Topological representation of lattices and their homomorphisms

ALEKSANDER BLASZCZYK

1. BASIC NOTIONS AND FACTS.

Results presented here were obtained jointly with Wojciech Bielas and will appear in [1]. An algebraic structure $\mathbb{L} = \langle L, \wedge, \vee, \mathbf{0}, \mathbf{1} \rangle$, abbreviated \mathbb{L} , is called a *lattice* whenever the binary operations \wedge and \vee are commutative, associative, satisfy the absorption property and $x \wedge \mathbf{1} = x \vee \mathbf{0} = x$ holds for all $x \in L$.

A natural ordering in \mathbb{L} is given by equivalences:

$$x \leq y \Longleftrightarrow x \land y = x \Longleftrightarrow x \lor y = y.$$

Then **0** is the smallest and **1** the greatest element. For a space X, $\mathbb{Cl}(X)$ denotes the lattice of all closed subsets of X, whereas $\mathcal{Z}(X)$ denotes the lattice of all zero-sets in X.

A lattice \mathbb{L} is called:

(1) distributive if for all $x, y, z \in \mathbb{L}$ there is

$$x \wedge (y \lor z) = (x \wedge y) \lor (x \wedge z),$$

(2) normal if it is distributive and for all $a, b \in \mathbb{L}$ with $a \wedge b = 0$ there exist $x, y \in \mathbb{L}$ such that

 $x \lor y = 1$ and $x \land a = y \land b = 0$,

(3) separative if it is distributive and for all $x, y \in \mathbb{L}$ with $x \nleq y$, there exists $z \in \mathbb{L} \setminus \{0\}$ such that $z \le x$ and $y \land z = 0$.

Let us note the following easy observations:

Fact 1.1. Every Boolean lattice is a normal and separative lattice.

Fact 1.2. The lattice $\mathbb{Cl}(X)$ is normal iff the space X is normal.

A family $\mathcal{L} \subseteq \mathbb{Cl}(X)$ is called a *closed base* in a space X whenever for every $F \in \mathbb{Cl}(X)$ there exists some $\mathcal{F} \subseteq \mathcal{L}$ such that $F = \bigcap \mathcal{F}$. Moreover, if \mathcal{L} is closed under finite unions and finite intersections then it is called a *base lattice*.

Example 1.3. If X is an infinite discrete space, then

$$\mathbb{L} = \{ F \subseteq X \colon |X \setminus F| < \omega \} \cup \{ \emptyset \}$$

is a closed base for X but as a lattice it is not separative.

Let us leave without proof the following easy facts:

Proposition 1.4. Let X be a compact Hausdorff space. If a sublattice $\mathbb{L} \subseteq \mathbb{Cl}(X)$ is a closed base for X, then the lattice \mathbb{L} is both normal and separative.

Proposition 1.5. Let X be a Tychonoff space. Then the lattice $\mathcal{Z}(X)$ is both normal and separative.

2. Ultrafilters

A nonempty set $\xi \subseteq \mathbb{L}$ is called *centered* provided that the following condition holds true: (*) $x_1, x_2, \ldots, x_n \in \xi \Rightarrow x_1 \land x_2 \land \ldots \land x_n > 0.$

The following fact is well known in the literature; see e.g. Koppelberg [6] or Sikorski [8].

Theorem 2.1 (Tarski's Theorem). Every centered family is contained in a maximal one.

For a lattice \mathbb{L} we set

 $\text{Ult}(\mathbb{L}) = \{\xi \subseteq \mathbb{L} : \xi \text{ is a maximal centered family}\}.$

Elements of $Ult(\mathbb{L})$ are called *ultrafilters* in the lattice \mathbb{L} . Directly from this definition we can obtain the following:

Lemma 2.2. If \mathbb{L} is a distributive lattice and $\xi \subseteq \mathbb{L}$ then $\xi \in \text{Ult}(\mathbb{L})$ iff the following conditions hold true:

(1) $\mathbf{0} \notin \xi$ and $\mathbf{1} \in \xi$, (2) $x, y \in \xi \Rightarrow x \land y \in \xi$, (3) $x \in \mathbb{L} \setminus \xi \Rightarrow (\exists y \in \xi)(x \land y = \mathbf{0})$,

for all $x, y \in \mathbb{L}$.

For a distributive lattice \mathbb{L} the Wallman topology on $Ult(\mathbb{L})$ is generated by the family

$${\rm Ult}(\mathbb{L}) \setminus u^* \colon u \in \mathbb{L},$$

where $u^* = \{\xi \in \text{Ult}(\mathbb{L}) : u \in \xi\}.$

The following theorem was proved first by Wallman [10]; see also Johnstone [5].

Theorem 2.3 (Wallman's Theorem). If \mathbb{L} is a distributive lattice, then the Wallman space $\operatorname{Ult}(\mathbb{L})$ is a compact T_1 -space. If additionally the lattice \mathbb{L} is normal, then $\operatorname{Ult}(\mathbb{L})$ is a compact Hausdorff space.

Let us note that if \mathbb{B} is a Boolean lattice, then the Wallman space $\text{Ult}(\mathbb{B})$ coincide with the Stone space of \mathbb{B} . Also, if \mathbb{L} is separative then it is isomorphic with the sublattice $\{u^* : u \in \mathbb{L}\}$ of $\mathbb{Cl}(\text{Ult}(\mathbb{L}))$ and $\{u^* : u \in \mathbb{L}\}$ is a closed base for $\text{Ult}(\mathbb{L})$. We have the following:

Theorem 2.4. If the lattice $\mathbb{L} \subseteq \mathbb{Cl}(X)$ is a closed base for a compact Hausdorff space X, then $\text{Ult}(\mathbb{L})$ is homeomorphic to X.

Let us note the same compact Hausdorff space can be the Wallman space of several nonisomorphic lattices. To do this it is enough to consider for a compact space two closed bases of different size. In the theory of Boolean algebras the situation is completely different: every compact zero-dimensional space is the Stone space of the Boolean algebra consisting of all clopen subsets of the space and such a representation is unique.

3. Homomorphisms

It appears that, similarly like in the theory of Boolean algebras, homomorphisms of lattices appoints continuous functions of their Wallman spaces; see Johnstone [5], Simons [9] and also Kubiś [7]. We propose the following:

Theorem 3.1. Let \mathbb{K} , \mathbb{L} be normal lattices and let $\varphi : \mathbb{K} \to \mathbb{L}$ be a homomorphism. Then there exists a continuous function $\varphi^* : \text{Ult}(\mathbb{L}) \to \text{Ult}(\mathbb{K})$ given by the formula:

$$\varphi^*(\xi) = \{ x \in \mathbb{K} \colon x \land y > \mathbf{0} \text{ for all } y \in \varphi^{-1}[\xi] \}$$

for each $\xi \in \text{Ult}(\mathbb{L})$.

The next theorem says that if **NLat** denotes the category of normal and distributive lattices with **0** and **1** and homomorphisms and **Comp** denotes the category of compact Hausdorff spaces and continuous mappings, then there exists a contravariant functor from **NLat** into **Comp**. This functor is also called the *Wallman functor*.

Theorem 3.2. Assume \mathbb{K} , \mathbb{L} , \mathbb{M} are normal lattices and let $\varphi : \mathbb{K} \to \mathbb{L}$ and $\psi : \mathbb{L} \to \mathbb{M}$ be homomorphisms. Then

$$(\psi \circ \varphi)^* = \varphi^* \circ \psi^*.$$

If $id_{\mathbb{K}} : \mathbb{K} \to \mathbb{K}$ is the identity, then $(id_{\mathbb{K}})^*$ is the identity as well.

Corollary 3.3. If $\varphi : \mathbb{K} \to \mathbb{L}$ is an isomorphism, then $\varphi^* : \text{Ult}(\mathbb{L}) \to \text{Ult}(\mathbb{K})$ is a homeomorphism of Wallman spaces.

Next theorem says that the Wallman functor described above carries monomorphisms into surjections.

Theorem 3.4. If \mathbb{K} , \mathbb{L} are normal lattices and $\varphi : \mathbb{K} \to \mathbb{L}$ is a monomorphism, then the function $\varphi^* : \text{Ult}(\mathbb{L}) \to \text{Ult}(\mathbb{K})$ is a continuous surjection.

For a space X, $\mathbb{RC}(X)$ denotes the Boolean lattice (Boolean algebra) of all regular closed subsets of X. The operations in $\mathbb{RC}(X)$ are given by the formulas

- (1) $F \lor G = F \cup G$,
- (2) $F \wedge G = \operatorname{cl} \operatorname{Int}(F \cap G),$
- $(3) -F = \operatorname{cl}(X \setminus F)$

However, the Wallman functor does not carry epimorphisms into injections. The last property makes a difference with the Stone functor which carries epimorphisms of Boolean lattices onto embeddings of Stone spaces.

Example 3.5. If X is an infinite compact metric space then the homomorphism $h : \mathbb{Cl}(X) \to \mathbb{RC}(X)$ given by the formula

$$h(F) = \operatorname{cl} \operatorname{Int} F$$

is an epimorphism, but the function $h^* : \text{Ult}(\mathbb{RC}(X)) \to \text{Ult}(\mathbb{Cl}(X))$ is not one-to-one. In fact, since the lattice $\mathbb{RC}(X)$ is complete, the space $\text{Ult}(\mathbb{RC}(X))$ is extremally disconnected and thus it cannot contain convergent sequences. On the other hand $\text{Ult}(\mathbb{Cl}(X))$ is homeomorphic with X, hence it is a metric space.

4. Applications

We start with the following easy observation; see also Gillman and Jerison [4].

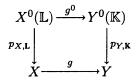
Proposition 4.1. Let X be a Tychonoff space. If a separative normal sublattice $\mathbb{L} \subseteq \mathbb{Cl}(X)$ is a closed base in X and $\mathcal{Z}(X) \subseteq \mathbb{L}$, then $\text{Ult}(\mathbb{L})$ is a compactification of X. Moreover, $\text{Ult}(\mathcal{Z}(X))$ is homeomorphic to the Čech–Stone compactification of X.

Let X be a compact Hausdorff space and let a lattice $\mathbb{L} \subseteq \mathbb{Cl}(X)$ be a closed base in X. Let \mathbb{L}^c denotes the Boolean sublattice of $\mathcal{P}(X)$ generated by \mathbb{L} . Since \mathbb{L}^c is a Boolean lattice the space $X^0(\mathbb{L}) = \text{Ult}(\mathbb{L}^c)$ is a zero-dimensional compact space. Let $e: \mathbb{L} \to \mathbb{L}^c$ be the injection appointed by the inclusion $\mathbb{L} \subseteq \mathbb{L}^c$. Then, by the Theorem 3.4 we get a continuous surjection $e^*: \text{Ult}(\mathbb{L}^c) \to \text{Ult}(\mathbb{L})$. If $f_{X,\mathbb{L}}: \text{Ult}(\mathbb{L}) \to X$ denotes the canonical homeomorphism (see Theorem 2.4), we set $p_{X,\mathbb{L}} = f_{X,\mathbb{L}} \circ e^*$.

Theorem 4.2. Assume X and Y are compact Hausdorff and $g: X \to Y$ is a continuous map. If lattices $\mathbb{L} \subseteq \mathbb{Cl}(X)$ and $\mathbb{K} \subseteq \mathbb{Cl}(Y)$ are closed bases in X and Y, respectively, and $g^{-1}[F] \in \mathbb{L}$ for every $F \in \mathbb{K}$ then there exists a continuous map $g^0: X^0(\mathbb{L}) \to Y^0(\mathbb{K})$ such that

$$p_{Y,\mathbb{K}}\circ g^{0}=g\circ p_{X,\mathbb{L}}$$

i.e. the following diagram is commutative:



A sublattice $\mathbb{L} \subseteq \mathbb{Cl}(X)$ is called *disjunctive*, if for all $x \in X$ and $F \in \mathbb{L}$ such that $x \notin F$, there is $G \in \mathbb{L}$ such that $x \in G$ and $F \cap G = \emptyset$.

Let us observed that if X is a T_1 -space, then the lattice $\mathbb{Cl}(X)$ is disjunctive. But not every sublattice $\mathbb{L} \subseteq \mathbb{Cl}(X)$ has to be disjunctive, even if X is normal. However, we have the following:

Theorem 4.3 (Frink [2]). If X is a T_1 -space and there exists a disjunctive normal sublattice of $\mathbb{Cl}(X)$ which is a base in X, then X is a Tychonoff space.

If X and Y are Tychonoff spaces then a bijection $\Phi : C(X) \to C(Y)$ of rings of continuous functions is a ring isomorphism whenever

$$\Phi(f+g) = \Phi(f) + \Phi(g)$$
 and $\Phi(f \cdot g) = \Phi(f) \cdot \Phi(g)$

for all $f, g \in C(X)$. We have the following theorem:

Theorem 4.4. If X and Y are Tychonoff spaces, and C(X) and C(Y) are ring isomorphic, then $\mathcal{Z}(X)$ and $\mathcal{Z}(Y)$ are isomorphic as lattices.

As an immediate corollary we obtain the well known Gelfand-Kolmogoroff Theorem, see e.g. [4].

Corollary 4.5 (Gelfand-Kolmogoroff [3]). If X and Y are compact Hausdorff spaces such that C(X) is a ring isomorphic to C(Y), then X is homeomorphic to Y.

References

[1] W. Bielas, A. Błaszczyk, Topological representation of lattice homomorphisms, Topology and its Applications (to appear)

[2] O. Frink, Compactifications and semi-normal spaces, American Journal of Mathematics 86 (1964), 602-907.

 [3] I. Gelfand, A. Kolmogoroff, On rings of continuous functions on topological spaces, Dokl. Akad. Nauk SSSR 22 (1939), 11-15.

[4] L. Gillman, M. Jerison, *Rings of Continuous Functions*, The University Series in Higher Mathematics, D. Van Nostrand Company Inc., Princeton (1960).

[5] P. T. Johnstone, Stone spaces, vol. 3 of Cambridge Studies in Advanced Mathematics, Cambridge (1982).

[6] S. Koppelberg, Handbook of Boolean Algebras, vol. 1, General Theory of Boolean Algebras, North-Holland (1989).

[7] W. Kubiś, Compact spaces, lattices, and absoluteness: a survey, arXiv:1402.1589v1 [math.GN].

[8] R. Sikorski, Boolean algebras, Springer-Verlag, Berlin (1960).

[9] H. Simmons, Reticulated rings, J. Algebra 66 (1980), 169–192.

[10] H. Wallman, Lattices and topological spaces, Annals of Mathematics 39 (1938), 112-126.

UNIVERSITY OF SILESIA, INSTITUTE OF MATHEMATICS, BANKOWA 14, 40-007 KATOWICE, POLAND *E-mail address:* ablaszcz@math.us.edu.pl