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1. Introduction

It is well known that a complex linear deformation of a complex isolated singularity
is generically a Morse function (cf. [4, 18 Instead of complex linear deformations,
we are interested in “real” linear deformations of complex singularities. In [7], the
authors studied linear deformations of plane curve singularities of Brieskorn type.
In this note, we shortly introduce our result including backgrounds.

Our main result is the following:

Theorem 1.1 ([7]). Let $f$ : $\mathbb{C}^{2}arrow \mathbb{C}$ be a polynomial map given by $f(z, w)=$
$z^{p}+w^{q}$ with $p,$ $q\geq 2$ . For any generic choice of $a,$

$b\in \mathbb{C}$ , there exists a linear
deformation $f_{t}(z, w)$ of $f$ such that $f_{t}$ is a generic map for any $t\in(0,1$ ] and
$f_{1}(z, w)=f(z, w)+a\overline{z}+b\overline{w}.$

Here a deformation of $f$ is called linear if it is$\cdot$ given in the form $f_{t}(z, w)=$

$f(z, w)+a_{1}z+b_{1}w+a_{2}\overline{z}+b_{2}\overline{w}$ , where $a_{1},$
$b_{1},$ $a_{2},$

$b_{2}$ are analytic functions with
variable $t\in \mathbb{R}$ which vanish at $t=0$ and $\overline{z}$ and $\overline{w}$ are the complex conjugates of $z$

and $w$ respectively. See Section 3 for the definition of a generic map.
The singular set of a linear deformation of $f(z, w)=z^{2}+w^{2}$ has three cusps

and the image of the singular set is as shown in Figure 1. This example appears
in a paper of Y. Lekili [9, Move 4 in p.292] as a move which modifies a Lefschetz
fibration into a generic map. Thanks to Theorem 1.1, we are sure that the. set of
linear deformations of plane curve $si_{\dot{1}1}$gularities of Brieskorn type into generic maps
is non-empty. Therefore we may ask how many cusps do they have. The answer is
the following:

Theorem 1.2 ([7]). Let $f_{t}$ be a linear deformation into generic maps in Theo-
rem 1.1. Suppose that $p\geq q\geq 2$ . Then the number $c(f_{t})$ of cusps of $f_{t},$ $t\in(0,1$ ],

satisfies the inequalities $(p+1)(q-1)\leq c(f_{t})\leq(p-1)(q+1)$ .

Ifwe restrict the problem to the case where $f$ is a Morse singularity, i.e., $f(z, w)=$
$z^{2}+w^{2}$ , we can show that any linear deformation $f_{t}$ of $f$ is a generic map in general
and the set of singular values of $f_{t},$ $t\in(0,1$ ], in $\mathbb{R}^{2}$ is a scaling and rotation of the
curve in Figure 1.
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FIGURE 1. The image of singular set of a linear deformation of
$f(z, w)=z^{2}+w^{2}$ . This curve is parametrized as $h(\theta)=e^{2i\theta}+$

$2e^{-i\theta}, \theta\in S^{1}.$
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2. Two backgrounds

In recent studies, there are two approaches in the study of real singularities from
viewpoint of complex singularity theory; one is a broken Lefschetz fibration and the
other is a mixed polynomial.

A broken Lefschetz fibration is a Lefschetz fibration which may have indefinite
fold singularities. It is proved by O. Saeki in [17] that any continuous map from a
closed manifold of dimension $n>2$ into $S^{2}$ is homotopic to a $C^{\infty}$ stable map with-
out definite fold singularity. In particular, any closed manifold of dimension $n>2$

admits a broken Lefschetz fibration. On the other hand, D. Auroux, S.K. Don-
aldson, L. Katzarkov revealed a relationship between broken Lefschetz fibrations
and near-symplectic structures in closed 4-manifolds [1], which is a generalization
of the correspondence between Lefschetz fibrations and symplectic structures due
to S.K. Donaldson [3] and R. Gompf [5]. A closed 2-form $\omega$ on a closed 4-manifold
$X$ is called a near-symplectic structure if $\omega^{2}\geq 0,$ $\omega$ does not have rank 2 at any
point and, at each point $x$ where $\omega$ vanishes, the rank of the intrinsically defined
derivative $\nabla\omega_{x}$ : $TX_{x}arrow\Lambda^{2}T^{*}X_{x}$ is 3. Note that the set of points where $\omega$ vanishes
is a 1-dimensional submanifold in $X$ , which corresponds to the set of indefinite fold
singularities. Y. Lekili then presented a set of moves which relates broken Lefschetz
fibrations. The linear deformation shown in Figure 1 was introduced in his paper
as a move which removes a Morse singularity in a broken Lefschetz fibration.

A mixed polynomial is a polynomial with complex and complex-conjugate vari-
ables. Since any real polynomial $f$ : $\mathbb{R}^{2n}arrow \mathbb{R}^{2}$ with even variables can be repre-
sented by a mixed polynomial as

$f(x_{1}, y_{1}, \ldots, x_{n}, y_{n})=f(\frac{z_{1}-\overline{z}_{1}}{2}, \frac{z_{1}+\overline{z}_{1}}{2i}, \ldots, \frac{z_{n}-\overline{z}_{n}}{2}, \frac{z_{n}+\overline{z}_{n}}{2i})$

the class of mixed polynomials coincides with the class of real polynomials $f$ :
$\mathbb{R}^{2n}arrow \mathbb{R}^{2}$ . The notion of mixed polynomial was introduced by M.A. Ruas, J.
Seade and A. Verjovsky in [16] implicitly, and by J. Cisneros-Molina in [2]. It is
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natural to ask what kind of real singularities having properties similar to complex
singularities. For example, a real singularity of type $f\overline{g}$ , which is a product of
complex and complex-conjugate polynomials, had been studied by A. Pichon and
J. Seade [13, 14, 15]. These have nice properties similar to complex singularities.
M. Oka studied the singularities of mixed polynomials from viewpoint of Newton
polygons, which also have nice properties similar to complex ones. Remark that
both of these singularities are very far from singularities of stable maps since these
singularities are usually isolated.

A motivation of our paper [7] is to give a concrete discussion on the move of
Lekili, i.e., linear deformations of Morse singularities, and generalize the result into
the singularities of Brieskorn type. Remark that it is diffcult to say that his move
yields a stable map because the source manifold is not compact. Recently, the first
author and the third author studied the same problem for singularities of type $f\overline{g}$

and for higher dimensional case respectively, see [6] and [8].
We close this section with one useful lemma.

Lemma 2.1 ([11]). Let $f$ be a mixed polynomial with variables $(z_{1}, \ldots, z_{n})$ and
their conjugates. A point $p\in \mathbb{C}^{n}$ is a singular point of $f$ if and only if there exists
a complex number $\alpha$ with $|\alpha|=1$ such that

$\overline{\frac{\partial f}{\partial z_{i}}(p)}=\alpha\frac{\partial f}{\partial\overline{z}_{i}}(p)$ , $i=1$ , . . . , $n.$

The linear deformations in Theorem 1.1 are given in the form of mixed poly-
nomials and the set of singularities is determined by the above equations. Since
the set of singularities is one-dimensional, the indeterminate value $\alpha\in S^{1}$ can be
regarded as a parameter of the set of singularities.

3. Generic maps and Levine’s criterion

Let $X$ be a 4-manifold and $Y$ be a 2-manifold.

Definition 3.1. A smooth map $f$ : $Xarrow Y$ is called a generic map if for each point
$p\in X$ , there exist local coordinates $(x_{1}, x_{2}, x_{3}, x_{4})$ centered at $p$ and those of $Y$ at
$f(p)$ such that $f$ is locally described in one of the following form:

(1) $(x_{1}, x_{2}, x_{3}, x_{4})\mapsto(x_{1}, x_{2})$ ,
(2) $(x_{1}, x_{2}, x_{3}, x_{4})\mapsto(x_{1}, x_{2}^{2}+x_{3}^{2}+x_{4}^{2})$ ,
(3) $(x_{1}, x_{2}, x_{3}, x_{4})\mapsto(x_{1}, x_{2}^{2}+x_{3}^{2}-x_{4}^{2})$ ,
(4) $(x_{1}, x_{2}, x_{3}, x_{4})\mapsto(x_{1}, x_{2}^{2}\pm x_{3}^{2}+x_{1}x_{4}+x_{4}^{3})$ .

The point in case (1) is a regular point. The point in case (2), (3) and (4) is called
a definite fold, an indefinite fold and a cusp, respectively.

Note that generic maps actually exist
$\langle$

generic$\dot{a}1ly$ in $C^{\infty}(X, Y)$ .

We prepare a few notations. Let $f$ : $Xarrow Y$ be a smooth map and $df$ denote
the induced map from $TX$ to $f^{-1}(TY)$ and $df_{p}=df|T_{p}X$ for $p\in X$ , where $TX$ is
the tangent bundle of $X,$ $T_{p}X$ is the tangent space of $X$ at $p$ and $f^{-1}(TY)$ is the
vector bundle over $X$ whose fiber at $p\in X$ is $T_{f(p)}Y$ . Set

$S_{1}(f)=\{p\in X|$ rank $df_{p}=1\}.$

Let $U$ and $V$ be coordinate neighborhoods of $p\in X$ and $f(p)\in Y$ , respectively,
such that $f(U)\subset V$ . Since $TX|U$ and $TY|V$ are trivial we can choose bases $\{u_{i}\}$
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and $\{v_{j}\}$ of the sections of these restricted bundles. Let $\{u_{i}^{*}\}$ and $\{v_{j}^{*}\}$ be the
associated dual bases

$\langle u_{i}, u_{i}^{*},\rangle=\delta_{ii’}, \langle v_{j}, v_{j}^{*},\rangle=\delta_{jj’},$

where $\langle,$ $\rangle$ is the pairing of a vector space with its dual. Let $w_{j}=v_{j}\circ f$ and $w_{j}^{*}=$

$v_{j}^{*}\circ f$ . Since $df$ is linear on each fiber, there are smooth functions $a_{ij},$ $i=1$ , . . . , 4,

$J=1$ , 2, such that

$df= \sum_{i_{:}j}a_{ij}u_{i}^{*}\otimes w_{j},$

where

$(df(u_{i}))_{p}= \sum_{j=1,2}a_{ij}(p)w_{j}(p)$
.

To prove Theorem 1.1, we need to calculate the higher differentials of H. Levine
in [10] by choosing suitable basis. We here explain a recipe how to determine if a
given map is a generic map or not. For details of higher differentials, see [10].

Suppose $p\in S_{1}(f)$ . We may choose local coordinates $(x_{1}, x_{2}, x_{3}, x_{4})$ of $X$ at
$p$ and those of $Y$ at $f(p)$ such that $f=(g, h)$ : $\mathbb{R}^{4}arrow \mathbb{R}^{2}$ satisfies grad g $(p)=$

$(1,0,0,0)$ and grad h$(p)=(0,0,0,0)$ , where $\mathbb{R}^{4}$ and $\mathbb{R}^{2}$ are regarded as coordinate
neighborhoods of $X$ at $p$ and $Y$ at $f(p)$ respectively. Choosing these neighborhoods

sufficiently small, we may assume that $\{\frac{\partial}{\partial x_{1}},$ $\frac{\partial}{\partial x_{2}},$ $\frac{\partial}{\partial x_{3}},$ $\frac{\partial}{\partial x_{4}}\}$ is a basis of sections of
$T\mathbb{R}^{4}$ in the neighborhood of $p$ . Set $E=TX|S_{1}(f)$ and $F=f^{-1}(TY)|S_{1}(f)$ and
define $L$ and $G$ by the exactness of the sequence

$0arrow Larrow Earrow^{df}Farrow^{\pi_{1}}Garrow 0.$

We denote the fibers of $L$ and $G$ at $p\in S_{1}(f)$ by $L_{p}$ and $G_{p}$ respectively. Define
the map $\varphi^{1}$ : $Earrow L^{*}\otimes F$ , for each $p\in S_{1}(f)$ , by

(3.1)
$\varphi_{p}^{1}(v)(l)=\sum_{i_{j}j}\langle v$

, daij $(p)\rangle\langle l,$ $u_{i}^{*}(p)\rangle w_{j}(p)$ ,

with $v\in T_{p}X$ and $l\in L_{p}$ . Then the second differential $d^{2}f$ : $Earrow L^{*}\otimes G$ of $f$ is
defined as $d^{2}f_{p}(v)(l)=\pi_{1}(\varphi_{p}^{1}(v)(l))$ . In our setting, $\dim L_{p}=3,$ $\dim G_{p}=1$ , and
$d^{2}f_{p}$ is represented by the matrix

$M=( \frac{\partial^{2}h}{\partial x_{i}\partial x_{j}})_{i=1,2,3,4}, j=2,3,4.$

Hence $d^{2}f_{p}$ is surjective if and only if rank $M=3$ . We can check that the restriction
$d^{2}f_{p}|L_{p}$ is represented by

$H=( \frac{\partial^{2}h}{\partial x_{i}\partial x_{j}})_{i=2,3,4,j=2,3,4},$

which is exactly the Hessian of $h$ with variables $(x_{2}, x_{3}, x_{4})$ .

Lemma 3.2. In the above setting, $p\in S_{1}(f)$ is a fold if and only if rank $H=3$ at
$p.$
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Suppose rank $H=2$ at $p\in X$ and $d^{2}f_{p}$ is surjective. By choosing suitable

coordinates $(x_{1}, x_{2}, x_{3}, x_{4})$ , we may further assume that $\frac{\partial^{2}h}{\partial x_{4}\partial x_{j}}(p)=0$ for all $j=$

$2$ , 3, 4. Then set

$\xi_{j}=-\frac{\partial g}{\partial x_{j}}\frac{\partial}{\partial x_{1}}+\frac{\partial g}{\partial x_{1}}\frac{\partial}{\partial x_{j}}$

for $j=2$ , 3, 4. The set $\{\xi_{2}, \xi_{3}, \xi_{4}\}$ is a basis of $L|S_{1}(f)\cap U$ for some neighborhood $U$

of $p$ . We omit the definition of the tbird differential $d^{3}f_{p}$ in this note. The point is
that it is known that $p$ is a cusp if and only if $d^{3}f_{p}$ is surjective, and the surjectivity
is equivalent to the inequality

$\frac{\partial}{\partial x_{4}}(\xi_{4}(\xi_{4}(h)))(p)\neq 0.$

We then have the following criterion to check if a singularity is a cusp or not.

Lemma 3.3. In the above setting, $p\in S_{1}(f)$ is a cusp if and only if rank $M=3,$

rank $H=2$ and $\frac{\partial}{\partial x_{4}}(\xi_{4}(\xi_{4}(h)))(p)\neq 0.$

4. Outline of the proofs

To$\cdot$ prove Theorem 1.1, we need to determine if a polynomial map of the form
$f(z, w)=z^{p}+w^{q}+a\overline{z}+b\overline{w}$ is a generic map or not. Since the assertion in

Theorem 1.1 is for generic $a$ and $b$ , we may assume that $ab\neq$ O. Let $c_{1}$ and $c_{2}$

be non-zero complex numbers satisfying $c_{1}^{p}=a\overline{c}_{1}$ and $c_{2}^{q}=b\overline{c}_{2}$ , respectively. By

changing the coordinates as $z=c_{1}u$ and $w=c_{2}v$ and setting $\mu=a\overline{c}_{1}/(b\overline{c}_{2})$ , we
have

$f(z, w)=(c_{1}u)^{p}+a\overline{c_{1}u}+(c_{2}v)^{q}+b\overline{c_{2}v}$

$=a\overline{c}_{1}(u^{p}+\overline{u})+b\overline{c}_{2}(v^{q}+\overline{v})$

$=b\overline{c}_{2}(\mu(u^{p}+\overline{u})+v^{q}+v$

Now we set
$P(u, v;\mu)=\mu(u^{p}+\overline{u})+v^{q}+\overline{v},$

with $p,$ $q\geq 2$ and $\mu\in \mathbb{C}\backslash \{0\}$ . The mixed polynomial $f$ is a generic map in general
if and only if $P$ is. Hence hereafter we study the map $P$ instead of $f.$

Remark 4.1. If $P(u, v;\mu)$ is a generic map then, by changing the radii of $a$ and
$b$ with keeping their ratio, we can obtain a linear deformation $f_{t}(u, v)$ of $f(u, v)$

consisting of generic maps with the same property for $t\in(0,1$ ]. Hence to prove
Theorem 1.1, it is enough to show that $P(u, v;\mu)$ is a generic map for a generic
choice of $\mu.$

Thanks to Lemma 2.1, the set $S(P)$ of singular point of $P$ can be described
explicitly as follows:

Lemma 4.2. $z_{0}=(u_{0}, v_{0})\in S(P)$ if and only if

$\{\begin{array}{l}p|u_{0}|^{p-1}=q|v_{0}|^{q-1}=1,\frac{p-1}{2}\arg u_{0}+\arg\mu=\frac{q-1}{2}\arg v_{0}+\kappa\pi,\end{array}$

where $\kappa$ is some integer.
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To apply the recipe explained in Section 3, we first need to choose local coordi-
nates of $\mathbb{R}^{4}$ at $z_{0}\in S(P)$ and coordinates of $\mathbb{R}^{2}$ at $P(z_{0})$ such that $P:\mathbb{R}^{4}arrow \mathbb{R}^{2}$

satisfies grad(ReP) $(z_{0})=(1,0,0,0)$ and grad(ImP) $(z_{0})=(0,0,0,0)$ . Set $Q(u, v;\mu)$

and $R(u, v;\mu)$ to be the reaI and imaginary part of $P(u, v;\mu)$ respectively, i.e.,
$P(u, v;\mu)=Q(u, v;\mu)+iR(u, v;\mu)$ . Set $r_{1}=|u|,$ $\theta_{1}=\arg u,$ $r_{2}=|v|$ and $\theta_{2}=\arg v,$

so that $(r_{1}, \theta_{1}, r_{2}, \theta_{2})$ are regarded as the polar coordinates of $\mathbb{C}^{2}$ . Since

$P=Q+iR=\mu(u^{p}+\overline{u})+(v^{q}+\overline{v})$

$=|\mu|r_{1}^{p}e^{i(p\theta_{1}+\theta_{\mu})}+|\mu|r_{1}e^{i(-\theta_{1}+\theta_{\mu})}+r_{2}^{q}e^{iq\theta_{2}}+r_{2}e^{-i\theta_{2}},$

we have

$\{\begin{array}{l}Q=|\mu|r_{1}^{p}\cos(p\theta_{1}+\arg\mu)+|\mu|r_{1}\cos(-\theta_{1}+\arg\mu)+r_{2}^{q}\cos(q\theta_{2})+r_{2}\cos(-\theta_{2}) ,R=|\mu|r_{1}^{p}\sin(p\theta_{1}+\arg\mu)+|\mu|r_{1}\sin(-\theta_{1}+\arg\mu)+r_{2}^{q}\sin(q\theta_{2})+r_{2}\sin(-\theta_{2}) .\end{array}$

Then

grad Q $(z_{0})=(k_{1}, k_{2}, k_{3}, k_{4})$

$=(2|\mu|\cos\Theta_{1}\cos\Theta_{2}, -2|\mu||u_{0}|\sin\Theta_{1}\cos\Theta_{2},2\cos\Theta_{3}\cos\Theta_{4}, -2|v_{0}|\sin\Theta_{3}\cos\Theta_{4})$ ,

where

$\Theta_{1}=\frac{p+1}{2}\arg u_{0}, \Theta_{2}=\frac{p-1}{2}\arg u_{0}+\arg\mu,$

$\Theta_{3}=\frac{q+1}{2}\arg v_{0}, \Theta_{4}=\frac{q-1}{2}\arg v_{0}.$

Now we change the coordinates as

$(r_{1}’, \theta_{1}’, r_{2)}’\theta_{2}’)=(k_{1}r_{1}+k_{2}\theta_{1}+k_{3}r_{2}+k_{4}\theta_{2}, \theta_{1}, r_{2}, \theta_{2})$ ,

so that we have grad Q $(z_{0})=$ $(1,0,0,0)$ . Set $\hat{R}=R-\mathcal{S}Q$ with $\mathcal{S}=\frac{\partial R}{\partial r_{1}}(z_{0})$ . Then

$(\hat{R}, Q)$ is regarded as new coordinates of $\mathbb{R}^{2}$ at $P(z_{0})$ , and it satisfies grad $\hat{R}(z_{0})=$

$(0,0,0,0)$ . We need to use the condition $k_{1}\neq 0$ in these changes of coordinates.
The case $k_{1}=0$ can be discussed by choosing other suitable coordinates.

Suppose $k_{1}\neq 0$ . Then the matrix $H$ in Section 3 is calculated as follows:

Lemma 4.3. The Hessian $H$ of $\hat{R}$ with variables $(\theta_{1}’, r_{2}’, \theta_{2}’)$ is

$H= (k_{3}(k_{2}A-B) k_{3}(k_{2}A-B)k_{3}k_{4}A+Ek_{3}^{2}A+D k_{4}(k_{2}A-B)k_{3}k_{4}^{2}k_{4}AA++FE)$ ,

where

$A= \frac{1}{k_{1}^{2}}\frac{\partial^{2}\hat{R}}{\partial r_{1}^{2}}, B=\frac{1}{k_{1}}\frac{\partial^{2}\hat{R}}{\partial r_{1}\partial\theta_{1}}, C=\frac{\partial^{2}\hat{R}}{\partial\theta_{1}^{2}}$

$D= \frac{\partial^{2}\hat{R}}{\partial r_{2}^{2}}, E=\frac{\partial^{2}\hat{R}}{\partial r_{2}\partial\theta_{2}}, F=\frac{\partial^{2}\hat{R}}{\partial\theta_{2}^{2}}.$

Its determinant is

$\det H=(k_{4}^{2}D-2k_{3}k_{4}E+k_{3}^{2}F)(AC-B^{2})+(k_{2}^{2}A-2k_{2}B+C)(DF-E^{2})$ .

By Lemma 3.2, we can conclude that $z_{0}\in S(P)$ is a fold if and only if $\det H(z_{0})=$

O. A point $z_{0}’$ with $\det H(z_{0}’)=0$ is possibly a cusp. To know if it is actually a cusp,
we need to check the inequality $\frac{\partial}{\partial x_{4}}(\xi_{4}(\xi_{4}(h)))(p)\neq 0$ mentioned in Lemma 3.3 after
applying further change of coordinates. See [7] in detail.
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We shortly explain about the proof of Theorem 1.2. By Lemma 4.2, we see that
the set of singular points of $P$ consists of $r$ parallel curves $C_{k},$ $k=0,$ $\cdots,$ $r-1,$
on the torus $\{(u, v)\in \mathbb{C}^{2}||u|=A, |v|=B\}$ , each of which is parametrized, with
parameter $e^{i\theta}\in S^{1}$ , as

$(u, v)=(Ae^{(E_{\frac{-1}{r}\theta+c_{k})i}}, Be^{\epsilon_{\frac{-1}{r}\theta i}})$ ,

where $r=gcd(p-1, q-1)$ , $A=1/p^{1/(p-1)},$ $B=1/q^{1/(q-1)}$ and $c_{k}= \frac{1}{p-1}(-2\arg\mu+$

$2\pi k)$ . Set the map $P_{k}$ : $C_{k}arrow \mathbb{C}$ as

$P_{k}(\theta)=P(Ae^{(L^{-\underline{1}}\theta+c_{k})\theta i}ri, Be^{a_{r}^{-\underline{1}}})$

$=\mu(A^{p}e^{(\frac{p(q-1)}{r}\theta+pc_{k})i}+Ae^{-(\theta+c_{k})i}L^{-\underline{1}}r)+B^{q\frac{q(p-1)}{r}\theta i}e+Be^{-\frac{p-1}{r}\theta i}.$

Since $P$ is assumed to be a generic map, the set of cusps of $P$ on $C_{k}$ corresponds
to the roots of $dP_{k}/d\theta=0$ . The left hand side is calculated as

$\frac{dP_{k}}{d\theta}=-2e\frac{(p-1)(q-1)}{2r}\theta i\Phi(\theta)$

with

$\Phi(\theta)=(-1)^{k}|\mu|\frac{q-1}{r}$ $A$ $\sin(\frac{(p+1)(q-1)}{2r}\theta+\frac{p+1}{2}c_{k})$

$+ \frac{p-1}{r}B\sin(\frac{(p-1)(q+1)}{2r}\theta)$ .

Hence, to determine the number of cusps, it is enough to count the number of roots
of this equation. Theorem 1.2 is proved by observing this number explicitly, see [7]
in detail.

5. Questions

It is interesting to consider how we can generalize the results in Theorem 1.1 and 1.2
to more general settings. We close this note with proposing a few questions.

Question 5.1. Let $f(z, w)=z^{p}+w^{q}$ be a Brieskorn polynomial with $p\geq q\geq 2$

and $f_{t}$ be a linear deformation of $f$ into generic maps. Does the number $c(f_{t})$ of
cusps of $f_{t},$ $t\in(0,1$ ], appearing in a previously fixed small neighborhood of the
origin satisfy the inequalities $(p+1)(q-1)\leq c(f_{t})\leq(p-1)(q+1)$ ?

Question 5.2. $E_{\mathcal{S}}\iota imate$ the number of cusps appearing in a linear deformation of
a Brieskorn type singularity in higher dimension.

The third author studied the second question in the case where $f(z_{1}, \ldots, z_{n})=$

$z_{1}^{q}+\cdots+z_{n}^{q}$ with $q\geq 2$ and the linear terms for the deformation have only complex
conjugate variables. In that case, a generic map obtained by a linear deformation
has $(q+1)(q-1)^{n}$ cusps. See [8].

Question 5.3. Is a linear deformation obtained in Theorem 1.1 a stable ma$p^{}?$

In Theorem 1.1, we proved that the map is a generic map by using Levine’s criterion.
However, since the souce manifold is open, it seems to be diffcult to determine if
the map is stable or not.
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