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1. BASIC NOTIONS AND FACTS.

Results presented here were obtained jointly with Wojciech Bielas and will appear in [1].
An algebraic structure $\mathbb{L}=\langle L,$ $\wedge,$ $\vee,$ $0,$ $1\rangle$ , abbreviated $\mathbb{L}$ , is called a lattice whenever the

binary operations $\wedge and\vee$ are commutative, associative, satisfy the absorption property and
$x\wedge 1=x\vee 0=x$ holds for all $x\in L.$

A natural ordering in $\mathbb{L}$ is given by equivalences:

$x\leq y\Leftrightarrow x\wedge y=x\Leftrightarrow x\vee y=y.$

Then $0$ is the smallest and 1 the greatest element. For a space $X,$ $\mathbb{C}1(X)$ denotes the lattice of
all closed subsets of $X$ , whereas $\mathcal{Z}(X)$ denotes the lattice of all zero-sets in $X.$

A lattice $L$ is called:

(1) distributive if for all $x,$ $y,$
$z\in \mathbb{L}$ there is

$x\wedge(y\vee z)=(x\wedge y)\vee(x\wedge z)$ ,

(2) $nor^{\gamma}mal$ if it is distributive and for all $a,$
$b\in \mathbb{L}$ with $a\wedge b=0$ there exist $x,$ $y\in \mathbb{L}$ such

that

$x\vee y=1$ and $x\wedge a=y\wedge b=0,$

(3) separative if it is distributive and for all $x,$ $y\in \mathbb{L}$ with $x\not\leq y$ , there exists $z\in \mathbb{L}\backslash \{O\}$

such that $z\leq x$ and $y\wedge z=0.$

Let us note the following easy observations:

Fact 1.1. Every Boolean lattice is a normal and separative lattice.

Fact 1.2. The lattice $\mathbb{C}1(X)$ is normal iff the space $X$ is normal.

A family $\mathcal{L}\subseteq \mathbb{C}1(X)$ is called a closed base in a space $X$ whenever for every $F\in \mathbb{C}1(X)$ there
exists some $\mathcal{F}\subseteq \mathcal{L}$ such that $F=\cap \mathcal{F}$ . Moreover, if $\mathcal{L}$ is closed under finite unions and finite
intersections then it is called a base lattice.

Example 1.3. If $X$ is an infinite discrete space, then

$\mathbb{L}=\{F\subseteq X:|X\backslash F|<\omega\}\cup\{\emptyset\}$

is a closed base for $X$ but as a lattice it is not separative.

Let us leave without proof the following easy facts:

Proposition 1.4. Let $X$ be a compact Hausdorff space. If a sublattice $L\subseteq \mathbb{C}1(X)$ is a closed
base for $X$ , then the lattice $\mathbb{L}$ is both normal and separative.

Proposition 1.5. Let $X$ be a Tychonoff space. Then the lattice $\mathcal{Z}(X)$ is both normal and
separative.
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2. ULTRAFILTERS

A nonempty set $\xi\subseteq \mathbb{L}$ is called centered provided that the following condition holds true:

$(*)$ $x_{1},$ $x_{2}$ , . . . , $x_{n}\in\xi\Rightarrow x_{1}\wedge x_{2}\wedge\ldots\wedge x_{n}>0.$

The following fact is well known in the literature; see e.g. Koppelberg [6] or Sikorski [8].

Theorem 2.1 (Tarski’s Theorem). Every centered family is contained in a maximal one.

For a lattice $\mathbb{L}$ we set

$Ult(\mathbb{L})=$ { $\xi\subseteq L:\xi$ is a maximal centered family}.

Elements of $Ult(\mathbb{L})$ are called ultrafilters in the lattice $\mathbb{L}$ . Directly from this definition we can
obtain the following:

Lemma 2.2. If $L$ is a distributive lattice and $\xi\subseteq \mathbb{L}$ then $\xi\in Ult(\mathbb{L})$ iff the following conditions
hold true:

(1) $0\not\in\xi$ and $1\in\xi,$

(2) $x,$ $y\in\xi\Rightarrow x\wedge y\in\xi,$

(3) $x\in L\backslash \xi\Rightarrow(\exists y\in\xi)(x\wedge y=0)$ ,

for all $x,$ $y\in L.$

For a distributive lattice $L$ the Wallman topology on $Ult(\mathbb{L})$ is generated by the family

$\{Ult(\mathbb{L})\backslash u^{*}:u\in \mathbb{L}\},$

where $u^{*}=\{\xi\in Ult(\mathbb{L}):u\in\xi\}.$

The following theorem was proved first by Wallman [10]; see also Johnstone [5].

Theorem 2.3 (Wallman’s Theorem). If $\mathbb{L}$ is a distributive lattice, then the Wallman space
$Ult(\mathbb{L})$ is a compact $T_{1}$ -space. If additionally the lattice $\mathbb{L}$ is normal then Ult(L) is a compact

Hausdorff space.

Let us note that if $\mathbb{B}$ is a Boolean lattice, then the Wallman space $Ult(\mathbb{B})$ coincide with the
Stone space of $\mathbb{B}$ . Also, if $L$ is separative then it is isomorphic with the sublattice $\{u^{*}:u\in \mathbb{L}\}$

of $\mathbb{C}1(Ult(L))$ and $\{u^{*}:u\in \mathbb{L}\}$ is a closed base for $Ult(\mathbb{L})$ . We have the following:

Theorem 2.4. If the lattice $L\subseteq \mathbb{C}1(X)$ is a closed base for a compact Hausdorff space $X$ , then
Ult(L) is homeomorphic to $X.$

Let us note the same compact Hausdorff space can be the Wallman space of several non-
isomorphic lattices. To do this it is enough to consider for a compact space two closed bases
of different size. In the theory of Boolean algebras the situation is completely different: every
compact zero-dimensional space is the Stone space of the Boolean algebra consisting of all clopen
subsets of the space and such a representation is unique.

3. HOMOMORPHISMS

It appears that, similarly like in the theory of Boolean algebras, homomorphisms of lattices
appoints continuous functions of their Wallman spaces; see Johnstone [5], Simons [9] and also
Kubi\’{s} [7]. We propose the following:

Theorem 3.1. Let $\mathbb{K},$
$\mathbb{L}$ be normal lattices and let $\varphi$ : $\mathbb{K}arrow \mathbb{L}$ be a homomorphism. Then there

exists a continuous function $\varphi^{*}:Ult(\mathbb{L})arrow Ult(\mathbb{K})$ given by the formula:
$\varphi^{*}(\xi)=\{x\in \mathbb{K}:x\wedge y>0$ for all $y\in\varphi^{-1}[\xi]\}$

for each $\xi\in Ult(L)$ .
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The next theorem says that if NLat denotes the category of normal and distributive lattices
with $0$ and 1 and homomorphisms and Comp denotes the category of compact Hausdorff spaces
and continuous mappings, then there exists a contravariant functor from NLat into Comp. This
functor is also called the Wallman functor.
Theorem 3.2. Assume $\mathbb{K},$ $\mathbb{L},$

$\mathbb{M}$ are normal lattices and let $\varphi$ : $\mathbb{K}arrow L$ and $\psi$ : $\mathbb{L}arrow \mathbb{M}$ be
homomorphisms. Then

$(\psi\circ\varphi)^{*}=\varphi^{*}\circ\psi^{*}.$

If $id_{K}$ : $\mathbb{K}arrow \mathbb{K}$ is the identity, then $(id_{K})^{*}$ is the identity as well.

Corollary 3.3. If $\varphi$ : $\mathbb{K}arrow \mathbb{L}$ is an isomorphism, then $\varphi^{*}:Ult(\mathbb{L})arrow Ult(\mathbb{K})$ is a homeomor-
phism of Wallman spaces.

Next theorem says that the Wallman functor described above carries monomorphisms into
surjections.

Theorem 3.4. If $\mathbb{K},$
$\mathbb{L}$ are normal lattices and $\varphi$ : $\mathbb{K}arrow \mathbb{L}$ is a monomorphism, then the function

$\varphi^{*}:Ult(\mathbb{L})arrow Ult(\mathbb{K})$ is a continuous surjection.

For a space $X,$ $\mathbb{R}C(X)$ denotes the Boolean lattice (Boolean algebra) of all regular closed
subsets of $X$ . The operations in $\mathbb{R}C(X)$ are given by the formulas

(1) $F\vee G=F\cup G,$

(2) $F\wedge G=c1Int(F\cap G)$ ,
(3) $-F=c1(X\backslash F)$

However, the Wallman functor does not carry epimorphisms into injections. The last property
makes a difference with the Stone functor which carries epimorphisms of Boolean lattices onto
embeddings of Stone spaces.

Example 3.5. If $X$ is an infinite compact metric space then the homomorphism $h:\mathbb{C}1(X)arrow$

$\mathbb{R}C(X)$ given by the formula
$h(F)=c1$ Int $F$

is an epimorphism, but the function $h^{*}$ : $Ult(\mathbb{R}C(X))arrow Ult(\mathbb{C}1(X))$ is not one-to-one. In fact,
since the lattice $\mathbb{R}C(X)$ is complete, the space $Ult(\mathbb{R}C(X))$ is extremally disconnected and thus
it cannot contain convergent sequences. On the other hand $Ult(\mathbb{C}1(X))$ is homeomorphic with
$X$ , hence it is a metric space.

4. APPLICATIONS

We start with the following easy observation; see also Gillman and Jerison [4].

Proposition 4.1. Let $X$ be a Tychonoff space. If a separative normal sublattice $\mathbb{L}\subseteq \mathbb{C}1(X)$ is a
closed base in $X$ and $\mathcal{Z}(X)\subseteq \mathbb{L}$ , then $Ult(\mathbb{L})$ is a compactification of X. Moreover, $Ult(\mathcal{Z}(X))$

is homeomorphic to the \v{C}ech Stone compactification of $X.$

Let $X$ be a compact Hausdorff space and let a lattice $\mathbb{L}\subseteq \mathbb{C}1(X)$ be a closed base in $X$ . Let $\mathbb{L}^{C}$

denotes the Boolean sublattice of $\mathcal{P}(X)$ generated by $\mathbb{L}$ . Since $\mathbb{L}^{c}$ is a Boolean lattice the space
$X^{0}(L)=Ult(\mathbb{L}^{c})$ is a zero-dimensional compact space. Let $e:\mathbb{L}arrow \mathbb{L}^{c}$ be the injection appointed
by the inclusion $\mathbb{L}\subseteq \mathbb{L}^{c}$ . Then, by the Theorem 3.4 we get a continuous surjection $e^{*}:Ult(\mathbb{L}^{c})arrow$

$Ult(\mathbb{L})$ . If $f_{X,\mathbb{L}}:Ult(\mathbb{L})arrow X$ denotes the canonical homeomorphism (see Theorem 2.4), we set
$p_{X,\mathbb{L}}=f_{X,L}\circ e^{*}.$

Theorem 4.2. Assume $X$ and $Y$ are compact Hausdorff and 9: $Xarrow Y$ is a continuous map.

If lattices $\mathbb{L}\subseteq \mathbb{C}1(X)$ and $\mathbb{K}\subseteq \mathbb{C}1(Y)$ are closed bases in $X$ and $Y$, respectively, and $9^{-1}[F]\in \mathbb{L}$

for every $F\in \mathbb{K}$ then there exists a continuous map $g^{0}:X^{0}(\mathbb{L})arrow Y^{0}(\mathbb{K})$ such that

$p0=,$
$i.e$ . the following diagram is commutative:
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$X^{0}(\mathbb{L})arrow^{g^{0}}Y^{0}(\mathbb{K})$

$p_{X,L}\downarrow$ $\downarrow p_{Y,K}$

$Xarrow^{g}Y$

A sublattice $\mathbb{L}\subseteq \mathbb{C}1(X)$ is called disjunctive, if for all $x\in X$ and $F\in \mathbb{L}$ such that $x\not\in F,$

there is $G\in \mathbb{L}$ such that $x\in G$ and $F\cap G=\emptyset.$

Let us observed that if $X$ is a $T_{1}$ -space, then the lattice $\mathbb{C}1(X)$ is disjunctive. But not every
sublattice $\mathbb{L}\subseteq \mathbb{C}1(X)$ has to be disjunctive, even if $X$ is normal. However, we have the following:

Theorem 4.3 (Frink [2]). If $X$ is a $T_{1}$ -space and there exists a disjunctive normal sublattice of
$\mathbb{C}1(X)$ which is a base in $X$ , then $X$ is a Tychonoff space.

If $X$ and $Y$ are Tychonoff spaces then a bijection $\Phi$ : $C(X)arrow C(Y)$ of rings of continuous
functions is a ring isomorphism whenever

$\Phi(f+g)=\Phi(f)+\Phi(g)$ and $\Phi(f\cdot g)=\Phi(f)\cdot\Phi(g)$

for all $f,$ $g\in C(X)$ . We have the following theorem:

Theorem 4.4. If $X$ and $Y$ are Tychonoff spaces, and $C(X)$ and $C(Y)$ are ring isomorphic,
then $\mathcal{Z}(X)$ and $\mathcal{Z}(Y)$ are isomorphic as lattices.

As an immediate corollary we obtain the well known Gelfand-Kolmogoroff Theorem, see
$e.g.$ $[4].$

Corollary 4.5 (Gelfand-Kolmogoroff [3]). If $X$ and $Y$ are compact Hausdorff spaces such that
$C(X)$ is a ring isomorphic to $C(Y)$ , then $X$ is homeomorphic to $Y.$
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