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1 Introduction

We consider systems of the form

$\dot{x}=f(x)+\epsilon(b(x)\eta(t)+c(x)) , x\in \mathbb{R}^{n}$ , (1)

where $0<\epsilon\ll 1$ and $f,$ $b,$ $c$ : $\mathbb{R}^{n}arrow \mathbb{R}^{n}$ are $C^{N}(N\geq 2)$ with $f(0)$ , $b(O)$ , $c(O)=0$ and
$Db(O)=0$ . Here $\eta(t)$ is a scalar stationary Gaussian process such that

$\mathbb{E}[\eta(t)]=0, \mathbb{E}[\eta(t)\eta(t+\tau)]=r(\tau)$ ,

where $r$ : $\mathbb{R}arrow \mathbb{R}$ represents its autocorrelation function. Moreover, we require $r(\tau)$ to
be continuous and absolutely integrable on $(-\infty, \infty)$ , so that its spectrum is continuous.

This implies via Maruyama’s theorem [9] (see also [3]) that $\eta(t)$ is ergodic, i.e.,

$\lim_{Tarrow\infty}\frac{1}{T}\int_{0}^{T}\phi(\eta(t))dt=\mathbb{E}[\phi(\eta(t))]$ a.s.

for any measurable function $\phi$ : $\mathbb{R}arrow \mathbb{R}$ . A little stronger requirement for $r(\tau)$ is also

made at $\tau=$ O. See Section 2. In addition, we take $r(O)=1$ without loss of generality.
Thus, Eq. (1) represents a random perturbation of the deterministic system

$\dot{x}=f(x)$ . (2)

We also assume that the origin $x=0$ is a hyperbolic saddle with an isolated homoclinic
orbit in the unperturbed system (2).

When $\eta(t)$ is a deterministic function, dynamical systems of the form (1) have been
studied extensively. Especially, a global perturbation technique called Melnikov’s method
[10] was applied or extended to discuss chaotic dynamics of those systems. See, e.g.,
[4, 10, 12] for the periodic case, [15, 17] for the quasiperiodic case, and [7, 14] for the
general, aperiodic case. In each case one computes an integral called the Melnikov function
or integral to obtain conditions for the existence of chaos. Moreover, special bounded and
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Figure 1: Assumption (A4).

unbounded random perturbations of two-dimensional systems were discussed by using
similar approaches in [7] and [8], respectively. The latter case is included in our system
(1) with

$r( \tau)=\max(1-\frac{|\tau|}{\triangle},0) , c(x)\equiv 0,$

if $0<\epsilon/\sqrt{\triangle}\ll 1$ is replaced with $\epsilon$ , where $\triangle$ is a small positive constant.
In this article we review a recent result of [18] which shows that chaotic dynamics

occurs almost surely in the general randomly perturbed systems of the form (1). This
result is very contrast to the deterministic case, in which chaotic orbits exist only if the
influence of $b(x)\eta(t)$ overcomes that of $c(x)$ in the perturbations. The approach used there
is similar to that of [8] but a nice probabilistic property of the corresponding Melnikov
functions is utilized. See [18] for the details and proofs. We also remark that randomly
perturbed systems similar to (1) were also discussed in [5, 13] much earlier although such
a fact was completely untouched and the treatments had a lack of mathematical rigor
there.

2 Setup

As stated in Section 1, we first assume the following:

(A1) $f(0)$ , $b(O)$ , $c(O)=0$ and $Db(O)=0.$

(A2) The autocorrelation function $r(\tau)$ for $\eta(t)$ is continuous and absolutely integrable
on $(-\infty, \infty)$ , and satisfies

$1-r(\tau)\leq C|\tau|^{\alpha}$ as $\tauarrow 0,$

where $C,$ $\alpha>0$ are constants. Especially, $r(O)=1.$

Assumption (A1) means that $x=0$ is a constant solution to (1) for any $\epsilon>0$ . By assump-
tion (A2) $\eta(t)$ is continuous (and actually satisfies a H\"older condition) with probability
one. See Section 9.2 of [2].

We make the following assumptions on the unperturbed system (2):

(A3) The origin $x=0$ is a hyperbolic saddle equilibrium and the Jacobian matrix $Df(O)$

has $n_{s}$ and $n_{u}$ eigenvalues w\’ith negative and positive real parts, respectively, such
that $n_{s}+n_{u}=n.$
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(A4) The equilibrium $x=0$ has a homoclinic orbit $x^{h}(t)$ , i.e., $\lim_{tarrow\pm\infty}x^{h}(t)=0$ . See
Fig. 1.

Assumption (A3) and (A4) mean that the saddle $x=0$ has $n_{s^{-}}$ and $n_{u}$-dimensional, stable
and unstable manifolds, denoted by $W_{0}^{s}$ and $W_{0}^{u}$ , respectively, in (2), and $W_{0}^{s}$ and $W_{0}^{u}$

intersect along the homoclinic orbit $x=x^{h}(t)$ .

Consider the variational equation (VE) of (2) along $x^{h}(t)$ ,

$\dot{\xi}=Df(x^{h}(t))\xi, \xi\in \mathbb{R}^{n}$ . (3)

Obviously, $\xi=\dot{x}^{h}(t)$ is a bounded solution of (3) with

$\lim_{tarrow\pm\infty}\dot{x}^{h}(t)=0.$

We also assume the following on the VE (3).

(A5) Eq. (3) has no bounded solution that is independent of $\xi=\dot{x}^{h}(t)$ .

It follows from (A5) that
$\dim(T_{x}W_{0}^{s}\cap T_{x}W_{0}^{u})=1$

along $x=x^{h}(t)$ , $t\in \mathbb{R}.$

We turn to the randomly perturbed system (1) and give some preliminaries. We
recommend the readers to refer to [1] for a general framework of our treatments if they
are unfamiliar.

Let $(\Omega, \mathscr{F}, \mathbb{P})$ be a canonical probability space, where the sample space is given by
$\Omega=C(\mathbb{R}, \mathbb{R})$ , $\mathscr{F}$ is the Borel a-algebra of $\Omega$ , and $\mathbb{P}$ is a probability measure determined
by the finite dimensional distribution of $\eta(t)$ . According to the standard recipe [1], define
$a$

$\mathbb{P}$-preserving measurable flow $\theta=\{\theta_{t}\}_{t\in \mathbb{R}}$ with $\theta_{t}:\Omegaarrow\Omega$ as

$\theta_{t}\omega(\tau)=\omega(t+\tau)$

for (1), where $\omega\in\Omega$ and $t,$ $\tau\in\cdot \mathbb{R}$ . We immediately see that

(i) $\theta_{0}=id$ ;

(ii) $\theta_{t}\theta_{\tau}=\theta_{t+\tau}$ for $t,$ $\tau\in \mathbb{R}$ ;

(iii) $\theta_{t}\mathbb{P}=\mathbb{P}$ for $t\in \mathbb{R}.$

Let $D_{1}\subset D_{2}\subset \mathbb{R}^{n}$ be regions containing the homoclinic orbit $x^{h}(t)$ , i.e.,

$D_{j}\supset\{x^{h}(t)|t\in \mathbb{R}\}U\{O\}, j=1, 2$ ,

and let $\chi$ : $\mathbb{R}^{n}arrow \mathbb{R}$ be a $C^{\infty}$ bump function such that $0\leq\chi(x)^{\backslash }\leq 1$ for any $x\in \mathbb{R}^{n}$ and

$\chi(x)=\{\begin{array}{l}1 for x\in D_{1};0 for x\in \mathbb{R}^{n}\backslash D_{2}.\end{array}$

Consider
$\dot{x}=\tilde{f}(x)+\epsilon(\tilde{b}(x)\eta(t)+\tilde{c}(x))$ , (4)
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where
$\tilde{f}(x)=f(x)\chi(x) , \tilde{c}(x)=c(x)\chi(x) , \tilde{b}(x)=b(x)\chi(x)$ .

Note that orbits of (4) are also those of (1) if they remain in the region $D_{1}.$

For given initial conditions, Eq. (4) has unique global solutions that are $C^{r}$ about
the initial values. See, e.g., [1] for the proof. We write the unique global solution with
$x(O)=x_{0}\in \mathbb{R}^{n}$ as $x=\varphi_{\epsilon}(t, \omega)x_{0},$ $\omega\in\Omega$ , and define a $C^{r}$ global random dynamical
system $\varphi_{\epsilon}(t, \omega):\mathbb{R}^{n}arrow \mathbb{R}^{n}$ over $\theta$ , which satisfies a cocycle property:

(i) $\varphi_{\epsilon}(0, \omega)=id$ ;

(ii) $\varphi_{\epsilon}(t+\tau, \omega)=\varphi_{\epsilon}(t, \theta_{\tau}\omega)\varphi_{\epsilon}(\tau, \omega)$ for $t,$ $\tau\in \mathbb{R},$

where $\omega\in\Omega$ . In general, a random valuable $\overline{x}(\omega)$ satisfying

$\varphi_{\epsilon}(t, \omega)\overline{x}(\omega)=\overline{x}(\theta_{t}\omega)$ a.s. for $t\in \mathbb{R}.$

is called a stationary solution for (4). Since $f(O)$ , $b(O)$ , $c(O)=0$ by assumption (A1),
$\overline{x}(\omega)\equiv 0$ is a stationary solution.

Henceforth we write $\Omega_{1}$ for some events whose probability is one, i.e., $\Omega_{1}\in \mathscr{F}$ and
$\mathbb{P}(\Omega_{1})=1$ , by abuse of nomenclature.

3 Existence of transverse homoclinic orbits

Let $E_{0}^{s}$ and $E_{0}^{u}$ be, respectively, the stable and unstable subspaces of the linearized system
at $x=0$ for (2),

$\dot{\xi}=Df(0)\xi.$

We have the following result for (4).

Theorem 1. Let $\omega\in\Omega_{1}$ . For any $T>0$ fixed, there exists a $bi$-infinite sequence
$\{q_{j}(\omega)\}_{j=-\infty}^{\infty}$ , such that for $\epsilon>0$ sufficiently small, when $q\in[q_{j}(\omega)-T, q_{j}(\omega)+T],$

there exists $n_{s}-$ and $n_{u}$ -dimensional $C^{N}$ manifolds, $W_{\epsilon,q}^{s}(\omega)$ and $W_{\epsilon.q}^{u}(\omega)$ , which are $0(\epsilon)-$

close to $W_{0^{s}}$ and $W_{0}^{u}$ , respectively, and satisfy the following properties:

(ia) $\varphi_{\epsilon}(t, \theta_{q}\omega)x$ exponentially tends to $0$ as $tarrow\infty$ for $x\in W_{\epsilon,q}^{s}(\omega)$ ;

(ib) $\varphi_{\epsilon}(t, \theta_{q}\omega)x$ exponentially tends to $0$ as $tarrow-\infty$ for $x\in W_{\epsilon,q}^{u}(\omega)$ ;

(ii) $W_{\epsilon_{)}q}^{s,u}(\omega)$ are continuous in $q$ ;

(iiia) $\varphi_{\epsilon}(t, \theta_{q}\omega)W_{\epsilon,q}^{s}(\omega)\subset W_{\epsilon,q}^{s}(\theta_{t}\omega)$ for $t+q\in[q_{k}(\omega)-T, q_{k}(\omega)+T]$ with $k\geq j$ ;

(iiib) $\varphi_{\epsilon}(t, \theta_{q}\omega)W_{\epsilon,q}^{u}(\omega)\subset W_{\epsilon,q}^{u}(\theta_{t}\omega)$ for $t+q\in[q_{k}(\omega)-T, q_{k}(\omega)+T]$ with $k\leq j$ ;

(iv) For some constant $\delta>0$ independent of $\epsilon>0$ and $\omega\in\Omega_{1}$ , there exist $C^{N}$ functions
$h_{\epsilon,q}^{s}:E_{0}^{s}\cross\Omega_{1}arrow E_{0}^{u}$ and $h_{\epsilon,q}^{u}:E_{0}^{u}\cross\Omega_{1}arrow E_{0}^{s}$ such that

$W_{\epsilon,q}^{s}(\omega)\cap B_{\delta}=\{(s, u)\in(E_{0}^{s}\cross E_{0}^{u})\cap B_{\delta}\cdot|u=h_{\epsilon,q}^{s}(s, \omega)\}$

and
$W_{\epsilon,q}^{u}(\omega)\cap B_{\delta}=\{(s, u)\in(E_{0}^{s}\cross E_{0}^{u})\cap B_{\delta}|s=h_{\epsilon,q}^{u}(u, \omega$

101



where $B_{\delta}$ represents a closed ball centered at the origin with radius $\delta$ in $\mathbb{R}^{n},$ $h_{\epsilon_{)}q}^{s,u}(0, \omega)=$

$0$ and $D_{s}h_{\epsilon,q}^{s}(0, \omega)$ , $D_{u}h_{\epsilon,q}^{u}(0, \omega)=a(\epsilon)$ . Moreover, $h_{\epsilon,q}^{s}(s, \omega)$ and $h_{\epsilon,q}^{u}(u, \omega)$ are con-
tinuous in $q$ , and $C^{N}$ in $\epsilon$ as well as in $s$ or $u$ with bounded k-th order derivatives
having bounds independent of $\omega\in\Omega_{1},$ $k=1$ , . . . , $N.$

To prove Theorem 1 a classical result on extreme values of Gaussian processes [11]
is required in [18]. We refer to $W_{\epsilon,q}^{s}(\omega)$ and $W_{\epsilon,q}^{u}(\omega)$ , respectively, as stable and unstable

manifolds at $t=q$ for (1), when $\epsilon>0$ is sufficiently small.
If $W_{\epsilon,q}^{s}(\omega)$ and $W_{\epsilon,q}^{u}(\omega)$ intersect at $x\neq 0$ , then Eq. (1) has a homoclinic orbit $x_{\epsilon}(t, \omega)$

to the stationary solution $x=0$ , i.e.,

$\lim_{tarrow\pm\infty}x_{\epsilon}(t,\omega)=0.$

We say that the homoclinic orbit $x_{\epsilon}(t,\omega)$ is transverse if so is the intersection between
$W_{\epsilon,q}^{s}(\omega)$ and $W_{\epsilon,q}^{u}(\omega)$ . Now we state our main theorem.

Theorem 2. For $\omega\in\Omega_{1}$ and $\epsilon>0$ sufficiently small, Eq. (1) has infinitely many trans-
verse homoclinic orbits $x_{\epsilon}^{j}(t, \omega)$ , $j\in \mathbb{Z}$ , such that $x_{\epsilon}^{j}(t_{j}(\omega), \omega)$ lies in an $9(\epsilon)$ -neighborhood

of $x^{h}(O)$ with $t_{j}(\omega)<t_{j+1}(\omega)$ for $j\in \mathbb{Z}$ and $\lim_{jarrow\pm\infty}t_{j}(\omega)=\pm\infty.$

A Melnikov-type approach and a classical result on level crossings of stochastic pro-
cesses [2, 6] are used to prove Theorem 2 in [18]. We take the bi-infinite sequence
$\{t_{j}(\omega)\}_{j=-\infty}^{\infty}$ such that $t_{j}(\theta_{t}\omega)=t_{j}(\omega)-t,$ $j\in \mathbb{Z}$ , for $t\in \mathbb{R}.$

4 Chaotic dynamics

Take the point $x^{h}(O)$ such that it is 0(1)-distant from $\partial B_{\delta}$ , where $\delta>0$ is sufficiently
small as in Theorem 1. Let $T_{\delta}^{\pm}$ be time such that $T_{\delta}^{-}<0<T_{\delta}^{+},$ $x^{h}(T_{\delta}^{\pm})\in\partial B_{\delta}$ and
$x^{h}(t)\in B_{\delta}$ for $t\not\in(T_{\delta}^{-}, T_{\delta}^{+})$ . We have

$|T_{\delta}^{\pm}|=a(|\log\delta$

We choose a subsequence $\{\tau_{j}(\omega)\}_{j=-\infty}^{\infty}$ from the bi-infinite sequence $\{t_{j}(\omega)\}_{j=-\infty}^{\infty}$ given in
Theorem 2, such that

$\tau_{j+1}(\omega)-\tau_{j}(\omega)>T_{\delta}^{+}-T_{\delta}^{-}, j\in \mathbb{Z}.$

Note that $\tau_{j+1}(\theta_{t}\omega)-\tau_{j}(\theta_{t}\omega)=\tau_{j+1}(\omega)-\tau_{j}(\omega)$ , $j\in \mathbb{Z}$ , for $t\in \mathbb{R}$ since $t_{j}(\theta_{t}\omega)=t_{j}(\omega)-t.$

Let $a=\{a_{j}\}_{j=-\infty}^{\infty}$ denote a bi-infinite sequence with $a_{j}=1$ or 2, $j\in \mathbb{Z}$ . We denote
the set of all such symbol sequences by $\Sigma_{2}$ . Let $\sigma$ : $\Sigma_{2}arrow\Sigma_{2}$ denote the shift map such
that

$\sigma(a)_{j}=a_{j+1}, j\in \mathbb{Z}.$

Define the extended shift map $\overline{\sigma}:\Sigma_{2}\cross \mathbb{Z}arrow\Sigma_{2}\cross \mathbb{Z}$ as

$\overline{\sigma}(a, j)=(\sigma(a), j+1)$ .

Let $P_{\epsilon,j}(\omega)=\varphi_{\epsilon}(\tau_{j+1}(\omega)-\tau_{j}(\omega), \theta_{\tau_{j}(\omega)}\omega)$ and let

$P_{\epsilon}(\omega):(x, j)\mapsto(P_{\epsilon,j}(\omega)(x), j+1)$ .

We now state our another main result.
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Theorem 3. For $\omega\in\Omega_{1}$ and $\epsilon>0$ sufficiently small, there exists a sequence of sets
$\Lambda_{j}(\omega)\subset \mathbb{R}^{n},$ $j\in \mathbb{Z}$ , with $P_{j}^{\epsilon}(\omega)\Lambda_{j}(\omega)=\Lambda_{j+1}(\omega)$ , such that the following diagram com-
mutes

$\Lambda(\omega) arrow^{P^{\epsilon}} \Lambda(\omega)$

$h\downarrow h\downarrow$

$\Sigma_{2}\cross \mathbb{Z}arrow^{\sigma\overline{}}\Sigma_{2}\cross \mathbb{Z}$

where $\Lambda_{j}(\omega)$ , $j\in \mathbb{Z}$ , are Cantor sets, $\Lambda(\omega)=\bigcup_{j=-\infty}^{\infty}\Lambda_{j}(\omega)\cross\{j\}$ , and $h(x;j)=(h_{j}(x), j)$

with $h_{j}(x)$ a homeomorphism mapping $\Lambda_{j}(\omega)$ onto $\Sigma_{2}$ such that the sequence $\{h_{j}^{-1}(x)\}_{j=-\infty}^{\infty}$

is equicontinuous.

The proof of Theorem 3 in [18] includes an extension of [16] for a description of chaos
in the dynamics generated by sequences of maps. This theorem also implies that each
orbit passing $\Lambda_{j}(\omega)$ at $t=\tau_{j}(\omega)$ , $j\in \mathbb{Z}$ , is unstable (of saddle type) and exhibits sensitive
dependence on initial conditions.

5 Example

To illustrate the above theory we consider the randamoly perturbed Duffing oscillator,

$\dot{x}_{1}=x_{2}, \dot{x}_{2}=x_{1}-x_{1}^{3}+\epsilon(x_{1}^{2}\eta(t)-\deltax_{2})$ , (5)

where $\delta>0$ is a constant and $\eta(t)$ is the stationary Ornstein-Uhlenbeck process with zero
mean and

$r(\tau)=\exp(-\gamma|\tau|)$

with $\gamma>0$ a constant. Similar systems were treated in [7, 8]. Assumptions $(A1)-(A5)$

hold and the unperturbed homoclinic orbits are given by

$x_{\pm}^{h}(t)=(\pm\sqrt{2}$ sech $t, \mp\sqrt{2}$ sech $t\tanh t)$ .

Applying Theorems 2 and 3, we show that there exist infinitely many transverse homo-
clinic orbits and chaotic dynamics occurs almost surely in (5) for any $\delta>0.$
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