BB FERTIFFC T Tk
1950 2 2015 4F 73-92

On Styles of A2-Terms
— Extended Abstract™-

Ken-etsu Fujita (Gunma University)
December 26, 2014

Abstract

Traditionally, two styles of A-terms with types are well known, i.e., the
Church and Curry styles. We still have other styles, e.g., de Bruijn ver-
sion, domain-free style, and type-free style for polymorphic A-calculus A2.
It is known that some of fundamental properties hold for A2 in any known
style, but others depend on styles. In order to capture existing styles
in a uniform way, styles of A2-terms are introduced by giving abstract
term-trees with indices, and terms in already known styles are obtained
as well-typed partially annotated terms following the styles. Next, the no-
tion of partially annotated terms is also defined for 2nd-order existential
A-calculus A We establish a systematic relationship between s-style A2
and s-style A via CPS-translations, which reveals the refined correspon-
dence between type annotations and domains. of abstractions. This study
- makes fundamental properties parametric, and provides new insight and
foundations for investigating which annotations cause the differences in
fundamental properties.

1 Introduction

Following the founders, we have two styles of A-terms with types, i.e., the explicit
typing (Church style) and the implicit typing (Curry style). Terms in the style of
Church [4, 2| are well-typed terms where each variable is attached to a unique
‘type. The use of explicit typing provides the property that the terms enjoy
uniqueness of types. On the other hand, terms in the style of Curry [11, 1, 17]
are the same as those of untyped A-calculus, and type inference or checking
guarantees that terms are well typed. This style of implicit typing forms a
common basis for functional programming. In addition, pseudo-terms d la de
Bruijn [2] are well known, and this notion can be extended to systems with
higher order types and dependent types. Each style has its own advantages
depending on the context under which terms are used.

*This work was partly supported by Grants-in-Aid for Scientific Research KAKENHI (C)
25400192, and by the Kayamori Foundation of Informational Science Advancement.

In this paper, we are interested in polymorphic A-terms where types are
defined from type variables denoted by X, Y, Z using constructors — and V:

A B:=X|(A— B)|VX.A

The notation FV(A) denotes the set of type variables appearing freely in type
A. We write Ay = A, for the syntactical identity under renaming of bound
variables.

In order to define Church-style terms for polymorphic A-calculus A2, we use
the following syntax for raw terms, where each variable is attached to a unique
type so that we have A = B for the same variable z such as z# and 2B, and
attached types are included in the syntax of terms.

M,N =z | Az M | MN | AX.M | M[4]

The notation FV(M) denotes the set of term variables appearing freely in term
M. Then Church-style terms for A2 are defined inductively as follows:

Fch M : B FenM:A—-3B FcpnN: A
Fehzd: A Foh AzA.M:A— B +Fch MN : B
Fen M A (Ch)* Fon M :VX.A

Fon AX.M :VX.A Fcn M[B]: A[X := B]

where the mark (Ch)* denotes the variable condition that X ¢ FV(B) for each
type B such that & € FV(M).

On the other hand, pseudo-terms ¢ la de Bruijn [1, 2] are defined for A2,
where free variables do not get ornamented with types, and type assignment
rules are defined as usual.

M,N =z | x:AM|MN |AX.M | M[A]

Finally, the system of type assignment for Curry-style terms [1, 17] of A2 is
defined as well, where a context denoted by I" or ¥ is a set of declarations of
the form z : A with distinct variables. We write I'(z) = A for (z: A) € I, and
FV(F) for U(:c:A)Gl" FV(A)

P'—CuM:A—>B FP—CuN:A
Iz:Abgyz: A I'cu MN: B

INz:Arcu M : B F'FeuM: A (Cu)* F'Fey M :VX.A
Trcu e M:ASB Thro, M:YX.A " TFou M: A[X = B]

where (Cu)* denotes the variable condition X ¢ FV(T).
In the case of A2, we still have other styles, for example, domain-free style

(df) [3, 8], type-free style (tf) (9], and so on. It is well known that some funda-

mental properties hold for A2 in any known style, but others depend on styles.
For instance, inhabitation problems are independent of styles. The subject re-
duction property with respect to n-reduction holds for Church-style, but not

74

for Curry-style [16]. Moreover, type-related problems are semsitive to styles.
The type-checking and type-inference problems are known to be decidable for
A2-terms in the Church style or the de Bruijn version, but undecidable for the
Curry style by Wells [17]. ‘ ’

In order to capture existing styles in a uniform way, we introduce styles of
A-terms by giving abstract term-trees with indices: Then we can obtain A-terms
not only in already known styles but also in new ones as partially annotated

terms that are erasures. Now, we can compare terms in different styles in a-

uniform framework. Next, the notion of pseudo-terms for fully annotated A-
terms is also defined for 2nd-order existential A-calculus A®. We establish a
systematic relationship between s-style A2 and s-style A? via CPS-translations
(see Fig. 1), which reveals the refined correspondence between type annotations
and domains of abstractions. This study provides new insight and foundations
for investigating which annotations cause the differences in decidability of type-
related problems which are made parametric with respect to styles.

In this study, annotations play three roles. The first role is that type an-
notations work as hints or a guide through hard typability. The second is that
terms in a certain style are introduced, based on the style, by fully annotated
terms, and then fundamental properties can be parametric with respect to well-
ordered styles. The third and pivotal role is that annotation information makes
it possible to establish natural CPS-translations from pseudo-terms of A2 into
those of the 2nd-order existential system A3, without referring to derivations.
In previous work [6], we studied a neat CPS-translation from the Church-style
A2 into A¥, where polymorphic functions are interpreted by abstract data types
[12], and the translation has been defined by induction on the structure of the

derivations. In order to relate type-related problems with each other, however,

translations between A2 and A7 should be defined by pseudo-terms, because
definitions of such problems are usually given in terms of raw terms. This idea
leads to a framework for reductions from A2 to A? families, such that some
properties for A2 with a certain style are reduced to those for A with the cor-
responding style, and in turn that other properties for A3 parametrized with
styles are reduced to those for A2 with the corresponding style. '

Fig. 1 shows a brief outline of this idea, where ** is a CPS-translation from
s-style A2 into s-style A\?, and f#§° is its inverse translation from a CPS-calculus
of A7 in s-style back to s-style A\2. Here, styles s and t range over not only well-
known styles such as {Ch, df, tf, Cu} but also intermediate systems between the
fully annotated terms and Curry terms. Hereafter, we write | | for an era-
sure mapping from t-style terms to s-style terms, and in this case we say that
style t is greater than style s, denoted by s < t. The well-known forgetful map
| [full is a homomorphism from fully annotated terms to s-style, which erases
some information in fully annotated terms, and provides more abstract A-terms
with an intermediate structure in s-style. The erasure map preserves typing.
Moreover, the soundness of *° () guarantees that the composition of the trans-
lations | |{ and *° (#* and | |{) constitutes a homomorphic projection of ¢-style to
s-style. The systematic correspondence presents a bird’s-eye view of the whole
combination of annotations including new ones, and the relationship between

75

full s
A2: Fully annotated style #) s-style —H—E"——+ Curry

*ful]Jv ‘{Aﬁfull *sl Tus *(:UJ(Tueu
| | feu

A3(CPS) : Fully annotated style ————— s-style ———=—— Curry

Figure 1: Systematic relationship between A2 and A\¥ with various styles
type annotations and decidability of type-related problems for the systems with
various styles.

The paper is organized as follows. In Section 2, we first introduce fully
annotated A2, and styles of terms are introduced in terms of abstract term-trees
with indices. Then partially annotated A2 is defined by using erasure based
on styles, which makes fundamental properties parametric with respect to well-
ordered styles. Secondly we introduce fully annotated A\? as the counterpart
of full A2 in Section 3. In Section 4, we present a framework that connects
fundamental properties systematically between A2 and A? families by means of
CPS-translations. Then we verify fundamental properties preserved under the
translations, and show, in a uniform way, decidability results on type-related
problems for A2 and A3 with various styles. In Section 5, we give concluding
remarks.

2 Fully annotated and partially annotated A2

2.1 Fully annotated)2

First we introduce A2-terms in fully annotated style (simply called full A2).
Pseudo-terms for full A2 and the system of type assignment are defined as fol-
lows. A context denoted by I' is defined as usual, and we write dom(I") for
{z|(z:A) eTI}. Let S be a set of term variables, I' 1 S denotes the context
whose domain dom(I"tS) is restricted to S.

M,N =z | x:AMB | MANB | AX.M* | M4[B]

Dx:Alsuinzz: A (var)

F,.’L‘:AP‘fun)\gM:B F’—fu”,\gM:A—-)B, '-N:A
. B . (= 1) i (A=B) A .
F|_fu]])‘2 M:AMP:A—> B Fl—full)‘zM N4:B
r }"fuu)\z M:A . * r }—fuu)\g M : VXA
A . (VI) VX.A . .
I Feape A X. M2 VXA I'Franpe M [B] : A[X = B]

where x means that the variable condition X ¢ FV(I') is imposed on (VI)*.
Derivations are uniquely represented by well-typed full A2-terms.

(= E)

(VE)

Proposiﬁon 1 Let M be a full A2-term that is not a variable. If 'y Feuune M :
A1 and Ty Feang M : Az, then Ay = As and T11FV(M) =T tFV(M).

Given a well-typed term of full A2, the Church-style term can be defined by
()M|BT using the following erasure | - |l and -T':

77

Definition 1 (|- [and T) 1. |zl =z 2F =2'@
2. |Az:A.MBRI = \gp: A M|l |

Az:AMYT = Xz:AMT
3 1MANB)full |M|full‘N|£%Il

(MN)T' = MF'NT
4 IAXMAGE = AX. MG (AX.M)F = AX.MT
5. |MAB]SY = M| B] ‘(M[A])F = MT[4]

Proposition 2 If T e M : A, then we have Fon (|MIBHT @ A

Church-style terms are represented by well-typed and partially annotated A2-
terms with the erasure and T'. In this way, A2-terms in well-known style will be
obtained from full AZ by erasing, based on styles representing patterns of terms.

2.2 Styles of \2-terms and partially annotated terms

In order to represent styles of terms, we introduce term constructors with in-
dices. General styles of A2-terms will be defined from the set of term trees
that are well labelled with indices. A syntax of term trees is defined from term
caonstructors var, A\, @, A, and Q.

t € Treem=var | A\t |Q.(t1,t2) | At | Qr.t

A syntax of styles of A\2-terms is defined by term trees together with indices,
denoted by n and i that range over the set of natural numbers.

s,t € Style == var(n) | A(n,n).s | @(n,n).(s,s) | Ai,n).s | @r(n,i).s

Here, the indices in indexed constructors informally mean that how many pieces
of information are included in terms, and type annotations will be assigned
following indices of styles soon.

We define a surjective mapping from Style to 7T ree, called an erasure map-

ping.

‘Definition 2 (Erasure from styles to term-trees)

|var(n)| =var; |A(m,n).s] = Alsl; |@(m,n).(s,t)] = @.(|s|, [t]);
[AGG,n).s| = A.Js|; |@t(m,i).s| = Qr.|s].

Definition 3 (Order on styles) We define a binary relation-s < t on styles
pointwise as follows:

1. If ny < ny then var(ny) < var(ng).

2. If s; < so with |s1]| = |sz2], m1 < mg, and ny < ng then A(mi,n1).s1 <
- A(mg,ny).s2.

3. If 51 < s9 with |$1| = ‘82', t1 <ty with ltll :’|t2|, my < mq, andny <ng
then @(ml,nl).(sl,tl) < @(m2,n2).(sz,t2).

78

4. If 51 < 89, 11 <dg, and ny < ny then A(i1,n1).51 < A(ig, ng).s5.
J. If31 < 82, My < ma, and i1 < ’ig then @T(ml,il).sl < @T(m2,’iz).52.

Note that the relation on styles forms a partial order.
For general styles, we consider subsets of Style, which are bijective to Tree.

Definition 4 (General styles) A subset St of Style is a general style, if for
each tree t € Tree, there exists a unique style s € St such that |s| = t.

A partial order on general styles can be defined naturally.

Definition 5 (Order on general styles) Let St;, Sty be general styles. We
define Sty < Stg if s1 < s for each s; € Sty and sy € Sty such that |s1] = |s2].

Note that an erasure mapping | |§:f is induced from general styles St; < St:
e.g., if A(my,n;).t1 < A(mag,n2).to, then erase annotations so that-the values
ma,ng decrease to my,n;, respectively. In turn, a pre-order on styles is in
general induced from the identity mapping and the composition of two erasures.
Moreover, if one has an erasure that maps St; to St, then an order is naturally
induced such that St; < St, since there exists a unique style for each term
tree.

‘We define a binary relation on terms and styles such that a term M has a
style s € St, denoted by M :: s.

z :: var(0) x4 :: var(1)
M:s M:s M s M:s
Az:A.MB :A(1,1).s Az:A.M ::X\1,0).s Az.MB:)(0,1).s Az.M :: X(0,0).s
M:s N:t M:s N:t M:s N:t M:s N:t
MANE ::@(1,1).(s,t) MAN :: @(1,0).(s,t) MNB::@(0,1).(s,t) MN : @(0,0).(s, t)
M:s M:s M:s M:s
AX.MB 1 A(2,1).5 AX.M :: A(2,0).s AMB A1) A.M :: A(1,0).s
M:s M:s M :s M:s
M3 :: A(0,1).s M :: A(0,0).s MA[B]: @r(1,2).s M|B] :: @1(0,2).s
M:s M:s M:s M::s

MA[:: @(1,1).5 M[] $ @'T(O, 1).s MA 2 @1(1,0).s M :: @1(0,0).s

We concentrate the paper mainly on styles such that each term constructor
has fixed indices for simplicity and direct connection to already existing ones.
This form of styles can be represented by the following tuples:

Definition 6 (Church, de Bruijn, domain-free, type-free, Curry styles \2) .
Pseudo-terms for Church style A2: (var(1), A(1,0), @(0,0), A(2,0), @r(0,2))

* Pseudo-terms for de Bruijn style \2: (var(0), (1, 0), @(0,0), A(2,0),@+(0,2))
o Pseudo-terms for domain-free style A2: (var(0), A(0, 0), @(0,0), A(2,0), @7(0,2))

e Pseudo-terms for type-free style A2: (var(0), A(0,0), @(0,0), A(1,0), @ (0, 1))
e Curry style A2: {(var(0), (0, 0),@(0,0), A(0,0),@t(0,0))

We define terms of partially annotated A2 (partial A\2) by deleting some anno-
tations from full A2 following style s, called s-style A2-terms. In this way, we
consider all styles between full and Curry-styles, where Curry-style is the least
style, and the style of full A2 is the greatest. Under the order, Definition 1
(Church) is available not only for full A2 but also for any style s greater than
. or equal to that of de Bruijn.

For any style s > Curry, one can naturally define the system of type assign-
ment for s-style terms M under a context I' as an erasure of the system for
full A2, written by I b5 M : A. For any style s > type-free, one has a natural
form of generation (inversion) lemma called syntax directed, such that from the
shape of an s-style term M of I' ; M : A, one can uniquely determine which
rule should be applied to derive the judgement.

: Proposition. 3 (Generation lemma for s > type-free) Let s > type-free.
(1) IfT sz : A then I'(z) = A.
(2) IfT g Az.M : A; thenT,z:Ag ks M : Ay and Ay = (Ag = Az) for some
' Ao, Asa. ,
(3) ZP s MiMjy: Ay thenT' kg My : Ag — Ay and T' -5 Mo : Ag for some
0-
(4) If Ty AM: Ay thenT Fs M : Ay and A1 =VX. Ay wzthXéFV() for

some Ajy.

(5) IfT o M[|: As then T -y M : VX.As and Ay = Ay[X := A] for some
A) A2 .)
Recall that a similar generation lemma holds for Curry-style A2 [1, 17]. For

uniqueness of types, we need more annotations than those in the style of type-
free.

Proposition 4 (Uniqueness of types for s > deBruijn) For any style s >
deBruijn, if T'Fs M : A; and T ks M : Ay, then we have A; = As.

Proposition 5 (Erasure and lifting for s > Curry) Lets,t be styles with Curry <
s<it. '

(1) IfTHy M : A then Tk, [M]t: A

(2) IfT s M : A then there exists a X\2-term N in t-style such that |Nit =
andH N : A.

Inhabitation problem by s-style A2-terms (IHP(s)) is defined as follows: Given
a type A, determine whether there exists a closed A2-term M in s-style such
that F; M : A.

Corollary 1 THP(s) is equivalent to each other for any style s > Curry.

80

3 Existential \? in fully and partially annotated
styles |

Secondly we define the 2nd-order existential type system A7 that is logically a
subsystem of minimal logic consisting of falsity, negation, conjunction, and 2nd-
order existential quantification. It is known that A2 can be Galois embedded
into A3 [7], which can be applied to connect fundamental properties with each
other between A2 and A\3. We introduce fully annotated A3 (full A3)! that is
the counterpart of the full \2.

1. A-types A,B:=X|L|-A|(AAB)|3X.A
2. Pseudo-terms for full \3

M,N := z|Az:AM|MN*|(M,N)*|(let (x:A,y:B) = M in N)
| (A, M)® | (et (X,y:B) = M in N)

3. Inference rules for full A7-terms
P,IL‘:A }_full)\f' M: 1

F }—fullz\a /\.’L‘AM . —'A

(var) (=I)

F,IZZZA l_quAEl z:A

r l_fullz\g M : ‘\A F }—fullz\a N . A (E) P |_full/\3 M . A F '—full)\a N : B
PFfu“)\a MNA 1) FFfullAa <M,N>(AAB) A/\B
'FM:A1NAy T,xz:A,y:AyFN:B

[Feanaz (let (x:A5,y:A2) =M in N): B
I'Fraps M 1 A[X := B] Trops M:3X.A T,z:A-N:B

T e (B,M)3XA:3X A I Fraixs (let (X,z:4) =M in N): B

where x means that the variable condition X ¢ FV(T, B) is imposed.
Following the idea of partial A2, partially annotated A3 (partial A3) is defined

as well, and for this, styles are also defined for A? where n, i range over the set
of natural numbers:

(A)

(AE)

(3I)

(3E)*

s,t € Style = var(n) | A(n).s | @Q(n).(s,t) | pair(n).(s,t) | let(n,n).(s,t)
| pairr(i,n).s | letr(z,n).(s,t)
A binary relation between terms and styles is partly listed together with infer-
ence rules: '

FysM:3X.A T''z:AFN:B
I'Fys (let (X,2:A)=M in N): B

P'kysM:3X.A T,2:A+-N:B

let 0
IF'kys (let (X,2) =M in N): B etr(2,0)

lety(2, 1)

FFysM:3XA T'z:AF-N:B
I'ys (let (z:A) =M in N): B

1Full A¥ will be denoted by the tuple (var(0), A(1), @(1), pair(1), let(1, 1), pairy(2, 1), lett(2, 1)).

'xaM:3X.A T'z:A+-N:B

etr(L1) T et m) =M in V). B

IetT(l,O)

F'FyaM:3X.A T)2:A-N:B
I'Fya Nz:=MA4]:B
An order on styles is natﬁrally defined as well. Note that some of partial A3

already appeared in the literature, e.g., (pairy(0,0), letT(0,0)) in Sgrensen and
Urzyczyn [16], where

'baM:3X A T)2:A-N:B
I'Fys N[z:=M]:B

lett(0,1) lett(0,0)

T+ M: A[X = B] g DEMAAX=Bl L DEMAK =B
or (B, M) ax4 @0 Tanaxa P e ax a4 Pairt(0,0)

4 Systematic relationship between s-)\2 and s-)\°

Next we introduce translations ,{ between the full A2 and the full A%, and
moreover, by using the erasure map, the translations can be modified system-
atically for partial A2 and A7 in s-style, including domain-free, type-free, and
Curry A2 and A3 respectively, denoted by *°,4°. Note that the following def-
inition of CPS-translation reveals an interesting correspondence between type
annotations of full A2 and domains of abstractlons of \3.

4.1 CPS-translation from full A2 into full \3

Definition 7 (CPS-translation * from 2 into A?) In the following, ™" may

be written simply by *, and a is a fresh variable.
X*=X, (A— B)* =(-A*AB*), (VX.A)* =3X.A*.

L (@) = (@4 a),
2. (Az:A.MB)* = (let (z:-A*,a:B*) = a in M*),
3. (MANB)* = M*[a := (\a: B*.N*,a)""],
4. (AX.MA)* = (let (X,a:A*) = a in M*),
5. (MA[B))* = M*[a := (B*,a)*"].

Proposition 6 (Soundness of full A\2)
IfT Frane M : A, then we have —I'* Fgqna Aa: A*.M* @ —A*.

Proof. By induction on the derivation. O
Note that the target calculus is essentially the full A3, although the variable a
in (za) has no annotations; substituted instances of a with pair(1), paer(l 1)
always have an annotation.

For an inverse translation, we define a subcalculus that properly includes
CPS-images of A2-terms and types, called CPS-terms and CPS-types respec-
tively. ‘

CPS-types:

AB:=X|(~AAB)|3X.A
The calculus consists of two categories; denotations P and continuations C, for

A2 in s-style Ani,ng) | Q(ng,ng) A(i1,ms) Qr(ne,i2)

A7 in s*-style || let(ni, ng) pair(nz), A(ng) lett(i1,m5) | pairp(iz, ne)

Table 1: Refined correspondence between s-style A2 and s*-style A3

which two kinds of variables, denoted by x,y and a respectively, are used, and
CPS-types are denoted by A*, B*.

CPS-terms:

P:=(z74°C) | (A\a:A*.P)C | (let (z:~A*,a:B*) = C in P)

| (et (X,a:B*) = C in P)

Cu=a|(z™4,C)B" | \a:A*.P,C)B" | (A*,C)E"
Here, a restriction on occurrences of the continuation variable a is imposed, such
that P and C involve exactly one free occurrence of a, namely, a linear variable.
The categories are closed under substitutions such as P[z := Aa: A*.P’], Pla :=
C),Clz := Xa: A*.P'],Cla := C’]. An inverse {U! is defined for CPS-types and
CPS-terms, where a continuation C is inverse translated to a term-context C*
with a hole [], which is defined as usual.

Definition 8 (Inverse translation fiuil)
X' = X, (FAAB)t = (A - BY), (3X.A) = VX.A.

(1) (a) (z™A0) = Cﬂ[xA"]’ (b) ((Aa:A.P)C)! = Cu{RuAﬂ]’
~ (c) (et (z:-A,a:B) =C in P)! = Cﬁ[)\x;An'puB“],
(d) (let (X,a:A) =C in P)! = C’ﬁ[AX.P"A”];

(2) (a) @ =[], (b) ((ha:A.P,C)B)t = CH[[]B' piaY),
() ({4,0)B)F = CH[[17" 4%,

Next section, we show the completeness of the full A2 with respect to the
full A3 such that T Feng Mt A <= —T™* Fyana Aa: A*. M* : —=A*, based on
which the completeness of s-A2 with respect to s-A3 will be obtained.

4.2 Correspondence between s-style A2 and s*-style \3

Although we have observed the dual correspondence between A2 and A [6, 7],
the introduction of full annotations establishes much detailed and informative
correspondence between partial A2 and partial A®. Let s be a style of partial
A2 with

§ = <)\('n1, nz), @(ng, TL4), A(’il, n5), @T(ns, lz))
From Definition 7 for full A2 with an erasure mapping, one has a CPS-translation
* from s-style A2 into t-style A3 such that ‘

t = (A(n4), @(0), pair(ng), let(n1, n2), pairy (i2, ne), letr (i1, ns)).
From now on, we may write simply s* for such a target style ¢, and * for *°.
Moreover, with the help of erasure, the inverse § for full A3 is available as well
to each instance of s*-style A\3. The refined correspondence between partial A2
and A3 is summarized in Table 1. We show instances of partial A2 and A3. See
also Section 3 for lett and lett.

82

e De Bruijn A3 = (var(0), A(0), @(0), pair(0), let(1,0), pair(2,0), lett(2,0))

e Domain-free A? = (var(0), A(0), @(0), pair(0), let(0, 0), pairt(2, 0), lett (2, 0))
[13]

e Hole-application A7 = (var(0), A(0), @(0), pair(0), let(1, 0), pair(1,0), lett(2,0))

o Type-free A = (var(0), A\(0), @(0), pair(0), let(1, 0), pairr(1, 0), let7(1,0))

o Curry ™10 X2 = (var(0), A(0, 0), @(0,0), A(1,0), @(0,0))
Curryt1¢t7(1.0) A3 — (var(0), A(0), @(0), pair(0), let(0, 0), pair1(0, 0), let7(1,0))

b Curry+A(0’l) A2 = (var(O),)‘(07 O)a @(Oa O)a A(Ov]-)a @T(Oa 0))
Curryt'et7(%D) X3 = (var(0), A(0), @(0), pair(0), let(0, 0), pairy (0, 0), let(0, 1))

Note that the systems of Curryt A2 and A? seem to be not found in the literature
up to our knowledge. In particular, A7 systems in s-style with s > Curry™ play
an important role here.

4.3 A systematic reduction from partial A2 into partial A3

We introduce a framework that can relate systematically corresponding systems
between A2 and A7. In the following, we show commutativity of the translations
*,§ and erasure | |; lifting of CPS-terms in s-style up to those in t-style with
s < t; and a back translation § from full A7 to full \2.

Proposition 7 (Commutativity of translations x,{ and erasure | |) (1)
Let M be a A2-term M in t-style and s < t. Then we have (M =M
and (|M]5)* = |M*"[5.

(2) Let P,C be CPS-terms of t-style A2 with s < t. Then (|P|\)" = |P¥[t
and (|C§)*" = |C* ;. |

Proof. By induction on the structures. We show some of the cases in Fig. 2. O
A2 has the lemma of lifting as in [1], i.e., Proposition 5 (s > Curry): If
[Fox2 N : A then there exists a term M in the full A2 such that [M|*! = N
and I' Frane M @ A. Here, CPS-terms in style s > Curry+'e”(1‘0) or s =
Curry""EtT(O’l) have the following lemma that plays an important role. We
write CUR for the set {s | s > Curry***9} U {Curry @1}, and CUR* for
{s| s> CurryHr OV { {Curry et (0D}

Proposition 8 (Key proposition: lifting CPS-terms and types for s € CUR")

Let s € CUR™.

(1) If Tya: A Fs_,\s P : L in s-style A3, then there exist a CPS-term Q
in the full A3, a CPS-type A’, and I’ consisting of CPS-types such that

'|Q|£“" =Pand -I",a: A Fegns @ & L.

84

1. Case of (Az: AMB) A(1,1):

I full I |db

Az:A.MB - Az A.| M|l — Az.| M|l

*fulll *dbl ! *CUl

full : db
|12
let (z:-A*,a:B*) =a in M* $ let (x:ﬂA*,a)zainlMﬂg‘gI —3 let (z,a) = a in |M*|full

2. Case of (MANB)::Q(1,1):

‘ |full

MANB LN [MIfu“(lNif“”)B Lley |M|full|N|full

*fullJ/ *l ' *cul

full
M*[a:= (Aa: B*.N*,a)4"] ll—) |M*|Bll[g ;= (Aa: B*.|N*|full q)] '—Llf | M|l .= (Aa.|N*|full g))

3. Case of (M4[B])::@r(1,2):

full db tf
Gl I Y T L S
*full *db *cf *CY
| { .

full | l ‘I’,f

*[* * *|fu * fs *|fu c *|fu
Mia:= (B4 B aeie i (B a) S e o) U e
4. Case of (B, C)4::pair(2,1):

oA B S o ey LS oy YR o

ufull ndb ntf uC“

db tf
oyt oy U5 (o o

Figure 2: Proposition 7: Commutativity of the translations %, and erasure | |

85

I' Fe-x2 N : Afor 3 t-style N s.t. |[N| =M (M;— FhexaM:A
CPS-trans. *tl . l(a)
I a:A* ks N*: L erasmg.l | -I* a:A*F s [N L

Figure 3: Theorem 1(1): Soundness of s-style A2 via t-style together with lifting,
*¢, erasing, and the commutativity. On the arrow (a), we have M** = (|N|})* =
IN*E.

(S1)F Foxz Q1 : (A7) (S e QY] (A

Inverse ﬁtT (b)
|1

ﬂE{,a:Af Fioaz Q@ L for 3 t-style Q s.t. |Q| =P ——mm— Yi,0:AF, 3 P: L

Figure 4: Theorem 1(4): Completeness of s-style A2 via t-style together with
lifting by CPS-term @, f, erasing, and the commutativity; see also Atppendix
(A) for the forcing function f. The arrow (b) has P*' = (|Q5)* =|Q"[X.

(2) If T,a: A F,5a C : B in s-style A3, then there exist a CPS-term D in
the full style, CPS-types A’, B’, and I consisting of CPS-types such that
Iles'ull =C and '1F,,G,1Al |_fu11,\3 D:B.

Proof. By induction on the derivations. See also Appendix (A) for the details.
0O) N
Finally, the inverse translation { works only for CPS-types denoted by A*, B*,
and I'™. ~

Proposition 9 (Translation § from full A2 back to full)\2)
(1) If =T*,a: A* Feans P L then (D) Frane P2 (A9)E

(2) If—%I‘*;a:A* Feaina C : B* then (I*)4, z: (B*) Franne CHz] : (A*)¥, where
x 1is fresh.

Proof. By induction on the derivations. See Appendix (B). o
Note that an inverse of erasure | |} is called lifting, denoted by (| [£)~; and
erasing | |% and lifting (] |{)~! provide homomorphisms from t-style to s-style,
and vice versa. The composition of lifting and erasing (not erasing and lifting)
constitutes the isomorphism. Now, under the framework, see Fig. 3 and Fig.
4, the soundness and completeness of s-style A2 are established by lifting, the
soundness and completeness of the full style, erasing, and the commutativity.
This idea is applied to connect type-related problems parametrized with styles
by the following theorem.

Theorem 1 (1) For any s > Curry, if I' Fs_xg M : A then =I'*,a: A* k4. _y3
M>: 1.

(2) For any style s* € CUR", if -I'*,a: A* Fe_ya M* : L then we have
r }—s-,\g M A

(3) For any style s € CUR with style @(n,0)2, we have T' F5.n2 M : A for
some type A if and only if -I"* 4 _ys Aa.M™* : B for some type B.

(4) For any style s € CUR, we have I' 450 M : A for some contest I' and
type A if and only if b3 M* : B for some context ¥ and type B.

Proof. (1) Suppose that I' - M : A in s-style A2. Then, by Proposition 5
(lifting), there exists a full A2-term N, such that [N|!*! = M and T+ N : A
in full A2. Thus, from Proposition 6, -I'*,a:A* |- N2 | in full A2 Hence,
by erasing, -['*,a:A* + |N*m11|§”” : L in the s-style A3, where |N*f“u]§“" =
(|N|fuly** = M*" by Proposition 7, see also Fig. 3.

(2) Suppose that -I'*,a: A* - M*" : L in s-style A7. Then, from Proposition

8, there exists a CPS-term, to say @ in full A3, such that |Q|M! = M*" and
~(-T*)f,a: (A F Q : L in full A3, where ~(-I'*)f = -I'* and (4*)f = A*.
See also Appendix (A) for the function f forcing non CPS-types into CPS-types.
Hence, from Proposition 9, we have (I'*)* |- Q" (A*)¥ in full A2, where
(A*)* = A and (I'*)* = I. Therefore, by erasing, we obtain I" - IQ“MIQ‘“ :Ain
s-style A2, where 1Q”fu"|§“” = (|Q[f*M)* = (M*")¥ = M by Proposition 7.

(3) Similarly to the above. For domain-free abstraction Aa.M™* with style A(0),
it is enough to have style @(n,0) from Table 1.

(4) (=) is the same as done in (1) above.

(«<): Suppose that there exist £ and B such that ¥ - M* : B in s-style A7.
From the definition of M*, we should have B = | and ¥ = ¥;,a: A for some
¥; and A3, such that £;,a: A+ M* : L in s-style A3. Thus the same method
used in (2) above proves this part, as shown in Fig. 4.)

Corollary 2 The CPS—translatz’on is an order-embedding with respect to the
order on styles s € CUR.

Proof. Let s € CUR. From Theorem 1 (1,2) and Table 1, an s-style A2 is

embedded into s*-style A3 such that T F,_xo M : Aiff -[*,a: A* Fgeys M*: L.

Let s < t. Then t-style A2 is embedded into t*-style A? as well with s* <t*. O

4.4 Application to fundamental properties preserved un-
der the translations: decidability correspondence be-
tween problems

As a by-product, decidability of the following type-related problems between
s-style A2 and s-style A7 is preserved by Theorem 1.

Definition 9 (TCP(s), TIP(s), TPP(s))

2See Table 1, where style @(n,0) corresponds to domain-free style A(0).
3In general, 1, A may not consist only of CPS-types, but this is overcome by the forcing
function.

86

(1) Type checking problem of s-style terms TCP(s) : Given an s-style A-term
M, a type A, and a context T, determine whether ' -, M : A.

(2) Type inference problem of s-style A-terms (TIP(s)) : Given an s-style
A-term M and a contert ', determine whether ' =3 M : A for some type
A.

(3) Typability problem of s-style terms (TPP(s)): Given an s-style A-term
M, determine whether T' =g M : A for some context I and type A.

For any style s € CUR, TCP(s) follows Theorem 1(1)(2); for style s with @(n, 0),
TIP(s) follows Theorem 1(3); and for style s € CUR, TPP(s) follows Theorem
1(4). Therefore, the decidability relationship between type-related problems are
summarized as follows.

Proposition 10 (Decidability correspondence between A2 and Ay 1

For any style s € CUR, the undecidable results of TCP(s) for s-style A2
imply those for s*-style \3. In turn, the decidable results of TCP(s*) for
s*-A\7 imply those for s-A\2.

2. For any style s € CUR with @Q(n,0), the undecidable results of TIP(s) for
s-style A2 imply those for s*-style A3,

3. For any style s € CUR, the undecidable results of TPP(s) for s-style A2
imply those for s*-style \3.

Not only already known examples but also new ones follow Proposition 10. For
example, the undecidable results of TCP(df-A2) in Fujita and Schubert [8] and
TCP(t£-A2) [9] can be applied to show the corresponding results of TCP(df-13)
and TCP(tf-A7) respectively. Undecidability of TIP(df-A?) and TIP(tf-A?) are
derived from that of the corresponding TIP(df-A2) [8] and TIP(tf-A2) [9]. The
undecidable results of TPP(ha-A2), TPP(df-A2) [8], and TPP(tf-)\2) [9] imply

those of TPP(ha-A3), TPP(df-A?) in Nakazawa et al. [13], and TPP(tf-\3)

respectively.

5 Concluding remarks

Fundamental properties are dependent on styles or representations of terms,
and many formulations of terms are introduced and studied under various con-
texts. There have been a number of noteworthy investigations including, e.g.,
partial type-reconstruction by Pfenning [14]; explicit type scheme annotations
by ‘Odersky and Laufer [10]; bidirectional type-checking of predicative System
F by Dunfield and Krishnaswami [5] and references therein.

In order to capture existing styles in a uniform way, we introduced styles of
terms by giving abstract term-trees with indices, which present a bird’s-eye view
of not only existing systems but also new ones such as Curry*-styles in Section
4.2. We note that TCP for a variant of Curryt(1.9-\2 becomes undecidable

87

by reducing the semi-unification problem following Wells [17], see Appendix (C)
for the details. ‘ ,

As an application to decidability of type-related problems, it is worthwhile
to investigate intermediate structures between decidable and undecidable sys-
tems. For this principal objective, the notion of fully annotated and partially
annotated \2-terms based on styles is useful, and moreover, we introduced the
counterpart systems partial A3 (2nd-order existential type systems) and the
framework that handles both A2 and A7 families systematically by means of
translations. The CPS-translation provides a natural interpretation from A2
into A3, such that type annotations of A2 correspond to domains of abstractions
of A3. At the current stage, Theorem 1(2,3,4) excludes the Curry style, since
the key proposition Proposition 8 (Lifting CPS-terms) would become the most
involved for the Curry-style A with the style lett(0,0). Further studies are
needed for this case.

As further work, the notion of styles should be extended to systems with
deponent types, and the promising is the application to reduction properties,
e.g., the Church-Rosser property is challenging. '

References

" [1] H.P.Barendregt: Lambda calculi with types, In S. Abramsky et al. edi-

tors, Handbook of Logic in Computer Science, Vol. II, pp. 117-309, Oxford
University Press, 1992.

(2] H.P.Barendregt, W.Dekkers, R.Statman: Lambda Calculus with Types,
Cambridge University Press, 2012. ‘

[3] G.Barthe, M. H. Sgrensen: Domain-Free Pure Type Systems, Lecture Notes
in Computer Science 1234 (LFCS 1997), pp. 9-20, 1997.

[4] A.Church: A formulation of the simple theory of types, J. Sym. Logic 5,
pp. 56-68, 1940.

[5] J.Dunfield, N.R.Krishnaswami: Complete and easy bidirectional type-
checking for higher-rank polymorphism, Proc. 18th ACM SIGPLAN ICFP,
pp. 429-442, 2013.

[6] K.Fujita: Galois embedding from polymorphic types into existential types,
Lecture Notes in Computer Science 3461 (TLCA 2005), pp. 194-208, 2005.

[7] K.Fujita: CPS-translation as adjoint, Theoret. Comput. Sci. 411 (2), pp.
324-340, 2010.

[8] K.Fujita, A.Schubert: Partially typed terms between Church-style and
Curry-style, Lecture Notes in Computer Science 1872 (IFIP TCS 2000),
pp. 505-520, 2000.

88

9] K.Fujita, A. Schubert: The undecidability of type related problem.é in type-
free style System F, Leibniz International Proceedings in Informatics 6
(RTA 2010), pp. 103-118, 2010.

[10] M. Odersky, K.Laufer: Putting Type Annotations to Work, Proc. 23rd
ACM Symposium on Principles of Programming Languages, pp. 54-67,
1996.

[11] D.Leivant: Polymorphic type inference, Proc. 10th ACM Symposium on
Principles of Programming Languages, pp. 8898, 1983. '

[12] J.C. Mitchell, G.D.Plotkin: Abstract types have existential types, ACM
~ Trans. Program. Lang. Syst., 10-3, pp. 470-502, 1998.

[13] K.Nakazawa et al.: Undecidability of type-checking in domain-free typed
lambda-calculi with existence, Lecture Notes in Computer Science 5213
(CSL 2008), 478-492, 2008.

[14] F.Pfenning: On the undecidability of partial polymorphic type reconstruc-
tion, Fundamenta Informaticae 19 (1,2), pp. 185-199, 1993.

[15] D.Prawitz: Natural Deduction, A Proof Theoretical Study, Almqvist &
Wiksell, 1965. ’

[16] M. H. Sgrensen, P. Urzyczyn: Lectures on the Curry-Howard Isomorphism,
Vol. 149, Studies in Logic and the Foundations of Mathematics, Elsevier
Science Inc., 2006.

[17] J.B.Wells: Typability and type checking in system F are equivalent and
undecidable, Ann. Pure Appl. Logic 98, pp. 111-156, 1999.

Appendix

A Proposition 8 (Lifting CPS-terms and types
for style t € CURY)

(1) IfT,a: Ay 2 P: L in t-style A7, then there exist a CPS-term @ in the
full style, a CPS-type A’, and a context IV consisting of CPS-types such
that |Q|M! = P and T a: A braas @ 1 L

(2) IfT',a: A+, s C : B in t-style A3, then there exist a CPS-term D in the
full style, a CPS-type B’, and a context I consisting of CPS-types such
that |D|f"! = C and —T",a: A’ Fgupa D : B'.

Proof. First we define a function that forces non CPS-types into CPS-types, as
follows:

1. X/ =X,

89

2. (-A) = Af;

3. (3Xx.4) =3X.Af;

4. (AAB)f = -Af A BY;

5. 1 = Z where Z is a ﬁxed and fresh type variable.

Note that we have Af = A for any CPS-type A. Now we prove the following
statement by induction on the derivations.

(1) IfTya:AF,z3 P: L in t-style A3, then there exists a CPS-term Q in the
full style such that |Q[*! = P and -T/,a: Af Fgpna @ L.

(2) IfT,a: Ak, p3 C: B in t-style A3, then there exists a CPS-term D in the
full style such that |D|f*!! = C and —I',a: Af Fgna D : BY.

Note that for style t > tf, the system t-A¥ is so-called syntax directed, for
instance see Proposition 3 (Generation lemma), so that the lifting lemma holds
naturally. Moreover, the lemma holds for systems with style ¢t > Curry‘HetT(l'O)
as well. In addition, Curry™'®"(®1)_)3 also enjoys the property. We show some
of the cases here.

1. Case P of (zC); var(0) and @(0):

Iz:-Brz:-B T',z:-B,a:A-C:B
I''z:-B,a:A+zC : L

(-E)

Note that —(-=B)f = —~Bf for any A3-type B. From the induction hy-
pothesis, we have a CPS-term D in the full style such that |D| = Cf and
-I'f,z:-Bf,a: Af + D : Bf. Hence, -T'f,z:-Bf,a:Af - zD : 1 by
(=E), where |xD| = zC.
2. Case of (let (z,a) = C in P):let(0,0):
I'Na:AFC:A;ANB T',z:A;,a:B+FP: 1
[Na:At1let (z,a) =C in P: 1

(AE)

From the induction hypotheses, we have CPS-terms D and Q in the full
style such that -T'f,a: Af - D : (A;AB)f and ﬂFf,z:—'A{,a:Bf FQ: L,
together with |[D| = C and |Q| = P, where (A; A B)f = -Af A BY.
Thus, -T'f,a : A F 1let (m:ﬂA{,a:Bf) =D in @Q: L by (AE), where
llet (z:-Af a:Bf) = D in Q| = (et (z,a) = C in P).

3. Case of (let (a) = C in P):lety(1,0):

Ia:AFC:3X.B T'ja:B+P: 1
Ia:AF1let (a)=CinP: L

(3E)

From induction hypotheses, we have CPS-terms D and Q in the full style
such that -I'/,a: Af + D : 3X.Bf and -I'f,a: Bf I Q : L, together with
|ID| = C and |Q| = P. Hence, -I'f,a: Af - let (X,a:Bf) =D inQ: L
by (3E), where |let (X,a:Bf) = D in Q| = (let (a) = C in P).

90

4. Case of (let (X,a) = C in P):let1(2,0) follows the same pattern as the
above.

5. Case C of a:var(0) is verified by -I'f,a: Af - a : AY by using (var).
6. Case of (Aa.P,C)::pair(0):

I'Na:A1FP: L 0
'k Xa.P:-A, (= Ia:A+C:B
Fa:AF (Aa.P,C): -A1 \B

(AD)

From the induction hypotheses, we have CPS-terms D and Q in the full
style such that —I'f, a:A{c FQ: L and -I'Y,a:Af - D : Bf, together with
|D| = C and |Q| = P. Thus, -I'/,a: Af (Aa: AL.Q, D) : (~A; A B)/ by
(=I) and (AI), where (~A; A B)f = ~AJ ABf, and \()\a:A{.Q,D)I =
(Aa.P, C).

7. Case of C::pair(0,0):

[La:AFC:B[X := A4]
Ia:A+FC:3X.B

(31)

From the induction hypothesis, we have a CPS-term D in the full style
such that -I'Y,a: Af F D : (B[X := A;])?, together with |D| = C, where
(BIX := A1])f = Bf[X := Af], provided that the variable X is different
from the distinguished variable Z. Hence, -I'f,a: Af I <A{ , D)E’X'BI :3X.Bf
by (3E), where [(Af, D)3X-B’| = |D| = C.

8. Cases of (C)::pairy(1,0) and (A;, C)::pairr(2,0):

9. Case of Curry ™" (®V_\3 "in particular, (3E) with style letr(0, 1):

Since variable a is a linear variable, into which a CPS-term attached with
a type is substituted, one can decompose the judgement I',a: A - Pla :=
CB): LintoT,a:A+C :3X.Band I',a: B+ P: 1; and the judgement
Ta:A; F Cola:=C{?]: BintoT,a:4; - C, : 3X. Ay and T,a: Ay + Cy :
B. Then follow the same pattern as the above?. O

B Proposition 9 (Translation § from full A\° back

to full A\2)
Let A*, B* be CPS-types and I'* be a context consisting of CPS-types.

(1) If -I'*,a: A* Feauxz P o L then () bpne P e (4%)E

4Although the decomposition may not be unique, e.g., take Pla := Cfl [a:= Cefz]], each
decomposition can be related by the so-called permuted conversion or structural reduction
[15]. |

91

(2) If =T'*,a: A* Fgyps C @ B* then (T*)¥, z: (B*)* Fruiae CHlx] : (A*)¥, where
z is fresh.

Proof. By induction on the derivations. We show some of the cases here.
1. Case of (let (x:—A},a:A%) = C in P):

I a:A*FC:-ATNAS; T, z:-A},a: A5 P: L
-I'*,a:A* F let (x:2A},a:A45) =Cin P: L

(AE)

From the induction hypotheses, we have T*!, z: (A% — A3") - Cllz] : A
and T z:A™ - P¥: A3% Then Tk Az: A PIAS" . 43 5 A3Y and T*
F CHaz: AT PEATY) ;A%
2. Case of (A}, C)3XA1;
I, a:A* - C: AT[X = A3]
-I*,a: A* - (43,C)3%A1 : 3X.A3

(3

From the induction hypothesis, we have I z: (A}[X := A3])! - C¥[z] : A"

And we also have z : VX. A mV?('AIuA;n . APX = A3, where
ATIX 1= AF] = (AfIX = A5)P. |

92

Hence, T*, z:VX. A - CHz" XA AZY) . A% with CH[zVX-AT" A3M] = ((A43, C)3X-AT)[g).

a

C TCP for a variant of Curryt*19-)2 is unde-
cidable

We write V.A for the universal closure of A, ie., VA = VXL...Xn.A for
FV(A) = {X1,...,Xn}, and accordingly put the following rule (VI) with style
A(1,0) to A2:
'-M:A
I'-AM:V.A

where X ¢ FV(I') for each X € FV(A). Let Aj, A2, B1, B2 be A2-types, and
X, X;,X5,Y be fresh type variables. Then, as done in Wells [17], the semi-
unification problem (SUP) is reduced to TCP of the variant of CurrytA(1:0_)2,

(VI) :: A(1,0)

Proposition 11 An instance of SUP {A; < By, Ay < By} has a solution if
and only if b : VX.(X - X) = Y,c:V.(B, = X1) = (X2 = By) = (X; —
X2) F b(Az.A.czz) : Y in Curryt2 (L0)2,

Proof. Following the proof of Theorem 4.1 in Wells [17]. o
This proposition implies that TCP for the variant of CurrytA(1.9_)2 is undecid-
able, and that of the corresponding Curry'et7(1:0)_X3 also becomes undecidable
from Proposition 10.

