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Abstract

This paper presents an extended version of the celebrated Serre-

Green-Naghdi (SGN) system. This extension is based on the well-

known Bona Smith Nwogu trick which aims to improve the linear

dispersion properties. We show that in the fully nonlinear setting

it results in modifying the vertical acceleration. Even if this technique

is well-known, the effect of this modification on the nonlinear proper-

ties of the model is not clear. The first goal of this study is to shed

some light on the properties of solitary waves, as the most important

class of nonlinear permanent solutions. Then, we propose a simple

adaptive strategy to choose the optimal value of the free parameter at

every instance of time. This strategy is validated by comparing the

model prediction with the reference solutions of the full Euler equa-

tions and its classical counterpart. Numerical simulations show that

the new adaptive model provides a much better accuracy for the same

computational complexity.
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1. INTRODUCTION

The water wave theory has always been developed through the derivation
and analysis of various approximate models [13]. Nowadays the researchers,

motivated by practical or theoretical needs, continue actively the quest for
more accurate simplified models. In the present study our starting point is a
celebrated set of equations which was derived for the first time by F. SERRE
[42] in 1953, even if a deeper literature search shows that a steady version
of Serre’s equations were already present in works of Lord RAYLEIGH (1876)
[28]. Then, this system was rediscovered independently by SU & GARDNER
(1969) [43], and again by GREEN, LAWS & NAGHDI (1974) [19]. In the
Soviet literature this model was known as the Zheleznyak-Pelinovsky model
[45]. The derivation of these equations from variational principles was given
in [34, 23, 11]. This list of references is far from being exhaustive. In the rest
of the manuscript we will refer to this set of equations as the Serre-Green-
Naghdi (SGN) system.

The SGN equations are fully nonlinear but only weakly dispersive [24].
Consequently, one could think how to improve the dispersive characteristics
of the model [14]. Fortunately, some technology has already been developed
for the Boussinesq-type equations. The technique of introducing the free
parameters into long wave models was pioneered by BONA & SMITH (1976)
[4] and later independently by NWOGU (1993) [38]. The idea mainly con-
sists in using the horizontal velocity variable defined at the arbitrary depth
along with lower order asymptotic relations to alter higher order terms. This
technique was synthesized by BONA et al. (2002) [3]. There is also another
approach based on Pad\’e-type approximations due to MADSEN and his collab-
orators [30, 31]. All these methods have been succesfully employed to derive
various extended Boussinesq-type equations [1, 27, 22].

Once the model equations have been proposed, one has to propose also
efficient way to solve them numerically. Currently, there is an important

research activity towards the numerical solution of various Boussinesq-type
dispersive wave models. Only recently various finite volume [8, 21, 17], finite
element (FEM/continuous Galerkin) [15, 35], pseudo-spectral [17], discontin-
uous Galerkin [18] and residual distribution [40] schemes have been proposed.

However, for practical simulations the free parameters have to be assigned

with some values. It is obvious also that different choices may lead to mod-
els with completely different properties. Consequently, the question of the
optimal choice of parameters can be posed. Various researchers approach
this problem in different ways. In most cases, various linear considerations
are employed. For instance, one can try to optimize the linear dispersion
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relation of the model in regards of the full Euler equations [30, 31, 7]. If the

available parameters are several to be optimized, one can employ also the

considerations of the linear wave shoaling. In any case, it is the linear part of

the model which gets improved. However, later on this optimized model will

be used to simulate nonlinear waves. So, it is reasonable to ask whether the

nonlinear properties of the model at hands benefited by this improvement?

In the present study we will try to shed some light on this question by con-

sidering a very important class of nonlinear solutions – the solitary waves

[41, 32], which span completely the dynamics in the integrable case [36].

The extended versions of the SGN equations with a free parameter have

already been proposed on flat [14] and uneven bottoms [6]. However, the

authors of previous investigations on this topic did not focus on the solitary

wave solutions and their confrontation with the full Euler equations. More-

over, in the present study we propose a simple adaptive strategy to find an

optimal value of the free parameter at every instance of time. Namely, using

a simple spectral analysis we determine the dominant wavenumber in the

current state of the system. Then, the optimal value is given by satisfying

the condition that our approximate model propagates this wavelength with

the exact linear celerity (given by the full Euler). This process is repeated at

every time step and it costs roughly the computation of one additional FFT1

and of two integrals.

The present manuscript is organized as follows. In the following Section 2

we formulate the extended Serre Green Naghdi $($eSGN) system. Numerical

results on the solitary waves of the eSGN equations are presented in Sec-

tion 3.1. A novel adaptive strategy for the optimal choice of the free param-

eter is described and validated in Section 3.2. Finally, the main conclusions

and perspectives of this study are outlined in Section 4.

2. MATHEMATICAL MODEL

For two-dimensional surface water waves propagating in shallow water of

constant depth, one can approximate the velocity field by

$u(x, y,t)\approx\overline{u}(x,t) , v(x,y,t)\approx-(y+d)\overline{u}_{x}$

where $d$ is the mean water depth and $\overline{u}$ is the horizontal velocity averaged

over the water column - $i.e. \overline{u}\equiv h^{-1}\int_{-d}^{\eta}udy$ – $y=\eta$ and $y=0$ being

the equations of the free surface and of the still water level, respectively.

The horizontal velocity $u$ is thus uniform along the water column and the

1The Fast Fourier Transform (FFT).
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vertical velocity $v$ is chosen so that the fluid incompressibility if fulfilled.
SERRE (1953) [42] derived the following approximate system of equations

$h_{t}+\partial_{x}[h\overline{u}]=0$ , (2.1)

$\partial_{t}[h\overline{u}]+\partial_{x}[h\overline{u}^{2}+\frac{1}{2}gh^{2}+\frac{1}{3}h^{2}\gamma]=0$ , (2.2)

where
$\gamma=h(\overline{u}_{x}^{2}-\overline{u}_{xt}-\overline{u}\overline{u}_{xx})=2h\overline{u}_{x}^{2}-h\partial_{x}[\overline{u}_{t}+\overline{u}\overline{u}_{x}]$ , (2.3)

is the vertical acceleration of the fluid at the free surface [11]. Physically,

equations (2.1) and (2.2) describe, respectively, the mass and momentum

flux conservations. From these two conservative equations, secondary ones
can be easily derived using some formal algebraic manipulations:

$\partial_{t}[\overline{u}-\frac{1}{3}h^{-1}(h^{3}\overline{u}_{x})_{x}]+\partial_{x}[\frac{1}{2}\overline{u}^{2}+gh-\frac{1}{2}h^{2}\overline{u}_{x}^{2}-\frac{1}{3}\overline{u}h^{-1}(h^{3}\overline{u}_{x})_{x}]=0,$

$\partial_{t}[h\overline{u}-\frac{1}{3}(h^{3}\overline{u}_{x})_{x}]+\partial_{x}[h\overline{u}^{2}+\frac{1}{2}gh^{2}-\frac{2}{3}h^{3}\overline{u}_{x}^{2}-\frac{1}{3}h^{3}\overline{u}\overline{u}_{xx}-h^{2}h_{x}\overline{u}\overline{u}_{x}]=0,$

$\partial_{t}[\frac{1}{2}h\overline{u}^{2}+\frac{1}{6}h^{3}\overline{u}_{x}^{2}+\frac{1}{2}gh^{2}]+\partial_{x}[(\frac{1}{2}\overline{u}^{2}+\frac{1}{6}h^{2}\overline{u}_{x}^{2}+gh+\frac{1}{3}h\gamma)h\overline{u}]=$ O.

We can also rewrite these equations in equivalent non-conservative forms, for

instance we have

$\overline{u}_{t}+\overline{u}\overline{u}_{x}+gh_{x}+\frac{1}{3}h^{-1}\partial_{x}[h^{2}\gamma]=0,$

These approximations are valid in shallow water without assuming small
amplitude waves, they are therefore sometimes called weakly-dispersive fully-

nonlinear approximation [44] and are a generalisation of the Saint-Venant
and of the Boussinesq equations.

2.1 Extended Serre Green Naghdi’s equation

Since the SGN equations represent long waves in shallow water, this

means that the horizontal and temporal derivatives are small quantities,
$i.e.$ $\partial_{x}\propto O(\epsilon)$ and $\partial_{t}\propto \mathcal{O}(\epsilon)$ , where $\epsilon$ is of the order of the water depth

divided by the characteristic wavelength. Introducing explicitly this small
parameter, $i.e$ . using the scaled variables

$x^{\star}=\epsilon x, t^{\star}=\epsilon t, \gamma^{\star}=\epsilon^{-2}\gamma$

since the vertical acceleration is of order $2-i.e$ . , $\gamma\propto \mathcal{O}(\epsilon^{2})$ – as it is

obvious from the definition (2.3), the SGN equations can be written as

$\epsilon h_{t^{\star}}+\epsilon\partial_{x^{\star}}[h\overline{u}]=0,$

$\epsilon\partial_{t^{\star}}[h\overline{u}]+\epsilon\partial_{x^{\star}}[h\overline{u}^{2}+\frac{1}{2}gh^{2}+\epsilon^{2}\frac{1}{3}h^{2}\gamma^{\star}]=0,$
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where all the variables in these equations are of order $\mathcal{O}(1)$ . Note that SGN

equations neglect all terms involving powers of $\epsilon$ higher than three.

Substituting the relation

$\overline{u}_{t^{\star}}+\overline{u}\overline{u}_{x^{\star}}=-gh_{x^{\star}}-\epsilon^{2}\frac{1}{3}h^{-1}\partial_{x^{\star}}[h^{2}\gamma^{\star}],$

into the definition of the vertical acceleration $\gamma$ , we have

$\gamma=\epsilon^{2}2h\overline{u}_{x^{\star}}^{2}+\epsilon^{2}ghh_{x^{\star}x^{\star}}+\mathcal{O}(\epsilon^{4})$ , (2.4)

which is a new expression for the vertical acceleration consistent with the

order of approximation.
It is however possible to obtain a more general system averaging the two

expressions (2.3) and (2.4), we have

$\gamma=\epsilon^{2}2h\overline{u}_{x^{\star}}^{2}+(1-\alpha)\epsilon^{2}ghh_{x^{\star}x^{\star}}-\alpha\epsilon^{2}h\partial_{x^{\star}}[\overline{u}_{t^{\star}}+\overline{u}\overline{u}_{x^{\star}}]+\mathcal{O}(\epsilon^{4})$ ,

where $\alpha$ is a constant at our disposal. Thence, returning to the original

variables, the modified SGN’s equations are

$h_{t}+\partial_{x}[h\overline{u}]=0$ , (2.5)

$\partial_{t}[h\overline{u}]+\partial_{x}[h\overline{u}^{2}+\frac{1}{2}gh^{2}+\frac{1}{3}h^{2}\gamma]=0$ , (2.6)

$2 h\overline{u}_{x}^{2}+(1-\alpha)ghh_{xx}-\alpha h\partial_{x}[\overline{u}_{t}+\overline{u}\overline{u}_{x}]=\gamma$ . (2.7)

From these modified SGN’s equations, we can derive a secondary relation,

which can be interpreted physically as the horizontal momentum conservation

law:

$\partial_{t}[h\overline{u}-\frac{1}{3}\alpha(h^{3}\overline{u}_{x})_{x}]+\partial_{x}[h\overline{u}^{2}+\frac{1}{2}gh^{2}+\frac{1}{3}(1-\alpha)gh^{3}h_{xx}$

$+ \frac{2}{3}(1-2\alpha)h^{3}\overline{u}_{x}^{2}-\frac{1}{3}\alpha h^{3}\overline{u}\overline{u}_{xx}-\alpha h^{2}h_{x}\overline{u}\overline{u}_{x}]=$ O.

It can be recast equivalently as a system of two equations, which are more

convenient for numerical computations:

$q_{t}+ \partial_{x}[\overline{u}q+\frac{1}{2}gh^{2}+\frac{1}{3}(1-\alpha)gh^{3}h_{xx}+\frac{2}{3}(1-2\alpha)h^{3}\overline{u}_{x}^{2}]=0,$

$h \overline{u}-\frac{1}{3}\alpha\partial_{x}[h^{3}\overline{u}_{x}]=q.$

Remark 1 We were not able to find a variational (Lagrangian or Hamil-

tonian) structure of governing equations (2.5), (2.7). The derivation of ex-

tended $SGN$ equations possessing such a structure will be one of the challenges

we will address in upcoming studies.

49



2.2 Linear approximation

For infinitesimal waves, $\eta$ and $\overline{u}$ being both small, it is reasonable to

linearise the equations around $\eta=0$ and $\overline{u}=0$ . We obtain thus the linear

system of equations

$\eta_{t}+d\overline{u}_{x}=0$ , (2.8)

$\overline{u}_{t}+g\eta_{x}+\frac{1}{3}d\gamma_{x}=0$ , (2.9)

$(1-\alpha)gd\eta_{xx}-\alpha d\overline{u}_{xt}=\gamma$ . (2.10)

Seeking for traveling waves of the form $\eta=a\cos(k(x-ct$ we obtain the
(linear) dispersion relation

$\frac{c^{2}}{gd}=\frac{3+(\alpha-1)(kd)^{2}}{3+\alpha(kd)^{2}}=1-\frac{1}{3}(kd)^{2}+\frac{1}{9}\alpha(kd)^{4}-\frac{1}{27}\alpha^{2}(kd)^{6}+$ (2.11)

We note that this relation is well-posed ( $i.e.$ $c^{2}>0$ for all k) only if $\alpha\geq 1.$

In order to find a suitable choice for $\alpha$ , the relation (2.11) can be compared

with the dispersion relation of linear waves on finite depth

$c^{2} \int gd=thc(kd)=1-\frac{1}{3}(kd)^{2}+\frac{2}{15}(kd)^{4}-\frac{17}{315}(kd)^{6}+\frac{62}{2835}(kd)^{8}+$ (2.12)

where $thc(x)\equiv\tanh(x)/x$ if $x\neq 0$ and thc(O) $\equiv 1$ . Comparing the Taylor

expansions, it is clear that (2.11) matches the exact one only up to the

second-order in general, except when $\alpha=6\int 5$ in which case it matches up

to the fourth-order. Therefore, $\alpha_{opt}=6/5$ is a suitable choice having the

advantage of being independent of the wave characteristics. This method of

choosing the optimal $\alpha$ has been used by many authors starting from the
pioneering works [4, 38, 1].

Let us discuss some other possible choices of the free parameter $\alpha$ . We
may choose $\alpha$ such that the dispersion relations (2.11) and (2.12) are equal,

i. e. , such that

$\frac{3+(\alpha-1)(kd)^{2}}{3+\alpha(kd)^{2}}=\frac{\tanh(kd)}{kd}, (\star)$

thence

$\alpha=\frac{(kd)^{2}-3(1-thc(kd))}{(kd)^{2}(1-thc(kd))}=\frac{6}{5}-\frac{(kd)^{2}}{175}+\frac{2(kd)^{4}}{7875}-$ (2.13)

This choice of $\alpha$ is suitable for periodic waves when the wavelength $kd$ is

given. When the celerity is given, it is more suitable to proceed as follows.
Solving (2.11) for $k$ , one gets

$(kd)^{2}= \frac{3(c^{2}-gd)}{(\alpha-1)gd-\alpha c^{2}},$
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and reporting into (2.12), one obtains a transcendent equation for $\alpha$ which

has to be solved numerically using some fixed point or Newton-type iterations

[20]:

Remark 2 Consider now a steady wave motion, i.e. , solution independent

of time. We can easily derive the formulation for steady waves as well from
the governing equations. The mass conservation (2.5) yields

$\overline{u}=-cd/h,$

and substituting into (2.6) and (2.7)

$\frac{c^{2}}{gh}+\frac{h^{2}}{2d^{2}}+\frac{\gamma h^{2}}{3gd^{2}}=\frac{c^{2}}{gd}+\frac{1}{2}+K$ (2.14)

where $K$ is $a$ (dimensionless) integration constant ($K=0$ for solitary waves).

Remark 3 Solitary waves for the classical $SGN$ equations are known ana-

lytically:

$\eta=asech^{2}\frac{1}{2}\kappa(x-ct)$ , $\overline{u}=\frac{c\eta}{d+\eta},$ $c^{2}=g(d+a)$ , $( \kappa d)^{2}=\frac{3a}{d+a}$ . (2.15)

Unfortunately, for a generic value of $\alpha$ there are no exact solutions known

for the $eSGN$ equations. Consequently, we will employ numerical methods in

Section 3.1 to find the travelling waves to high accuracy.

3. NUMERICAL METHODS AND RESULTS

In order to study some properties and the performance of the proposed

eSGN equations we employ numerical methods. We do not enter into the de-

tails of the numerical methods here, since they can be found in the literature.

For the computation of travelling waves we employ the Levenberg-Marquardt

algorithm [37]. The main ideas of this method are summarized briefly below.

For the transient simulations of the classical SGN and new eSGN equations

we use a pseudo-spectral scheme described in [17]. For the validations of

eSGN model predictions, we perform the comparisons with the full Euler

equations which are solved using the dynamic conformal mapping technique

proposed by L.V. OVSYANNIKOV [39] and developed later by several authors

[9, 26].
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3.1 Solitary waves

In this Section we will investigate the influence of the parameter $\alpha$ on
solitary waves, as the most important class of nonlinear solutions. We recall

that the optimal choice of $\alpha$ is directed by some linear considerations and its

impact on the nonlinear properties of the eSGN system is not obvious.
We will compare the solitary wave solutions to the three following models:

$\bullet$ SGN equations

$\bullet$ eSGN equations (with optimal $\alpha$)

$\bullet$ the full Euler equations (the reference solution)

The solitary waves to the classical SGN equations are known analytically
(see Remark 3). The solitary wave solutions for the full Euler equations are
computed using the method of conformal variables [12, 16]. The MATLAB
script used to generate the solitary waves can be downloaded at [10]. Un-

fortunately, we did not succeed in finding analytical solutions to the eSGN
equations for a general $\alpha$ . Consequently, we had to employ the numerical
methods.

Equation (2.14) is discretized in space using the classical Fourier-type

pseudo-spectral method [5]. For steady computations we did not even find
the necessity to employ any anti-aliasing rule. The discrete system was solved
using the so-called Levenberg-Marquardt algorithm proposed independently

by LEVENBERG (1944) [25] and MARQUARDT (1963) [33] who gave the name
to this method successfully applied nowadays to various problems [29]. The

main idea behind this method is, first, to reformulate the system of equa-

tions as a nonlinear least-squares problem. Then, the nonlinear least-squares
problem is solved iteratively with the steepest descent method far from the

solution and, with the Newton’s method in the vicinity of the root, where the

convergence will be quadratic. The Jacobian matrix is computed using cen-
tral finite differences. The initial guess was given by the analytical solution
(2.15). Only a relatively small number of iterations needed to achieve the

convergence (typically less then 20). The computational domain consists of

the periodic interval $[-\ell, \ell]=[-30, 30]$ which was discretized using $N=2048$

equally spaced collocation points.

We will consider three amplitudes of solitary waves $a/d=0.1$ (small),

0.45 (medium) and 0.7 (high amplitude). The propagation speeds predicted

by various models are reported in Table 1. One can already see that the
eSGN predictions are always closer to the full Euler equations. We com-
puted the speed-amplitude relation for the whole range of amplitudes (see
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Table 1. Comparison of the solitary wave speeds for several fixed values of the
wave amplitude. The parameter $\alpha=6/5.$

Figure 1). The numerical results confirm our preliminary conclusions. The

shapes of three solitary waves under consideration are presented on Figures 2
$-4$ respectively. On the left panels (a) the whole computational domain is

shown and the waves are undistinguishable to the graphical resolution. Con-
sequently, on the right pictures (b) we show a magnification of the subdomain

[2, 3]. At this stage one can see that the eSGN model approximates better

the reference solution again. For the small amplitude solitary wave $(a/d=0.1)$

the eSGN solution is undistinguishable from the Euler solitary wave even on

the magnified Figure $2(b)$ .
We note that similar comparisons between the full Euler and the classical

SGN equations have been performed also in [26]. However, we focus here

on the performance of the extended SGN model with respect to its classical
counterpart.

3.2 Adaptive strategy

Now we discuss the choice of the optimal value of the free parameter $\alpha$

for transient wave computations. Assume that at time $t$ we know the free

surface elevation $\eta(x, t)$ profile. Then, we compute its Fourier transform in

space

$\hat{\eta}(k, t) :=\mathcal{F}\{\eta(x, t)\}=\int_{\mathbb{R}}\eta(x,t)e^{ikx}dx.$

Then, we can easily compute the power spectrum as well:

$\hat{S}(k, t):=|\hat{\eta}(k, t)|^{2}.$

Now we have all the ingredients to estimate the dominant wavenumber $k_{0}$

[2]:

$k_{0}(t)= \frac{\int k\hat{S}(k,t)dk}{\int\hat{S}(k,t)dk}.$
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0. $1$ 0.$2$ 0.3 0.$4$ 0.5
$a/d$

0.6

Figure 1. Speed amplitude relations for solitary waves in $SGN,$ $eSGN$ and the

full Euler equations $( \alpha=6\int 5)$ .

(a) (b)

Figure 2, Small amplitude solitary wave solutions to the $SGN,$ $eSGN$ and the

full Euler equations of amplitude $a/d=0.1$ . The right panel shows a zoom on
$2\leq\xi\leq 3(\alpha=6/5)$ .
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(a) (b)

Figure 3. Moderate amplitude solitary wave solutions to the $SGN,$ $eSGN$ and the

full Euler equations of amplitude $a/d=0.45$ . The right panel shows a zoom on
$2\leq\xi\leq 3(\alpha=6/5)$ .

(a) (b)

Figure 4. Highly nonlinear solitary wave solutions to the $SGN,$ $eSGN$ and the

full Euler equations of amplitude $a \int d=0.7$ . The right panel shows a zoom on

$2\leq\xi\leq 3(\alpha=6/5)$ .
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The optimal value of $\alpha$ can be obtained by requiring that the eSGN system
propagates exactly the main wavelength corresponding to $k_{0}(t)$ . Mathemat-
ically this step is done by solving equation2 $(\star)$ with respect to $\alpha$ :

$\frac{3+(\alpha-1)\cdot(k_{0}(t)d)^{2}}{3+\alpha\cdot(k_{0}(t)d)^{2}}=\frac{\tanh(k_{0}(t)d)}{k_{0}(t)d}.$

Since $k_{0}(t)$ depends on time, so does the optimal value of the free parameter
$\alpha(t)$ . Then, the eSGN model is solved for one time step with the local (in

time) estimated optimal value of $\alpha.$

Remark 4 We have to mention that when the system contains longer and
longer waves, the adaptive strategy will provide us the optimal values of $\alpha$

which will be close to $\alpha_{opt}=6/5$ given by the Taylor expansion (2.11).

In order to test the proposed methodology, we perform the comparisons
among the three models already studied in Section 3.1 in the steady case.
However, this time we consider dynamic (transient) solutions. For this pur-
pose we generate a random Gaussian sea state with the mean wavelength
$\lambda_{0}$ and variance $\sigma_{0}$ . The phases are uniformly distributed random numbers
in $[0, 2\pi)$ . The values of all physical and numerical parameters are given in

Table 2. The initial random condition used in our simulations is shown on
Figure 5. The initial nonlinearity parameter is $\epsilon=a_{0}\int d=0.1$ and the shal-

lowness is $\mu^{2}=(\frac{d}{\lambda_{0}})^{2}=0.0625$ . The evolution of this initial condition on time

horizon $[0, Tf]$ is shown on Figure 6. We can see that both SGN and eSGN
models do not represent correctly the wave amplitudes and the asymmetry

of waves. However, directly from the beginning $(t=10.0)$ the SGN solution
starts lagging behind the Euler’s solution. When the time evolves, this dif-

ference accumulates and becomes clearly visible ( $e.g$ . see Figure $6(e)$ ). The
eSGN solution follows the full Euler much closer. In order to appreciate bet-
ter the model performance of the proposed adaptive strategy we show also a
magnification of the free surface elevation at the final time $t=T$ on Figure 7.
This success is explained by the appropriate and judicious choice of the free
parameter $\alpha(t)$ . The evolution of $\alpha(t)$ in course of the simulation is shown
in Figure 8. The mean value of tbe parameter is $\langle\alpha(t)\rangle\approx 1.1857$ on this
trajectory. The difference with $\alpha_{opt}=6\int 5=1.2$ is not enormous, however it
is crucial to represent correctly the wave front positon. A similar animation
for a different initial condition can be watched at the following URL address:

http: $//$youtu. be/NfgLs7c1keU/

2Alternatively, the expansion (2.13) can be used to find an approximation to the optimal
$\alpha.$
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Table 2. Physical and numerical parameters used for random wave evolution

simulations.

$10^{0}$

$10^{-10}$

$\infty=rightarrow 10^{-20}-$

$ae_{10^{\triangleleft 0}}\check{\underline{く p}}$

$10^{\ovalbox{\tt\small REJECT}}$

$10 20 30 40 50 60$$k$

Figure 5. Gaussian random initial condition used in comparisons. The bottom

panel shows the power spectrum $\hat{S}(k, t=0)$ of the initial condition. The maximal

wave amplitude is $a_{0}/d=0.1.$
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(a) $t=10.0s$

(b) $t=20.0s$

(c) $t=40.0s$

(d) $t=50.0s$

(e) $t=60.0s$

Figure 6. Evolution of the initial condition shown on Figure 5 under the $SGN$

(black dashed line), $eSGN$ (blue solid line) and the full Euler (red solid line),
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Figure 7. A zoom on the free surface elevation at the final simulation time $t=T.$

Comparison among three models: $SGN$ (black dashed line), $eSGN$ (blue solid line)

and the full Euler (red solid line).

Figure 8. Evolution of the optimal value of the free parameter $\alpha(t)$ as a function
of time (blue solid line). The red dotted line shows the optimal value $\alpha_{opt}=6/5$

given by identifying the coeficients of Taylor expansions of the phase velocity.

The mean value of $\langle\alpha(t)\rangle\approx 1.1857$ on this trajectory.
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4. DISCUSSION

Below we will briefly outline the main conlcusions and perspectives which
are opened after the present study.

4.1 Conclusions

In this paper we discussed a particular extension of the Serre-Green-
Naghdi (SGN) system which is based on the Bona Smith Nwogu trick [4, 38].
This idea is not new and the main contribution of this study is not there.
Once the free parameter was introduced into the model, we have to provide

some recommendations for the practitioners on the choice of this parameter.
Most of works available in the literture involve some linear considerations,

such as the widely used Taylor expansion or some other optimisation-based
procedures of the linear dispersion relation [30, 31, 7]. It is reasonable to
question the influence of this optimal choice on the nonlinear properties of
the model, since it is used to simulate nonlinear waves. In this manuscript
we showed that the optimal value of $\alpha$ obtained by the Taylor expansion
method leads also to a serious improvement in the solitary wave solutions as
well. They approximate much better the corresponding solutions to the full
Euler equations comparing to the original SGN equations. Namely, the shape

as well as the speed-amplitude relation are greatly improved, especially for
high amplitude waves. The price to pay for this improvement is that the
order of spatial derivatives in the model is increased by one. So, it is up
to every user to decide whether this price is worth paying it for the extra
accuracy.

The Taylor expansion (2.11) is valid strictly speaking only in the vicinity

of $kd=0,$ $i.e$ . infinitely long waves. Unfortunately, such waves cannot be
encountered in practice, since every wave has its well-defined wavelength.
Consequently, for practical simulations the scheme described above had to
be modified to integrate the knowledge of the finite wavelength. In this way
we introduced an adaptive strategy which estimates on every time step the
dominant wavenumber ( $i.e$ . the wavelength) and adapts the system to be as
accurate as possible for the main spectral component (which carries most
of the energy). Our comparisons with the full Euler equations show that
this strategy leads to a significant improvement of the eSGN model accuracy
compared to the classical SGN equations. To our knowledge, it is the first
study where such an adaptive strategy is proposed and validated.
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4.2 Perspectives

The present article is only the first step towards the development of the
physically adaptive water wave modeling. Further validations are needed,

even if the preliminary results are very promising. As the next step, the
eSGN model has to be generalized to uneven bottoms. However, there are
more serious issues with the proposed strategy. The dynamic adaptation in-

troduces time-dependent coefficient $\alpha(t)$ into the PDEs. It implies that we
break the invariance of the governing equations with respect to time transla-

tions. By Noether theorem3, we cannot expect the eSGN system to conserve
exactly the energy. This issue is to be addressed in future investigations.

We could see that in our conservative simulations the dominant wave
number did not vary too much on the time horizon considered in the present

study. Consequently, we could replace $\alpha(t)\approx\alpha(O)$ determined from the ini-
tial condition. However, in the presence of (wind) forcing and/or viscous
dissipation, reflective boundary conditions could lead to more drastic modifi-
cations of the wave spectrum on longer time scales. Consequently, “ freezing”’

of the free parameter $\alpha(t)$ cannot be seen as a universal solution.

Another possible drawback comes from the fact that the eSGN system

(2.5), (2.6) was derived under an implicit assumption that the parameter $\alpha$ is

constant. Then we allow this parameter to vary with in time. Perhaps, our
system discards some terms proportional to $\dot{\alpha}(t)$ . However, our numerical
results show (see Figure 8) that $\alpha(t)$ does not vary significantly in time.

Hence, the discarded terms can be effectively neglected $\dot{\alpha}(t)\approx 0$ . However,

we would like to clarify completely this situation in future studies.
Nevertheless, the gain in accuracy we witnessed in the eSGN system when

it is supplemented with the adaptive strategy, certainly overbalance the short-
comings mentioned hereinabove.

Acknowledgments

The authors would like to thank Professors Angel DURAN (University

of Valladolid, Spain) and Vadym Aizinger (Friedrich-Alexander Universit\"at

Erlangen-N\"urnberg, Germany) for very stimulating discussions on the nu-
merical methods for nonlinear waves and adaptive physical models. D. MIT-
SOTAKIS was supported by the Marsden Fund administered by the Royal

Society of New Zealand.

3Rigorously speaking, in order to be able to apply the Noether theorem, the governing
equations need to have the Lagrangian structure. However, the absence of the invariance
with respect to translations in time allows to conclude.

61



REFERENCES

[1] S. Beji and K. Nadaoka. A formal derivation and numerical modelling of
the improved Boussinesq equations for varying depth. Ocean Engineering,
$23(8):691-704$ , Nov. 1996. 2, 6

[2] P. Boccotti. Wave Mechanics for Ocean Engineering. Elsevier Sciences, Ox-
ford, 2000. 9

[3] J. L. Bona, M. Chen, and J.-C. Saut. Boussinesq equations and other systems

for small-amplitude long waves in nonlinear dispersive media. I: Derivation
and linear theory. Journal of Nonlinear Science, 12:283-318, 2002. 2

[4] J. L. Bona and R. Smith. A model for the two-way propagation of water waves
in a channel. Math. Proc. Camb. Phil. Soc., 79:167-182, 1976. 2, 6, 16

[5] J. P. Boyd. Chebyshev and Fourier Spectral Methods. 2nd edition, 2000. 8

[6] J. S. A. Carmo. Extended Serre Equations for Applications in Intermediate
Water Depths. The Open Ocean Engineering Journal, $6(1):16-25$ , Aug. 2013.
3

[7] F. Chazel, M. Benoit, A. Ern, and S. Piperno. A double-layer Boussinesq-
type model for highly nonlinear and dispersive waves. Proc. R. Soc. Lond. A,
$465(2108):2319-2346$ , May 2009. 3, 16

[8] F. Chazel, D. Lannes, and F. Marche. Numerical simulation of strongly non-
linear and dispersive waves using a Green-Naghdi model. J. Sci. Comput.,
48:105-116, 2011. 2

[9] W. Choi and R. Camassa. Exact Evolution Equations for Surface Waves. J.
Eng. Mech., $125(7):756$ , 1999. 7

[10] D. Clamond and D. Dutykh. http: //www.mathworks.com/matlabcentral/fileexchange/39189-

solitary-water-wave, 2012. 8

[11] D. Clamond and D. Dutykh. Practical use of variational principles for model-
ing water waves. Phys. D, $241(1):25-36$ , 2012. 2, 4

[12] D. Clamond and D. Dutykh. Fast accurate computation of the fully nonlinear
solitary surface gravity waves. Comput. & Fluids, 84:35-38, June 2013. 8

[13] A. D. D. Craik. The origins of water wave theory. Ann. Rev. Fluid Mech.,

36:1-28, 2004. 2

[14] F. Dias and P. Milewski. On the fully-nonlinear shallow-water generalized
Serre equations. Phys. Lett. A, $374(8):1049-1053$ , 2010. 2, 3

62



[15] V. A. Dougalis, D. E. Mitsotakis, and J.-C. Saut. On some Boussinesq systems
in two space dimensions: Theory and numerical analysis. Math. Model. $Num.$

Anal., $41(5):254-825$ , 2007. 2

[16] D. Dutykh and D. Clamond. Efficient computation of steady solitary gravity

waves. Wave Motion, $51(1):86-99$ , Jan. 2014. 8

[17] D. Dutykh, D. Clamond, P. Milewski, and D. Mitsotakis. Finite volume and
pseudo-spectral schemes for the fully nonlinear 1D Serre equations. Eur. J.
Appl. Math., $24(05):761-787$ , 2013. 2, 7

[1S] C. Eskilsson and S. J. Sherwin. Spectral/hp discontinuous Galerkin methods

for modelling 2D Boussinesq equations. J. Comput. Phys, $212(2):566-589,$

2006. 2

[19] A. E. Green, N. Laws, and P. M. Naghdi. On the theory of water waves. Proc.

R. Soc. Lond. A, 338:43-55, 1974. 2

[20] E. Isaacson and H. B. Keller. Analysis of Numerical Methods. Dover Publica-
tions, 1966. 7

[21] M. Kazolea and A. I. Delis. A well-balanced shock-capturing hybrid finite
volume-finite difference numerical scheme for extended 1D Boussinesq models.

Appl. Numer. Math., 67:167-186, 2013. 2

[22] G. Kim, C. Lee, and K.-D. Suh. Extended Boussinesq equations for rapidly

varying topography. Ocean Engineering, $36(11):842-851$ , Aug. 2009. 2

[23] J. W. Kim, K. J. Bai, R. C. Ertekin, and W. C. Webster. A derivation of
the Green-Naghdi equations for irrotational flows. Journal of Engineering
Mathematics, $40(1):17-42$ , 2001. 2

[24] D. Lannes and P. Bonneton. Derivation of asymptotic two-dimensional
time-dependent equations for surface water wave propagation. Phys. Fluids,

21:16601, 2009. 2

[25] K. Levenberg. A method for the solution of certain problems in least squares.
Quart. Appl. Math., 2:164-168, 1944. 8

[26] Y. A. Li, J. M. Hyman, and W. Choi. A Numerical Study of the Exact

Evolution Equations for Surface Waves in Water of Finite Depth. Stud. Appl.

Maths., 113:303-324, 2004. 7, 9

[27] Z. B. Liu and Z. C. Sun. Two sets of higher-order Boussinesq-type equations

for water waves. Ocean Engineering, $32(11-12):1296-1310$ , Aug. 2005. 2

63



[28] J. W. S. Lord Rayleigh. On Waves. Phil. Mag., 1:257-279, 1876. 2

[29] M. Lourakis and A. Argyros. Is Levenberg-Marquardt the most efficient op-

timization algorithm for implementing bundle adjustment? In Tenth IEEE

International Conference on Computer Vision (ICCV’05) Volume 1, pages
1526-1531, Beijing, 2005. IEEE. 8

[30] P. A. Madsen, H. B. Bingham, and H. Liu. A new Boussinesq method for fully

nonlinear waves from shallow to deep water. J. Fluid Mech., 462:1-30, 2002.
2, 3, 16

[31] P. A. Madsen, H. B. Bingham, and H. A. Schaffer. Boussinesq-type formula-

tions for fully nonlinear and extremely dispersive water waves: derivation and

analysis. Proc. R. Soc. Lond. A, 459:1075-1104, 2003. 2, 3, 16

[32] W. Malfliet. Solitary wave solutions of nonlinear wave equations. American
Journal of Physics, $60(7):650$ , 1992. 3

[33] D. W. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear

Parameters. Journal of the Society for Industrial and Applied Mathematics,

$11(2):431-441$ , June 1963. 8

[34] J. W. Miles and R. Salmon. Weakly dispersive nonlinear gravity waves. J.

Fluid Mech., 157:519-531, 1985. 2

[35] D. Mitsotakis, B. Ilan, and D. Dutykh. On the Galerkin/Finite Element

Method for the Serre Equations. J. Sci. Comput., In Press, Feb. 2014. 2

[36] R. M. Miura. The Korteweg-de Vries equation: a survey of results. SIAM Rev,

18:412-459, 1976. 3

[37] J. J. Mor\’e. The Levenberg-Marquardt algorithm: Implementation and the-

ory. In G. A. Watson, editor, Proceedings of the Biennial Conference Held

at Dundee, June 28-July 1, 1977, pages 105-116. Springer Berlin Heidelberg,

1978. 7

[38] O. Nwogu. Alternative form of Boussinesq equations for nearshore wave prop-

agation. J. Waterway, Port, Coastal and Ocean Engineering, 119:618-638,

1993. 2, 6, 16

[39] L. V. Ovsyannikov. To the shallow water theory foundation. Arch. Mech.,

26:407-422, 1974. 7

[40] M. Ricchiuto and A. G. Filippini. Upwind residual discretization of enhanced
Boussinesq equations for wave propagation over complex bathymetries. J.
Comp. Phys., Jan. 2014. 2

64



[41] J. Sandee and K. Hutter. On the development of the theory of the solitary

wave. A historical essay. Acta Mechanica, 86:111-152, 1991. 3

[42] F. Serre. Contribution \‘al’\’etude des \’ecoulements permanents et variables dans

les canaux. La Houille blanche, 8:374-388, 1953. 2, 4

[43] C. H. Su and C. S. Gardner. KdV equation and generalizations. Part III.

Derivation of Korteweg-de Vries equation and Burgers equation. J. Math.

Phys., 10:536-539, 1969. 2

[44] T. Y. Wu. A unified theory for modeling water waves. Adv. App. Mech.,

37:1-88, 2001. 4

[45] M. I. Zheleznyak and E. N. Pelinovsky. Physical and mathematical models of

the tsunami climbing a beach. In E. N. Pelinovsky, editor, Tsunami Climbing

a Beach, pages 8-34. Applied Physics Institute Press, Gorky, 1985. 2

65


