p-divisible, and if (', pT") = p then p°|G(K" /K).

Recall that a profinite group G :=lim G; is said to be divided by p™ (we write
as p™|@G), if for any n € N, p™ divides |G;| for some i



Theorem 6.2. The following are equivalent.

(1) K has a non-trivial henselian valuation, tamely branching at p.
(2) G(K®/K) has a non-procyclic p-Sylow subgroup P # Zz x Z/2Z having a
non-trivial abelian normal closed group A 4 P

Recall some definitions for the above theorem : A profinite group G := lim G; is
said to be procyclic, if each G; is cyclic. A subgroup P is said to be p-Sylow in a
profinite group G if P is a maximal closed subgroup of G such that if p™ divides G,
so does P.

7. LocAL-GLOBAL PRINCIPLE FOR WEAK ISOTROPY

(K, <) is semiordered if (K, +) is an ordered abelian group and if 0 < a then
0 < ab? for each a,b € K.

(K, <) is ordered if (K, +) is an ordered abelian group and if 0 < a,b then 0 < ab
for each a,b € K. Then

n
ZK2:= {sz:zieK,n<w} C{z e K:xz>0}.
i=1

Let p = (a,- - ,an), where a; € K \ {0} for each 1 <i < n.

We say that p is weakly isotropic in K, if there exist 1, -+ ,0, € Y K? such that
S aio; and (01,--- ,0n) # (0,--- ,0). If 0; € K? for each 4, then p is said to be
isotropic in K.

The following is a classical well-known result, Hasse-Minkowski Principle: p is
isotropic in Q if and only if p is isotropic in R and in Q, for all prime p, where R
and Q, are completions of (Q, | ), (Q,vp(*)) respectively.

A generalization of H-M Principle by usmg HENSELIZATIONS instead of com-
pletions is the following theorem. ,

Theorem 7.1. (Brocker-Prestel Local-Global Principle for weak isotropy)
Let (K, <) be an ordered field and p = (a1,--- ,an), where a; € K \ {0} for each
1 < i < n. Then the following are equivalent.
(1) p is weakly isotropic in K
(2) p is weakly isotropic in R for every embedding of K into R and p is weakly
isotropic in every henselization (K" v") of (K,v), where v is a non-trivial
valuation on K such that its residue class field K, is semiordered.

8. QUANTIFIER ELIMINATION AND LANGUAGES OF VALUED FIELDS

Definition 8.1. We say that a valued field (K, v) is p-adically closed, if

(1) (K,v) is henselian.

(2) K =F,.

(3) v(K) is discrete with v(p) as minimal positive element.
(4) v(K)/v(p)Z is divisible.

For each valued field (K, v), the following language Lyac is given by A.Macintyre:
LMac :=the field language U{V (z)} U {Pn(z) : 1 < n € w}, where V(K) = O, and
P (K)={ze K:Jye K(z=y")}.

We say that K is p-adic if K is a Lyac-substructure of a p-adically closed field.

We have the following. '
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Fact 8.2. (1) If K is p-adically closed, then Th(K).,,.. admits quantifier elim-
ination. [M]
(2) If K is a p-adic field and Th(K),,,. admits quentifier elimination, then
K is p-adically closed. [MMvdD]

The following language is called Denef-Pas language : there are tree sorts, the
field sort K, the residue class field sort K and the value group sort I. The field
sort and the residue sort use the ring language and I uses the order abelian group
language and one constant symbol co. Moreover there are two cross sort function
symbol v 1 K — I' U {oo} which stands for the valuation and ac : K — K which
stands for an angular component map which satisfies the following conditions.

(1) ac(0) =0
(2) aclK* :(K*,-)— (K*,-) is a homomorphism.
(3) ac(x) =z + M, where z € O, \ M,
Lrrpr denotes the expanded language of Denef-Pas language whose the value
group sort uses the Presburger language {+,<,0,1} U {D,(z) : 1 < n € w}.

Fact 8.3. Let S = (K,K,T'U{oo},v,ac) be an Lrgp;-structure.

(1) If K is henselian and ch(K) = ch(K) = 0, then Th(S) zpnp, admits quan-
tifier elimination in the K-sort. [P]

(2) Ifch(K) = ch(K), T has a minimal positive elementy and T'/~Z is divisible,
and Th(S)cppe, admits quantifier elimination in the K -sort, then (K,v) is
henselian. [Y]

9. SOME RECENT RESULTS ON VALUED FIELDS IN MODEL THEORY
We review some definitions in pure model theory.

Definition 9.1. Let p(z) be a partial type over A.

(1) We define the dp-rank of p(z), denoted dprk(p{z)), be the supremum of
for which there exist b |= p(z) and mutually indiscernible sequence (a4 )a<x
over A such that none of them is indiscernible over bA.

(2) We say that there is an ict-pattern of depth x in p(z), if there exist an
array (ai j)i<x,j<w and a sequence of formulas (p;(z, %) : i < k) such that
() U {pi(2, 05 5()) 1 & < K} U {~pi(x,a: ;) : i < K,j # s(i)} is consistent
for each s: kK — w.

(8) We say that there is an inp-pattern of depth « in p(z), if there exists an array
(@i,5)i<k,j<w 8 sequence of formulas (p;(z,v:) : i < k) and {k; < w : 1 < K}
such that

(a) {pi(z,a:;): j <w} is ki-inconsistent for each i < k.
(b) {wi(x,a; ;) : i < K} Up(z) is consistent for each s: Kk — w.

(4) We define the burden of p(z), denoted bdn(p(z)), be the supremum of the
depths of all inp-patterns in p(z). :

(5) Let T be a theory. For n < w, k,,(T) denotes the smallest cardinal
such that there is no inp-pattern ((a; j)j<w, @i(Z, %), ki )i<x of depth k with
lh(z) < n.

Remark 9.2. Let p(z) be a partial type.
(1) bdn(p(z)) < dprk(p(z)). See Proposition 10 in [A].
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(2) dprk(p(z)) > & if and only if there is an ict-pattern of depth « in p(z). See
Proposition 2.6 in [KOU]J.
(3) If %,,(T) is infinite for some n < w, then Kinp(T) = sup, <, K (T) =

K7p(T) = Kipy(T). See Corollary 2.9 in [C].
Now we mention recent results on valued fields in model theory.

Fact 9.3. [DGL] Ly :=the ring language U{v(z) < v(y)}. Then Th(Qp)c,, is
dp-minimal i.e. dprk(z = z) = 1 in Th(Qp).,,. See section 6 in [DGL].

Definition 9.4. Let T be a theory.
(1) T is independent if there exists ¢(z,y), {a: : i < w} and {b, : s C w} such
that = ¢(a;,b,) if and only if 7 € s.
(2) T is dependent if T' is not independent. '
(3) T has TP, (the tree property of the second kind) if there exists ¢(z,y),k €
w and an artay (a;j : i,j < w) such that
(a) {pi(z,a;;):j <w} is k-inconsistent for each i < w.
(b) {wi(z, ;) : &+ <w} is consistent for each s: w — w.
(4) T is NTP; if it does not have TPs.

Remark 9.5. (1) T is dependent <> dprk(p(z)) < |T|* for any partial type
p(z) « dprk(p(z)) < oo for any partial type p(x). See Fact.2.6 in [OU].
(2) Tis NTP; < bdn(p(z)) < |T|* for any partial type p(z) <> bdn(p(z)) < oo
for any partial type p(z) <> Kinp(T) < |T|*. See Lemma 3.2 in [C].
(3) If T is dependent, then Kin,(T') < |T|*, so T is NTP;. See Proposition 10
in [A].

Definition 9.6. [C] For a finite set of formulas, R(k,A) denotes the minimal
length of a sequence of singletons sufficient for the existence of a A-indiscernible
subsequences of length x. Then we have R(n,A) < w by finite Ramsey theorem,
R(w,A) = w by infinite Ramsey theorem, and R(x*,A) < 3,(«) by Erdés-Rado
theorem.

Fact 9.7. [C] Let S = (K,T' U {oc}, K,v,ac) be a henselian valued field with
ch(K) = ch(K) = 0 in the Denef-Pas language. THEN we have
K’z}np(s) < R(n}np(F) X H%’np(r) + 2’ A)
for some finite set A of formulas. As any ordered abelian group is NIP, so we
always have £}, (T) < |T|*.
(1) If K is NTP,, then S is NTP2, because n}np(—l?) x k1.0 (T) < [T|F, so we
have 3,,(S) < R(IT|* +2,4) < 3, (IT[*) < oo.
(2) If K and T are strong (i.e. K}, (K), 51, (T) < w), then S is strong.
(3) If K and T have finite burden (i.e. k},,(K), 5}, (T) <w), then S has finite
burden. '
(4) If K and T are strongly dependent (i.e. fs}np(-I—(),n}np(F) < w and K and
T are dependent), then S is stronly dependent, because it is known that if
K is dependent, then S is dependent by Delon’s theorem.

Example 9.8. (1) Let S = (K = [, prime Qo/U, T U {0} = ZU {0}, K =
,.prime Fp/Us v,a¢). A8 K = [, rime Fo/U is pseudofinite and any pseu-
dofinite field is pseudo-algebraically closed and not separably closed, so K



has independence property by Duret’s theorem. As T* has strict order prop-
erty and T' ~ K> /OJ and it is known that O, is definable in Q, in the
field language, uniformly in p, it follows that O, is definable in K in the
field language, so S has independence property and strict order property in
the field language. On the other hand, as K =[], o Fp/U and T = Z
have finite burden, so S has finite burden in the Denef-Pas language.

(2) Let K be a field and T' an ordered group. K((I')) denotes the set of formal
power series f = Zwer‘ a,tY, where a., € K for each v € " and the support

of f :supp(f) = {y € I' : ay # 0} is well-ordered. For f = Yo er it g=
> ver byt?, addition f + g = 2 over(ay + by)t7 and muliplication f - g =

>, (25 e a(;bc) £7 are well-defined and K ((T)) is a field. Put v(0) := oo

and v(f) := min(supp(f)), then (K((T'),v,T) is a henselian valued field
with the residue class field K (see pp.82,83,92 in [EP]). So if K is an NTP,
field, then S = (K ((I')),I"' U {00}, K, v, ac) is NTP,.
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