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1 Introduction

The notion of tilting modules plays a central role in representation theory of algebras. As
an important result, there is a bijection between basic tilting modules and functorially
finite faithful torsion classes for a given algebra. The bijection produces fruitful results
for tilting modules. To give a class of modules corresponding bijectively functorially finite
torsion classes, the author in [AIR] introduced the notion of (support) $\tau$-tilting modules.
Indeed, they showed that there is a bijection between basic support $\tau$-tilting modules
and functorially finite torsion classes. By the bijection, support $\tau$-tilting modules hold
various properties of tilting modules. Moreover, they correspond bijectively with many
important objects in representation theory, e.g., basic two-term silting complexes and
basic cluster-tilting objects. Therefore it is important to give a classification of (support)
$\tau$-tilting modules.

In this report, we give a classification of $\tau$-tilting modules over Nakayama algebras.
The following theorem is our main result.

Theorem 1.1. Let $\Lambda$ be a Nakayama algebra with $n$ simple modules. Assume that the
length of every indecomposable projective $\Lambda$-module is at least $n$ . Then there is a bijection
between

(1) the set $\tau$-tiltA of isomorphism classes of basic $\tau$ -tilting $\Lambda$ -modules,

(2) the set $\mathcal{T}(n)$ of triangulations of an $n$ -regular polygon with a puncture.

Throughout this report, we use the following notation. By an algebra we mean basic,
ring-indecomposable and finite dimensional algebra over an algebraically closed field $K,$

and by a module we mean a finitely generated right module. For an algebra $\Lambda$ , we denote
by $mod \Lambda$ the category of finitely generated right $\Lambda$-modules. We denote by $[i,j]$ the
interval $\{i, i+1, . . . , j-1, j\}$ of integers $i\leq j$ . Let $\{e_{1}, e_{2}, . . . , e_{n}\}$ be a complete set of
primitive orthogonal idempotents of an algebra $\Lambda$ . For each $i\in[1, n]$ , we put $P_{i}=e_{i}\Lambda$

and $S_{i}=P_{i}/radP_{i}.$
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2 Preliminaries

Let $\Lambda$ be a finite dimensional $K$-algebra. In this section, we collect some results which
are necessary in this report. We start with basic fact for representation theory of finite
dimensional algebras.

(1) The category $mod \Lambda$ is Krull-Schmidt, that is, any module $M$ in $mod \Lambda$ is isomorphic
to a finite direct sum $M_{1}\oplus M_{2}\oplus\cdots\oplus M_{m}$ , where $M_{1},$ $M_{2}$ , . . . , $M_{m}$ are indecomposable
$\Lambda$-modules. Moreover, the direct sum is uniquely determined up to isomorphism and
permutation. Then we let $|M|$ $:=m$. We say that $M$ is basic if $M_{1}$ , . . . , $M_{m}$ are
pairwise nonisomorphic.

(2) We say that $\Lambda$ is basic if it is basic as a $\Lambda$-module. A basic algebra $\Lambda$ is isomor-
phic to the bounded quiver algebra $KQ/I$ , where $Q$ is a finite quiver and $I$ is an
admissible ideal of the path algebra $KQ$ . Then, for the vertex set $\{$ 1, 2, . . . , $n\}$ in
$Q$ , we have a decomposition $\Lambda=P_{1}\oplus P_{2}\oplus\cdots\oplus P_{n}$ as a $\Lambda$-module, where $P_{i}$ is
an indecomposable projective $\Lambda$-module. Moreover, each indecomposable projective
(respectively, simple) $\Lambda$-module is isomorphic to $P_{i}$ $($ respectively, $S_{i} :=P_{i}/$radP) for
some $i\in\{1, 2, . . . , n\}.$

(3) For a $\Lambda$-module $M$ with a minimal projective presentation $P^{-1}arrow pP^{0}arrow Marrow 0$ , we
define $\tau M$ in $mod \Lambda$ by an exact sequence

$0arrow\tau Marrow\nu P^{-1}arrow\nu P^{0}\nu p,$

where $\nu$ $:=Hom_{K}(Hom_{\Lambda}(-, \Lambda), K)$ . We call $\tau$ the AR translation of A. We have
$\tau P=0$ if $P$ is a projective $\Lambda$-module.

2.1 $\tau$-tilting modules

In this subsection, we recall the definition of $\tau$-tilting modules.

Definition 2.1. (1) We call $M$ in $mod \Lambda\tau$ -rigid if $Hom_{\Lambda}(M, \tau M)=0.$

(2) We call $M$ in $mod \Lambda\tau$ -tilting if it is $\tau$-rigid and $|M|=|\Lambda|.$

(3) We call $M$ in $mod \Lambda$ support $\tau$ -tilting $i^{f}$ there exists an idempotent $e\in$ A such that
$M$ is a $\tau$-tilting $(\Lambda/\Lambda e\Lambda)$-module.

We denote by $\tau$-rigidA the set of isomorphism classes of indecomposable $\tau$-rigid $\Lambda-$

modules and by $\tau-tilt\Lambda$ the set of isomorphism classes of basic $\tau$-tilting $\Lambda$-modules.

Example 2.2. Every projective $\Lambda$-module is a $\tau$-rigid $\Lambda$-module by the definition of $\tau.$

In particular, $\Lambda$ is a $\tau$-tilting $\Lambda$-module.

By the following remark, $\tau$-tilting modules are a generalization of tilting modules. $A$

$\Lambda$-module $T$ is said to be tilting if it satisfies three conditions: (a) the projective dimension
is at most one, (b) rigid $(i.e., Ext_{\Lambda}^{1}(T, T)=0)$ , and (c) $|T|=|\Lambda|.$
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Remark 2.3. Every $\tau$-rigid $\Lambda$-module is rigid and the converse holds if the projective
dimension of a rigid $\Lambda$-module is at most one. Thus, if a $\Lambda$-module satisfies the condition
(a) and (b) above, then it is $\tau$-rigid. Hence tilting $\Lambda$-modules are $\tau$-tilting $\Lambda$-modules.
Moreover, if $\Lambda$ is hereditary $(i.e., the$ global dimension $of \Lambda is at$ most $one)$ , then $\tau$-tilting
$\Lambda$-modules are exactly tilting.

We obtain a close connection between support $\tau$-tilting modules and other important
objects in representation theory.

Theorem 2.4. ([AIR, Theorem 0.5]) Let $\Lambda$ be a finite dimensional $K$ -algebra. Then there
are bijections between

(1) the set of isomorphism classes of basic support $\tau$ -tilting $\Lambda$ -modules,

(2) the set of functorially finite torsion classes in $mod \Lambda,$

(3) the set of isomorphism classes of basic two-term silting complexes for $\Lambda,$

(4) the set of isomorphism classes of basic cluster-tilting objects in a 2 Calabi-Yau tri-
angulated categow $C$ if $\Lambda$ is an associated 2 Calabi-Yau tilted algebras.

Hence it is an important to give a classification of (support) $\tau$-tilting modules.

2.2 Nakayama algebras

In this subsection, we recall properties of Nakayama algebras. A module $M$ is said to be
uniserial if it has a unique composition series. A finite dimensional algebra is said to be
Nakayama if every indecomposable projective module and every indecomposable injective
module are uniserial. Nakayama algebras is given by the following quivers.

Proposition 2.5. ([ASS, V.3.2]) A basic ring-indecomposable algebra is Nakayama if and
only if its quiver is either $\vec{A}_{n}$ or $\vec{\triangle}_{n}.$

$\vec{\triangle}_{n}$ : 1

$\nearrow^{\alpha_{n}} *\backslash ^{\alpha_{1}}$

$\vec{A}_{n}:narrow n-1\alpha_{n-1}$ 竺留．．．$\underline{\alpha 2}2arrow^{\alpha 1}1$
$\alpha_{n-1\underline{|}}n1n$ $3|\alpha 22$

$\alpha_{\mathfrak{n}-2}\backslash \ldots\nearrow^{\alpha_{3}}$

In the following, we assume that $\Lambda$ is a basic ring-indecomposable Nakayama algebra
with $n$ $:=|\Lambda|$ . We give a concrete description of indecomposable $\Lambda$-modules. We denote
by $\ell(M)$ the length of a $\Lambda$-module $M.$

Proposition 2.6. ([ASS, V.3.5, V.4.1 and V.4.2]) For any indecomposable $\Lambda$-module $M,$

there exist $i\in[1, n]$ and $l\in[1, \ell(P_{i})]$ such that $M\simeq P_{i}/rad^{l}P_{i}$ $andl=\ell(M)$ . Moreover,

if $M$ is not projective, then we have $\tau M\simeq radP_{i}/rad^{l+1}P_{i}$ and $\ell(\tau\Lambda I)=P(M)$ .
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By Proposition 2.6, each indecomposable $\Lambda$-module $M$ is uniquely determined, up to
isomorphism, by its simple top $S_{j}$ and the length $l$ $:=\ell(M)$ . In this case, $M$ has a unique
composition series with the associated composition factors $S_{j},$ $S_{j-1}$ , . . . , $S_{j-l+1}.$

We give an example of Nakayama algebras. We let $\Lambda_{n}^{r}$
$:=K\vec{\triangle}_{n}/J^{r}$ , where $J$ is the

arrow ideal of $K\vec{\triangle}_{n}$ . The Auslander-Reiten quiver of $\Lambda_{n}^{r}$ can be drawn easily [ASS, V.4.1].
For example, the Auslander-Reiten quiver of $\Lambda_{4}^{5}$ is given by the following quiver, where
the broken arrows mean the action of the AR translation $\tau$ :

2.3 Triangulations

In this subsection, we recall the definition and properties of triangulations. Let $\mathcal{G}_{n}$ be an
$n$-regular polygon with a puncture. We label the points of $\mathcal{G}_{n}$ counterclockwise around
the boundary by 1, 2, . . . , $n.$

Definition 2.7. Let $i,$ $j\in[1, n].$

(1) An inner arc $\langle i,$ $j\rangle$ in $\mathcal{G}_{n}$ is a path from the point $i$ to the point $j$ homotopic to the
boundary path $i,$ $i+1$ , . . . , $i+l=j(mod n)$ , where $l$ is the smallest positive integer
satisfying $i+l=j(mod n)$ and $l\geq 2$ . Then we call $i$ an initial point, $j$ a terminal
point, and $\ell(\langle i,j\rangle)$ $:=l$ the length of the inner arc. By definition, $2\leq\ell(\langle i,j\rangle)\leq n$

holds for any inner arc in $\mathcal{G}_{n}.$

(2) A projective arc $j\rangle$ in $\mathcal{G}_{n}$ is a path from the puncture to the point $j$ . Then we call
$j$ a terminal point.

(3) An admissible arc is an inner arc or a projective arc. Namely,

Arc$(n)$ $:=$ {admissible arcs in $\mathcal{G}_{n}$ } $=\{\langle i,j\rangle|i, j\in[1, n]\}\coprod\{\langle\bullet,j\rangle|j\in[1,$ $n$

Note that, if $i\neq j,$ $\langle i,$ $j\rangle$ and $\langle j,$ $i\rangle$ are different arcs as the picture in Figure 1 shows.

Definition 2.8. (1) Two admissible arcs in $\mathcal{G}_{n}$ are called compatible if they do not in-
tersect in $\mathcal{G}_{n}$ (except their initial and terminal points).

(2) A triangulation of $\mathcal{G}_{n}$ is a maximal set of distinct pairwise compatible admissible
arcs. We denote by $\mathcal{T}(n)$ the set of triangulations of $\mathcal{G}_{n}.$
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$f-1j\langle i,j\rangle$ $j-1j(j,i\rangle$

$j$ $j$

$\langle j,j\rangle$ $\langle\bullet,j\rangle$

Figure 1: Admissible arcs in a polygon with a puncture

(3) For integers $l_{1},$ $l_{2}$ , . . . , $l_{n}\geq 1$ , we denote by $\mathcal{T}(n;l_{1}, l_{2}, \ldots, l_{n})$ the subset of $\mathcal{T}(n)$

consisting of triangulations such that the length of every inner arc with the terminal
point $j$ is at most $l_{j}$ for any $j\in[1, n].$

For example, the set of all projective arcs gives a triangulation of $\mathcal{G}_{n}.$

Figure 2: rRiangulations of $\mathcal{G}_{4}$

By easy observation, triangulations have the following properties.

Proposition 2.9. Each triangulation of $\mathcal{G}_{n}$ consists of exactly $n$ admissible arcs and
contains at least one projective arc.

3 Main result

In this section, we give a proof of Theorem 1.1. First, we give a criterion for indecompos-
able modules to be $\tau$-rigid.

Proposition 3.1. Let $M$ be an indecomposable nonprojective $\Lambda$-module. Then $M$ is $\tau-$

rigid if and only if $\ell(M)<n$ holds.

Proof. By Proposition 2.6, we may assume that $M$ $($ respectively, $\tau M)$ has $a$ (unique)
composition series with associated composition factors topM $=S_{j},$ $S_{j-1}$ , . . . , $S_{j-l+1}=$
socM $($respectively, $top\tau M=S_{j-1}, S_{j-2}, \ldots, S_{j-l}=soc\tau M)$ , where $l:=\ell(M)=\ell(\tau M)$ .
If $l<n$ holds, then $M$ $($respectively, $\tau\Lambda l)$ does not have $S_{j-l}$ $($ respectively, $S_{j})$ as $a$

composition factor. Thus we have $Hom_{\Lambda}(M, \tau M)=0$ , and hence $M$ is $\tau$-rigid. On the
other hand, if $l\geq n$ holds, then $M$ $($respectively, $\tau M)$ has $S_{j-l}$ $($ respectively, $S_{j})$ as $a$

composition factor. Thus there exists a non-zero morphism $Marrow\tau\Lambda l$ in $mod \Lambda$ , and hence
$M$ is not $\tau$-rigid. 口

Secondly, we give a correspondence between indecomposable $\tau$-rigid modules and ad-
missible arcs. By Proposition 3.1, every indecomposable nonprojective $\tau$-rigid $\Lambda$-module
$M$ is uniquely determined by its simple top $S_{j}$ and its simple socle $S_{k}$ . Such an indecom-
posable $\tau$-rigid module is denoted by $(k-2,j)$ . Moreover, let $j$ ) $:=P_{j}.$
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Proposition 3.2. Let $\Lambda$ be a Nakayama algebra and $\ell_{j}:=\ell(P_{j})$ . The following hold.

(1) There is a bijection

$f:\tau-rigid\Lambdaarrow i\rangle|i\in[1, n]\}\coprod\{\langle i, j\rangle|i, j\in[1, n], \ell(\langle i,j\rangle)\leq\ell_{j}\}$

given by $(i,j)\mapsto\langle i,$ $j\rangle$ for $i\in[1, n]\coprod$ and $j\in[1, n].$

(2) For any $i,$ $k\in[1, n]$ II and $j,$ $l\in[1, n],$ $(i,j)\oplus(k, l)$ is $\tau$-rigid if and only if $\langle i,$ $j\rangle$

and $\langle k,$ $l\rangle$ are compatible.

Proof. (1) By Proposition 3.1, every indecomposable $\Lambda$-module $M$ is either a projective
$\Lambda$-module or a $\Lambda$-module with $\ell(M)<\min\{\ell(P), n\}$ , where $P$ is a projective cover of $M.$

Thus there are one-to-one correspondences

$\{P_{j}|j\in[1, n]\}\ovalbox{\tt\small REJECT}\{\langle\bullet,j\rangle|j\in[1,n]\}$

$\{(i,j)|i, j\in[1, n], \ell((i,j))<\min\{\ell_{j}, n\}\}\ovalbox{\tt\small REJECT}\{\langle i, j\rangle|i,j\in[1, n], \ell(\langle i,j\rangle)\leq\ell_{j}\}.$

(2) Assume that $(i,j)\oplus(k, l)$ is not $\tau$-rigid. We may assume that $Hom_{\Lambda}((i, j), \tau(k, l))\neq 0$

and $k\neq$ Then $(i, j)$ $($respectively, $\tau(k, l)$ ) has $S_{k-1}$ $($ respectively, $S_{j})$ as a composition
factor. Thus $\langle i,$ $j\rangle$ and $\langle k,$ $l\rangle$ are compatible. Conversely, we can easily check, if $\langle i,$ $j\rangle$ and
$\langle k,$ $l\rangle$ are compatible, then $(i,j)\oplus(k, l)$ is $\tau$-rigid. $\square$

As a conclusion, we obtain the following theorem. This is a generalization of Theorem
1.1.

Theorem 3.3. ([Ad]) Let $\Lambda$ be a Nakayama algebra with $n$ simple modules and $\ell_{j}:=\ell(P_{j})$

for any $j\in[1, n]$ . Then there is a bijection

$\tau-tilt\Lambdaarrow \mathcal{T}(n;\ell_{1}, \ell_{2}, \cdots, \ell_{n})$

given by $M=M_{1}\oplus M_{2}\oplus\cdots\oplus M_{n}\mapsto\{f(M_{1}), f(M_{2}), \cdots,f(M_{n})\}.$

Proof. It follows from Proposition 3.2. $\square$

As an application of Theorem 3.3, we give a proof of the following well-known result.

Corollary 3.4. Let $\Lambda$ $:=K\vec{A}_{n}$ be a path algebra. Then there is a bijection between

(1) the set $tilt\Lambda$ of isomorphism classes of basic tilting $\Lambda$ -modules,

(2) the set of triangulations of an $(n+2)$ -regular polygon (with no puncture).

Proof. By Theorem 3.3 and $\ell(P_{i})=i$ for any $i\in[1, n]$ , we have a bijection

$\tau-tilt\Lambdaarrow \mathcal{T}(n;1,2, \ldots, n)$ .

Since $\Lambda$ is hereditary, we have $\tau-tilt\Lambda=tilt\Lambda$ by Remark 2.3. On the other hand, we
show that

$\mathcal{T}(n;1,2, \ldots, n)=\{X\in \mathcal{T}(n)| n\rangle\in X\}.$

Indeed, assume that $X\in \mathcal{T}(n)$ with $n\rangle\in X$ . Then we have $\ell(\langle i,j\rangle)\leq j$ for each
inner arc $\langle i,$ $j\rangle\in X$ . Thus, we have $X\in \mathcal{T}(n;1,2, \ldots, n)$ . Conversely, assume that
$X\in \mathcal{T}(n;1,2, \ldots, n)$ . Clearly, the projective arc $n\rangle$ is compatible with all admissible
arc in $X$ . Thus, we have $n\rangle\in X$ . Note that $\mathcal{T}(n;1,2, \ldots, n)$ can identify the set of
triangulations of an $(n+2)$-regular polygon (with no puncture). $\square$
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