THE EXISTENCE OF A NON SPECIAL ARONSZAJN TREE AND TODORČEVIĆ ORDERINGS

TERUYUKI YORIOKA(依岡輝幸, 静岡大学)

ABSTRACT. It is proved that it is consistent that every forcing notions with R_{1,\aleph_1} has precaliber \aleph_1 , every Todorčević ordering for any second countable Hausdorff space also has precaliber \aleph_1 , and there exists a non-special Aronszajn tree. This slightly extends the previous work [16, 18].

1. INTRODUCTION

Martin's Axiom was introduced by Martin and Solovay to solve Suslin's problem in [5]. In 1980's, Todorčević investigated Martin's Axiom from the view point of Ramsey theory, and introduced the countable chain condition for partitions on the set $[\omega_1]^{<\aleph_0}$. In [13], Todorčević and Veličiković proved that MA_{\aleph_1} , which is Martin's Axiom for \aleph_1 many dense sets, is equivalent to the statement $\mathcal{K}'_{<\omega}$ that every ccc partition $K_0 \cup K_1$ on $[\omega_1]^{<\aleph_0}$ has an uncountable K_0 -homogeneous set. Todorčević also introduced many fragments of MA_{\aleph} , in his many papers e.g. [9, 13]. Some of them are as follows⁽¹⁾: $\mathcal{K}_{<\omega}$ is the statement that every ccc forcing notion has precaliber \aleph_1 . For each $n \in \omega$, \mathcal{K}_n is the statement that every uncountable subset of a ccc forcing notion has an uncountable *n*-linked subset, and \mathcal{K}'_n is the statement that every ccc partition $K_0 \cup K_1 = [\omega_1]^n$ has an uncountable K_0 -homogeneous set. \mathcal{C}^2 is the statement that every product of ccc forcing notions has the countable chain condition. We note that they have many applications. For example, C^2 implies Suslin's Hypothesis, every (ω_1, ω_1) -gap is indestructible, and the bounding number b is greater than \aleph_1 , and \mathcal{K}'_2 implies that every Aronszajn tree is special. (For other applications, see e.g. [3].) We also note the following diagram of implications

²⁰¹⁰ Mathematics Subject Classification. 03E35, 03E17.

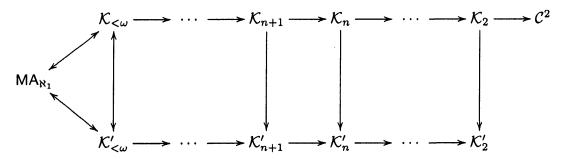
Key words and phrases. Non special Aronszajn tree, R_{1,\aleph_1} , Todorčević orderings.

Supported by Grant-in-Aid for Young Scientists (B) 25800089, Japan Society for the Promotion of Science.

⁽¹⁾They are defined by Todorčević in several papers. In [3, Definition 4.9] and [13, §2], \mathcal{K}_n 's are defined as statements for ccc forcing notions, however in [4, §4] and [9, §7], \mathcal{K}_n 's are defined as statements for ccc partitions. To separate them, we use notation as above. In [13], $\mathcal{K}'_{<\omega}$ above is denoted by \mathcal{H} .

A forcing notion \mathbb{P} has precaliber \aleph_1 if every uncountable subset I of \mathbb{P} has an uncountable subset I' of I such that every finite subset of I' has a common extension in \mathbb{P} . A subset I of a forcing notion \mathbb{P} is called *n*-linked if every member of the set $[I]^n$ has a common extension in \mathbb{P} . A forcing notion \mathbb{P} has property K if every uncountable subset of \mathbb{P} has an uncountable 2-linked subset.

between them:



The equivalence of MA_{\aleph_1} , $\mathcal{K}_{<\omega}$ and $\mathcal{K}'_{<\omega}$ are the theorem due to Todorčević and Veličković [13]. Other implications follows from definitions or trivial arguments. It is unknown whether any other implications hold in ZFC.

The author studied about this problem in [14, 15, 16, 17, 18]. In [16, 18], The author introduced the following property on chain conditions [16, 18, Definition 2.6]: A forcing notion \mathbb{P} has the property R_{1,\aleph_1} if conditions of \mathbb{P} are finite sets of countable ordinals, the order $\leq_{\mathbb{P}}$ is equal to the superset relation \supseteq , and for any large enough regular cardinal θ , any countable elementary submodel N of $H(\theta)$, any uncountable subset I of \mathbb{P} which forms a Δ -system with root ν and any $\sigma \in \mathbb{P}$ with $\sigma \cap N = \nu$, there exists an uncountable subset I' of I such that every condition in I' is compatible with σ in \mathbb{P} . It is proved that $\mathcal{K}_2(\mathsf{R}_{1,\aleph_1})^{(2)}$ also implies that Suslin's Hypothesis holds, every (ω_1, ω_1) -gap is indestructible and $\mathfrak{b} > \aleph_1$. It is also proved that it is consistent that every forcing notion with the property R_{1,\aleph_1} has precaliber \aleph_1 and there exists a non-special Aronszajn tree. This says that $\mathcal{K}_{<\omega}(\mathsf{R}_{1,\aleph_1})$ doesn't imply $\mathsf{MA}_{\aleph_1}(\mathsf{R}_{1,\aleph_1})$.

In this paper, we slightly develop this result by dealing with not only forcing notions with R_{1,\aleph_1} but also forcing notions defined due to Todorčević and Balcar-Pazák-Thümmel [10, 1], so called *Todorčević orderings*. Namely, it is shown that it is consistent that every forcing notion with the property R_{1,\aleph_1} has precaliber \aleph_1 , Todorčević orderings for second countable Hausdorff spaces also have precaliber \aleph_1 , and there exists a non-special Aronszajn tree.

2. PRELIMINARIES

2.1. Todorčević orderings. As said in [1], when a topological space is applied to Todorčević ordering, it is natural to require it to be sequential and have the unique limit property. A topological space X is called sequential if for any $Z \subseteq X, Z$ is closed in X iff for any $A \subseteq Z$ and $x \in X$ to which A converges, x belongs to Z. A topological space X has the unique limit property if any converging subset of X converges to the unique point. For example, Hausdorff spaces have the unique limit property. For a subset F of a topological space, let F^d denote the first Cantor-Bendixson derivative of F, that is, the set of all accumulation points of F.

Definition 2.1 (Todorčević [10], see also [1, 8]). For a topological space X, $\mathbb{T}(X)$ is the set of all subsets of X which are unions of finitely many converging sequences

 $^{^{(2)}\}mathcal{K}_2(\mathsf{R}_{1,\aleph_1})$ is the statement that every forcing notion with the property R_{1,\aleph_1} has property K.

including their limit points, and for each p and q in $\mathbb{T}(X)$, $q \leq_{\mathbb{T}(X)} p$ iff $q \supseteq p$ and $q^d \cap p = p^d$.⁽³⁾

For $p,q \in \mathbb{T}(X)$, the statement $q \leq_{\mathbb{T}(X)} p$ means that q is an extension of p (as the subset relation) and the isolated points in p are still isolated in q. $\mathbb{T}(X)$ is called Todorčević ordering for the space X in [1, 8] (and [19]).

Todorčević orderings were firstly introduced by Todorčević in [10]. The motivation is to demonstrate a Borel definable ccc forcing which consistently does not have property K. He defined it on a separable metric space. By generalizing it and applying it to other topological spaces, Thümmel discovered a forcing notion which has the σ -finite chain condition but does not have the σ -bounded chain condition, and so he solved the problem of Horn and Tarski [8]. (For Horn-Tarski's problem, see [2, 11].) Right after Thümmel's result, Todorčević introduced a Borel definable solution of the problem of Horn and Tarski [12].

In [12], Todorčević introduced the Borel definable version of Todorčević orderings, which consists of all countable compact subsets whose first Cantor-Bendixson derivative is finite. In [1], Balcar-Pazák-Thümmel introduced a separative version of Todorčević orderings, which consists of all functions f from members p of $\mathbb{T}(X)$ into $\{0,1\}$ such that $f^{-1}(1)$ is a finite set including p^d as a subset, ordered by the function-extension. In this paper, as in [19], we adopt the definition of Todorčević orderings in Definition 2.1.

Some of Todorčević orderings may not be ccc [1, Theorem 2.3], but many of them are ccc. From the proof of [10], we note that for a space X, if each of finite powers of X is hereditarily separable, then Todorčević ordering for X has the ccc. In [1, Definition 2.1], Balcar-Pazák-Thümmel introduced the property of topological spaces which is a sufficient condition to introduce Todorčević orderings to have the ccc (see also [19]). In this paper, we use the following property of Todorčević orderings.

Lemma 2.2. For a second countable Hausdorff space X, $\mathbb{T}(X)$ is powerfully ccc, that is, a finite support product of any number of copies of $\mathbb{T}(X)$ has the countable chain condition.

Proof. It suffices to show that for any $n \in \omega$, the finite support product ${}^{n}\mathbb{T}(X)$ is ccc. Let I be an uncountable subset of ${}^{n}\mathbb{T}(X)$. By shrinking I if necessary, we may assume that for each i < n, the set $\{p_i^{d}; \langle p_j; j < n \rangle \in I\}$ forms a Δ -system with root d_i . Take a countable elementary submodel N of $H(\theta)$ (for some large enough regular cardinal θ) such that $\{X, I\} \in N$.

Take $\langle p_i; i < n \rangle$ and $\langle q_i; i < n \rangle$ in $I^{(4)}$ such that for each i < n, • $(p_i^d \setminus \mathbf{d}_i) \cap N = \emptyset$, and

$$\lim(A) \notin (B \setminus {\lim(B)}),$$

ordered by the reverse inclusion. But essentially, both are same. In fact, both are forcingequivalent.

⁽⁴⁾Since the set $\{p_i^d; \langle p_j; j < n \rangle \in I\}$ forms an uncountable Δ -system for each i < n and N is countable, we can find such a $\langle p_i; i < n \rangle \in I$. Similarly, since the set $N \cup \bigcup_{i < n} p_i$ is countable, we can find such a $\langle q_i; i < n \rangle \in I$.

⁽³⁾This definition is slightly different from the original one, in [10], which consists of all finite sets σ of convergent sequences in X including their limit points such that for any $A, B \in \sigma$,

• $(q_i^d \setminus d_i) \cap (N \cup p_i) = \emptyset.$

Since X is second countable Hausdorff and N is an elementary submodel, there exists a sequence $\langle U_i, V_i; i < n \rangle \in N$ of open subsets of X such that for each i < n,

- $U_i \cap V_i = \emptyset$,
- $p_i^d \setminus d_i \subseteq U_i$, $q_i^d \setminus d_i \subseteq V_i$, and
- $V_i \cap (p_i \setminus U_i) = \emptyset$.

This can be done because the sets $p_i{}^d \setminus d_i$, $q_i{}^d \setminus d_i$ and $p_i \setminus U_i$ are finite and $(q_i^d \setminus d_i) \cap p_i = \emptyset$. By the elementarity of N, there exists $\langle q'_i; i < n \rangle \in I \cap N$ such that for each i < n, $(q'_i)^d \setminus d_i \subseteq V_i$. Then for each i < n,

$$q_i' \cup p_i \leq_{\mathbb{T}(X)} p_i.$$

Since $q'_i \subseteq N^{(5)}$ and $(p_i^d \setminus d_i) \cap N = \emptyset$ for each i < n, we notice that

 $q_i' \cup p_i \leq_{\mathbf{T}(X)} q_i'.$

Thus the condition $\langle q_i' \cup p_i; i < n \rangle$ is a common extension of conditions $\langle p_i; i < n \rangle$ and $\langle q'_i; i < n \rangle$ in ${}^n \mathbb{T}(X)$. Π

2.2. The chapter IX of [6]: Souslin Hypothesis Does Not Imply "Every **Aronszajn Tree Is Special.** In this section, we summarize Shelah's approach to show the consistency that Suslin's Hypothesis holds and there exists a non-special Aronszajn tree. All of definitions and proofs this section are in [6, IX. Souslin Hypothesis Does Not Imply "Every Aronszajn Tree Is Special].

Definition 2.3 (Shelah, [6, IX 3.3 Definition]). For an Aronszajn tree T and a subset S of ω_1 , T is called S-st-special if there exists a function f from the set $\{t \in T; \mathsf{rk}_T(t) \in S\}$ into ω such that for each $n \in \omega$, the set $f^{-1}[\{n\}]$ forms an antichain in T.

We note that if S is uncountable and an Aronszajn tree T is S-st-special, then T is still Aronszajn in the forcing extension where S is still uncountable. And then T has an uncountable antichain, hence then T is not a Suslin tree. For a costationary subset S of ω_1 , if T is a special Aronszajn tree, then there exists an antichain A through T such that the set $\mathsf{rk}_T[A] \setminus S^{(6)}$ is stationary. Therefore if S is an uncountable costationary subset of ω_1 and T^* satisfies the property

(*) for every antichain A through T^* , the set $\mathsf{rk}_{T^*}[A] \setminus S$ is nonstationary,

then T^* is a non-special Aronszajn tree.

In [6, IX 4.8 Conclusion], Shelah introduced the iterated proper forcing which forces that Suslin's Hypothesis holds and there are a stationary and costationary subset S of ω_1 and an S-st-special Aronszajn tree T^{*} which satisfies the property (*). The S-st-speciality of T^* guarantees that T^* is still Aronszajn in any proper forcing extension. To guarantee the property (*) of T^* , we shoot a club on ω_1 for the complement of $\mathsf{rk}_{T^*}[A]$ which is disjoint from S in some intermediate stage of the iteration [6, IX 4.7, 4.8]. However, the iteration is required to be a proper forcing. To do this, Shelah introduced the following preservation property.

 ${}^{(6)}\mathsf{rk}_T[A] := \{\mathsf{rk}_T(t); t \in A\}.$

 $^{^{(5)}}q'_i$ is a countable subset of X.

Definition 2.4 (Shelah [6, IX 4.5 Definition]). Let T be an Aronszajn tree and S a subset of ω_1 .

A forcing notion \mathbb{P} is (T, S)-preserving if for a large enough regular cardinal θ , a countable elementary submodel N of $H(\theta)$ which has the set $\{\mathbb{P}, T, S\}$ and $p \in \mathbb{P} \cap N$, there exists $q \leq_{\mathbb{P}} p$ which is (N, \mathbb{P}) -generic such that if $\omega_1 \cap N \notin S$, then

for any
$$x \in T$$
 of height $\omega_1 \cap N$,
if $\forall A \in \mathcal{P}(T) \cap N \ (x \in A \to \exists y \in A \ (y <_T x))$,
then for every \mathbb{P} -name \dot{A} , which is in N, for a subset of T,

$$q \Vdash_{\mathbb{P}} ``x \in A \to \exists y \in A (y <_T x) "$$

If T^* is a Suslin tree, then for every countable elementary submodel N of $H(\theta)$ (for some large enough regular cardinal θ) and $x \in T^*$ of height $\omega_1 \cap N$ and $A \in \mathcal{P}(T^*) \cap N$, if $x \in A$, then there exists $y \in A$ such that $y <_{T^*} x^{(7)}$. It follows that T^* satisfies (*). So we start from a Suslin tree T^* and a stationary and costationary subset S of ω_1 and make each Aronszajn tree to be S-st-special and T^* to be S-st-special which satisfies the property (*) by the iterated proper forcing extension such that each iterand is (T^*, S) -preserving and the whole iteration is also (T^*, S) -preserving. For Aronszajn trees T and T^* and a stationary subset S of ω_1 , Shelah introduced the forcing notion Q(T, S) which forces T to be S-st-special and is (T^*, S) -preserving [6, IX 4.2, 4.3, 4.6]. Moreover, Shelah introduced the new forcing iteration, so called a free limit iteration, which preserves the (T^*, S) preserving property [6, IX §1, §2 and 4.7].

The following is Shelah's iterated forcing in [6, Chapter IX, 4.8 Conclusion]⁽⁸⁾. We start in the ground model where $2^{\aleph_0} = \aleph_1$, $2^{\aleph_1} = \aleph_2$, and there exists a Suslin tree T^* . Let S be a stationary and costationary subset of the set ω_1 . We define an \aleph_1 -free iteration $\langle P_{\xi}, Q_{\eta}; \xi \leq \omega_2 \& \eta < \omega_2 \rangle$ such that

- $Q_0 = Q(T^*, S),$
- each Q_{η} satisfies one of the following:
 - (1) Q_{η} is proper and (T^*, S) -preserving of size \aleph_1 ,
 - (2) for some P_{ξ} -name of an antichain \dot{A} of T^* , $\mathsf{rk}_{T^*}[\dot{A}] \cap S = \emptyset$ and $Q_{\eta} = Q_{\mathsf{club}}(\omega_1 \setminus \mathsf{rk}_{T^*}[\dot{A}])$, which shoots a club through the set $\omega_1 \setminus \mathsf{rk}_{T^*}[\dot{A}]$ by countable approximations.

In this extension (with some bookkeeping argument), S is still stationary and costationary, every Aronszajn tree is S-st-special (hence not Suslin), and T^* is an S-st-special Aronszajn tree which satisfies (*).

Combining Shelah's iteration above, some bookkeeping device, theorems in [16, 18] and the next section, we can conclude the following.

Theorem 2.5. It is consistent that every forcing notions with R_{1,\aleph_1} has precaliber \aleph_1 , every Todorčević ordering for any second countable Hausdorff space also has precaliber \aleph_1 and there exists a non-special Aronszajn tree.

⁽⁷⁾Let $D := \{t \in T^*; t \in A \text{ or for every } s \in T^* \text{ with } t <_{T^*} s, s \notin A\}$. Since D is a dense subset of T^* and T^* is Suslin, there exists $y \in D \cap N$ which is compatible with x in T^* . Then it have to be true that $y <_{T^*} x$. Since $x \in A$, it have to be true that $y \in A$.

This statement is equivalent that there are no uncountable antichain through T^* .

 $^{^{(8)}}$ Shelah's proof uses an \aleph_1 -free iteration. This is different from a countable support iteration. But Schlindwein proved in [7] that the same proof works for a countable support iterations. So our theorem can be shown by a countable support iteration.

3. PROOF

Suppose that S is a stationary subset of ω_1 , X is a second countable Hausdorff space and I is an uncountable subset of $\mathbb{T}(X)$. By shrinking I if necessary, we may assume that

- the size of I is \aleph_1 ,
- the set $\{p^d; p \in I\}$ forms a Δ -system with root d,
- for some $q \in \mathbb{T}(X)$,

$$q \Vdash_{\mathbb{T}(X)} "I \cap G$$
 is uncountable"

Let $\overline{M} = \langle M_{\alpha}; \alpha \in \omega_1 \rangle$ be a sequence of countable elementary submodels of $H(\aleph_2)$ such that $\{S, X, I\} \in M_0$, and for every $\alpha \in \omega_1$, $\langle M_{\beta}; \beta \in \alpha \rangle \in M_{\alpha}$. By shrinking I if necessary again, we may assume that

• for each $p \in I$ and $\alpha \in \omega_1$, if $p^d \cap (M_{\alpha+1} \setminus M_{\alpha}) \neq \emptyset$, then $p^d \subseteq M_{\alpha+1} \setminus M_{\alpha}$. We have to notice then that it may happen that I does not belong to M_0 . From now on, we do not assume that $I \in M_{\alpha}$ for any $\alpha \in \omega_1$.

We define the forcing notion $\mathcal{Q}(\mathbb{T}(X), I, \overline{M}, S)$ which consists of pairs $\langle h, f \rangle$ such that

- h is a finite partial function from ω_1 into ω_1 ,
- for any $\alpha, \beta \in \text{dom}(h), \alpha \leq h(\alpha)$, and if $\alpha < \beta$, then $h(\alpha) < \beta$,
- for any $\alpha \in \operatorname{dom}(h) \cap S$, $h(\alpha) = \alpha$,
- f is a finite partial function from I into ω ,
- for any $\alpha \in \operatorname{dom}(h)$ and $p \in \operatorname{dom}(f)$,

$$p^d \cap \left(M_{h(\alpha)} \setminus M_{\alpha} \right) = \emptyset,$$

for any p ∈ dom(f), the set ∪ f⁻¹[{f(p)}] is a common extension of members of the set f⁻¹[{f(p)}] in T(X),

ordered by extension, that is, for any $\langle h, f \rangle$ and $\langle h', f' \rangle$ in $\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S)$,

$$\langle h, f \rangle \leq_{\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S)} \langle h', f' \rangle : \iff h \supseteq h \ \& \ f \supseteq f'.$$

By a density argument, if $\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S)$ is proper, then $\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S)$ adds an uncountable subset of I which satisfies the finite compatibility property. Therefore, under the approach due to Shelah in §2, it suffices to show that $\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S)$ is proper and (T^*, S) -preserving.

Lemma 3.1. $\mathcal{Q}(\mathbb{T}(X), I, \overline{M}, S)$ is proper.

Proof. Let θ be a large enough regular cardinal, a countable elementary submodel N of $H(\theta)$ which has the set $\{X, I, \vec{M}, S\}$, $\langle h, f \rangle \in \mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S)$, and δ a countable ordinal not smaller than the ordinal $\omega_1 \cap N$ (if $\omega_1 \cap N \in S$, then we define $\delta := \omega_1 \cap N$). We show that $\langle h \cup \{\langle \omega_1 \cap N, \delta \rangle\}, f \rangle$ is $(N, \mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S))$ -generic.

Let $\langle h', f' \rangle \leq_{\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S)} \langle h \cup \{ \langle \omega_1 \cap N, \delta \rangle \}, f \rangle$ and D a dense open subset of $\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S)$. We will find a condition in $D \cap N$ which is compatible with $\langle h', f' \rangle$ in $\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S)$.

By extending the condition $\langle h', f' \rangle$ if necessary, we may assume that $\langle h', f' \rangle \in D$. We note that $\langle h' \upharpoonright N, f' \upharpoonright N \rangle$ is in $\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S) \cap N$ because $\omega_1 \cap N \in \text{dom}(h')$. Let

$$D' := \Big\{ \langle k, g \rangle \in D; \langle k, g \rangle \leq_{\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S)} \langle h' \upharpoonright N, f' \upharpoonright N \rangle \& \operatorname{ran}(g) = \operatorname{ran}(f') \Big\}.$$

We note that D' is in $N^{(9)}$, $\langle h', f' \rangle \in D'$ and D' is dense in $\mathcal{Q}(\mathbb{Q}, I, \vec{M})$ below $\langle h' \upharpoonright N, f' \upharpoonright N \rangle$. Since the product forcing $\operatorname{ran}(f') \mathbb{T}(X)$ of $\mathbb{T}(X)$ is ccc in the model N, by the elementarity of N, there exists a countable subset J of $\operatorname{ran}(f') \mathbb{T}(X)$ in N such that

• J is a subset of the set

$$\left\{\left\langle \bigcup g^{-1}[\{n\}]; n \in \operatorname{ran}(f')\right\rangle; \langle k, g \rangle \in D' \right\},$$

• for every $\langle k, g \rangle \in D'$, there exists $\langle \mu_n; n \in \operatorname{ran}(f') \rangle \in J$ such that for each $n \in \operatorname{ran}(f'), \ \mu_n \text{ and } \bigcup g^{-1}[\{n\}]$ are compatible in $\mathbb{T}(X)$.

Since $\langle h', f' \rangle \in D'$, there exists $\langle \mu_n; n \in \operatorname{ran}(f') \rangle \in J$ such that for each $n \in \operatorname{ran}(f')$, μ_n and $\bigcup (f')^{-1}[\{n\}]$ are compatible in $\mathbb{T}(X)$. Since $\langle \mu_n; n \in \operatorname{ran}(f') \rangle \in J$ holds in N, there exists $\langle k, g \rangle \in D' \cap N$ such that

$$\left\langle \bigcup g^{-1}[\{n\}]; n \in \operatorname{ran}(f') \right\rangle = \left\langle \mu_n; n \in \operatorname{ran}(f') \right\rangle.$$

Then $\langle h' \cup k, f' \cup g \rangle$ is a common extension of $\langle h', f' \rangle$ and $\langle k, g \rangle$ in $\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S)$.

Lemma 3.2. For any Aronszajn tree T, $\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S)$ is (T, S)-preserving.

Proof. Let T, θ , N be as in the statement of the definition of the (T, S)-preservation, (moreover we suppose $\vec{M} \in N$) and $\langle h, f \rangle \in \mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S) \cap N$. Suppose that $\omega_1 \cap N \notin S$, because if $\omega_1 \cap N \in S$, then the condition $\langle h \cup \{ \langle \omega_1 \cap N, \omega_1 \cap N \rangle \}, f \rangle$ is as desired.

Let \cdot

$$\delta := \sup \left\{ F(\omega_1 \cap N) + 1; F \in (^{\omega_1} \omega_1) \cap N \right\}.$$

Since N is countable, δ is a countable ordinal. We will show that the condition $\langle h \cup \{ \langle \omega_1 \cap N, \delta \rangle \}, f \rangle$ of $\mathcal{Q}(\mathbb{Q}, I, \vec{M}, S)$ is our desired one.

As seen in the proof of the previous lemma, the condition $\langle h \cup \{ \langle \omega_1 \cap N, \delta \rangle \}, f \rangle$ is $(N, \mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S))$ -generic. Suppose that $x \in T$ of height $\omega_1 \cap N$ such that for any subset $A \in N$ of T, if $x \in A$, then there is $y \in A$ such that $y <_T x$. Let $\dot{A} \in N$ be a $\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S)$ -name for a subset of T. We will show that

$$\langle h \cup \{ \langle \omega_1 \cap N, \delta \rangle \}, f \rangle \Vdash_{\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S)}$$
 " $x \notin \dot{A}$ or $\exists y \in \dot{A} (y <_T x)$ ".

Let $\langle h', f' \rangle \leq_{\mathcal{O}(\mathbb{O}, I, \vec{M}, S)} \langle h \cup \{ \langle \omega_1 \cap N, \delta \rangle \}, f \rangle$, and assume that

$$\langle h', f' \rangle \not\Vdash_{\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S)}$$
 " $x \notin \dot{A}$ ".

By strengthening $\langle h', f' \rangle$ if necessary, we may assume that

$$\langle h', f' \rangle \Vdash_{\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S)}$$
 " $x \in \dot{A}$ ".

 $^{(9)}$ ran(f') is a finite subset of ω .

We note that $\langle h' | N, f' | N \rangle$ is in N (because $\omega_1 \cap N \in \text{dom}(h')$), and by the definition of $\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S)$, for every $p \in \text{dom}(f')$, if $\operatorname{ran}(p) \notin N$, then

$$\left(p^d\setminus \mathtt{d}
ight)\cap M_{\delta}=\emptyset.$$

Let $\gamma \in \omega_1 \cap N$ be such that for every $p \in \text{dom}(f')$, if the set $p^d \setminus d$ intersects N, then $p^d \subseteq M_{\gamma}^{(10)}$. Since X is second countable Hausdorff and N is an elementary submodel, there exists a finite set \mathcal{U} of pairwise disjoint open subsets of X in N such that for each $n \in \text{ran}(f')$, the finite set $(\bigcup (f')^{-1}[\{n\}])^d$ is separated by \mathcal{U} . We define a function F with the domain

$$\{t \in T; \mathsf{ht}_T(t) > \max(\operatorname{dom}(h' {\upharpoonright} N))\}$$

such that for each $t \in T$ of height larger than $\max(\operatorname{dom}(h' \upharpoonright N))$,

$$F(t) := \sup \left\{ \beta \in \omega_1; \text{ there exists } \langle k, g \rangle \in \mathcal{Q}(\mathbb{T}(X), I, \overline{M}, S) \text{ such that} \right\}$$

- $\operatorname{min}(\operatorname{dom}(k)) = \operatorname{rk}_T(t),$
- $k(\mathsf{rk}_T(t)) = \beta$,
- $\langle (h' \upharpoonright N) \cup k, (f' \upharpoonright N) \cup g \rangle$ is a condition of $\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S),$
- for each $p \in \operatorname{dom}(g), \ \left(p^d \setminus d\right) \cap M_{\gamma} = \emptyset$,
- $\operatorname{ran}(g) = \operatorname{ran}(f' \setminus N),$
- for each $n \in \operatorname{ran}(f' \setminus N)$, the set $\left(\bigcup g^{-1}[\{n\}]\right)^d \setminus d$ is separated by \mathcal{U} , and
- $\langle (h' \upharpoonright N) \cup k, (f' \upharpoonright N) \cup g \rangle \Vdash_{\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S)} ``t \in \dot{A}"$

Then F belongs to N. Let

 $B := \{t \in T; \mathsf{rk}_T(t) > \max(\operatorname{dom}(h' \upharpoonright N)) \& F(t) = \omega_1\},\$

which is also in N. We define a function F' with the domain

 $[\max(\operatorname{dom}(h' \restriction N)) + 1, \omega_1)$

such that for a countable ordinal β larger than $\max(\operatorname{dom}(h' \restriction N))$,

 $F'(\beta) := \sup \left\{ F(t) + 1; t \in T \setminus B \& \mathsf{rk}_T(t) \in (\max(\mathrm{dom}(h' \restriction N)), \beta] \right\}.$

This F' is a function from ω_1 into ω_1 and also in N. Hence $F'(\omega_1 \cap N) < \delta$ by the definition of δ . Since $\langle h', f' \rangle \Vdash_{\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S)}$ " $x \in \dot{A}$ " and $h'(\mathsf{rk}_T(x)) = h'(\omega_1 \cap N) = \delta$, $F(x) \geq \delta$ holds. Therefore x have to belong to B. Thus by our assumption, there exists $y \in B$ such that $y <_T x$.

Take $\varepsilon \in \omega_1$ such that $f' \subseteq M_{\varepsilon}$. Let

$$E:=\left\{ \ \langle k,g
angle \in \mathcal{Q}(\mathbb{Q},I,ec{M},S);
ight.
ight.$$

- $\min(\operatorname{dom}(k)) = \operatorname{rk}_T(y),$
- $\langle (h' \upharpoonright N) \cup k, (f' \upharpoonright N) \cup g \rangle$ is a condition of $\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S)$,
- for each $p \in \operatorname{dom}(g), (p^d \setminus d) \cap M_{\gamma} = \emptyset$,
- $\operatorname{ran}(g) = \operatorname{ran}(f'),$
- for each $n \in \operatorname{ran}(f')$, the set $\left(\bigcup g^{-1}[\{n\}]\right)^d \setminus d$ is separated by \mathcal{U} , and
- $\langle (h' \upharpoonright N) \cup k, (f' \upharpoonright N) \cup g \rangle \Vdash_{\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S)} "y \in \dot{A}"$

⁽¹⁰⁾Then for every $p \in \text{dom}(f')$, $(p^d \setminus d) \cap M_{\gamma} = \emptyset$ iff $(p^d \setminus d) \cap M_{\delta} = \emptyset$.

We note that E is in N, and the set

$$\{k(\mathsf{rk}_T(y)); \langle k, g \rangle \in E\}$$

is uncountable because $F(y) = \omega_1$. So there exists $\langle k, g \rangle \in E$ such that for each $p \in \operatorname{dom}(g), (p^d \setminus d) \cap M_{\varepsilon} = \emptyset$. Then for each $n \in \operatorname{ran}(f' \setminus N)$,

$$\left(\left(\bigcup g^{-1}[\{n\}]\right)^d \setminus d\right) \cap \left(\bigcup (f' \setminus N)^{-1}[\{n\}]\right) = \emptyset.$$

Since X is second countable Hausdorff and N is an elementary submodel, there exists disjoint open subsets U and V of X in $N^{(11)}$ such that for each $n \in \operatorname{ran}(f' \setminus N)$,

$$\left(igcup (f' \setminus N)^{-1}[\{n\}]
ight)^d \setminus \mathtt{d} \subseteq U,$$

 $\left(igcup g^{-1}[\{n\}]
ight)^d \setminus \mathtt{d} \subseteq V$

and

$$V \cap \left(\left(\bigcup (f' \setminus N)^{-1}[\{n\}] \right) \setminus U \right) = \emptyset.$$

By the elementarity of N, we can find $\langle k', g' \rangle \in E$ such that

$$\left(\bigcup (g')^{-1}[\{n\}]\right)^d \setminus \mathsf{d} \subseteq V.$$

Then for each $n \in \operatorname{ran}(f' \setminus N)$, the set

$$\bigcup (f')^{-1}[\{n\}] \cup \bigcup (g')^{-1}[\{n\}] \leq_{\mathbb{T}(X)} \bigcup (f')^{-1}[\{n\}].$$

Since $g' \subseteq N$ and $(\bigcup (f' \setminus N)^{-1}[\{n\}])^d \cap N = \emptyset$, we note that for each $n \in \operatorname{ran}(f' \setminus N)$, the set

$$\bigcup (f')^{-1}[\{n\}] \cup \bigcup (g')^{-1}[\{n\}] \leq_{\mathbb{T}(X)} \bigcup (g')^{-1}[\{n\}].$$

Therefore $\langle k' \cup h', g' \cup f' \rangle$ is an extension of $\langle h', f' \rangle$ in $\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S)$ and

$$\langle k' \cup h', g' \cup f'
angle \Vdash_{\mathcal{Q}(\mathbb{T}(X), I, \vec{M}, S)}$$
 " $y \in A$ "

References

- B. Balcar, T. Pazák and E. Thümmel. On Todorčević orderings, Fund. Math., 228 (2015), no. 2, 173-192.
- [2] A. Horn and A. Tarski. Measures in Boolean algebras, Trans. Amer. Math. Soc. 64 (1948), 467-497.
- [3] P. Larson and S. Todorčević. Chain conditions in maximal models. Fund. Math. 168 (2001), no. 1, 77-104.
- [4] P. Larson and S. Todorčević. Katětov's problem. Trans. Amer. Math. Soc. 354 (2002), no. 5, 1783–1791.
- [5] D. Martin and R. Solovay. Internal Cohen Extensions. Ann. Math. Logic 2 (1970), 143-178.
- [6] S. Shelah. *Proper and improper forcing*. Second edition. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1998.
- [7] C. Schlindwein. Consistency of Suslin's hypothesis, a nonspecial Aronszajn tree, and GCH.
 J. Symbolic Logic 59 (1994), no. 1, 1-29.
- [8] E. Thümmel. The problem of Horn and Tarski. Proc. Amer. Math. Soc. 142 (2014), no. 6, 1997–2000.

⁽¹¹⁾This can be done because the set $(\bigcup (f' \setminus N)^{-1}[\{n\}]) \setminus U$ is finite if U satisfies that $(\bigcup (f' \setminus N)^{-1}[\{n\}])^d \setminus \mathbf{d} \subseteq U$.

- [9] S. Todorčević. Partition Problems in Topology. volume 84 of Contemporary mathematics. American Mathematical Society, Providence, Rhode Island, 1989.
- [10] S. Todorčević. Two examples of Borel partially ordered sets with the countable chain condition. Proc. Amer. Math. Soc. 112 (1991), no. 4, 1125-1128.
- [11] S. Todorčević. A problem of von Neumann and Maharam about algebras supporting continuous submeasures. Fund. Math. 183 (2004), no. 2, 169–183.
- [12] S. Todorčević. A Borel solution to the Horn-Tarski problem. Acta Math. Hungar., 142 (2014), no. 2, 526-533.
- [13] S. Todorčević and B. Veličković. Martin's axiom and partitions. Compositio Math. 63 (1987), no. 3, 391-408.
- [14] T. Yorioka. Some weak fragments of Martin's axiom related to the rectangle refining property. Arch. Math. Logic 47 (2008), no. 1, 79–90.
- [15] T. Yorioka. The inequality b > ℵ₁ can be considered as an analogue of Suslin's Hypothesis. Axiomatic Set Theory and Set-theoretic Topology (Kyoto 2007), Sūrikaisekikenkyūsho Kōkyūroku No. 1595 (2008), 84-88.
- [16] T. Yorioka. A non-implication between fragments of Martin's Axiom related to a property which comes from Aronszajn trees, Ann. Pure Appl. Logic 161 (2010), no. 4, 469–487.
- [17] T. Yorioka. Uniformizing ladder system colorings and the rectangle refining property. Proc. Amer. Math. Soc. 138 (2010), no. 8, 2961-2971.
- [18] T. Yorioka. A correction to "A non-implication between fragments of Martin's Axiom related to a property which comes from Aronszajn trees". Ann. Pure Appl. Logic 162 (2011), 752-754.
- [19] T. Yorioka. Todorcevic orderings as examples of ccc forcings without adding random reals, Comment. Math. Univ. Carolin. 56, 1 (2015) 125–132.

DEPARTMENT OF MATHEMATICS, SHIZUOKA UNIVERSITY, OHYA 836, SHIZUOKA, 422-8529, JAPAN. E-mail address: styorio@ipc.shizuoka.ac.jp