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1 Introduction

The twisted Grassmann graphs are the first family of non-vertex-transitive distance-
regular graphs with unbounded diameter. We refer the reader to [2, 3, 5] for an
extensive discussion of distance-regular graphs, to [9] for a characterization of Grass-
mann graphs, and to [1, 6] for more information on the twisted Grassmann graphs.

Let V be a (2e + 1)-dimensional vector space over GF(q). If W is a subset of V
closed under multiplication by the elements of GF(q), then we denote by [W] the set
of 1-dimensional subspaces (projective points) contained in W. We also denote by [V:]
the set of k-dimensional subspaces of W, when W is a vector space. The Grassmann
graph J,(2e + 1,e+ 1) is the graph with vertex set [eL]’ where two vertices Wy, Wy
are adjacent whenever dim Wy N Wy = e. _

Let H be a fixed hyperplane of V. The twisted Grassmann graph J,(2e + 1,¢)

(see [4]) has AU B as the set of vertices, where

V]IW¢HL

A={We L—i—l

B:LiIJ.

The adjacency is defined as follows:
dileﬂW2=6 ileéA, W2€A,
Wi~ Wy < Wi D> W, ileeA,erB,
dileﬂWQZG—Q ileeB, W2€B.
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Let o be a polarity of H. That is, ¢ is an inclusion-reversing permutation of
the set of subspaces of H, such that o2 is the identity. The pseudo-geometric design
constructed by Jungnickel and Tonchev [8] has [V] as the set of points, and A" U B’
as the set of blocks, where

A ={leWnH)UW\H)]|W e A}

, H
B ={[W]|We [e+1}}.
It is shown in [8] that the incidence structure ([V], A" U B') is a 2-(v,k, \) design,
where 2e+1 e+1 2e—1 e+l
o O =1, -1y (T 1) (¢ - 1)
g—-1 " g-1"~ (=t =1)---(¢—1)

The block graph of the design ([V], A’ U B’) is isomorphic to the twisted Grassmann
graph jq(2e+ 1,e) (see [10]). In this report, we show that this block graph is obtained
from the Grassmann graph J,(2e+1, e+1) via Godsil-McKay switching. The following
diagram illustrates the situation.

block graph

PGy(2d, q) J(2d+1,d+1)

distort l GM switchinng

k ~
pseudo-geometric design block graph, J(2d+1,d+1)

2 Godsil-McKay switching

Let I" be a graph with vertex set X, and let {C},...,C;, D} be a partition of X such
that {C1,...,C;} is an equitable partition of X \ D. This means that the number
of neighbors in C; of a vertex = depends only on j for which z € C; holds, and
independent of the choice of z as long as z € C;. Assume also that for any z € D
and 7 € {1,...,t}, z has either 0, %|C’i| or |C;| neighbors in C;. The graph I obtained
by interchanging adjacency and nonadjacency between z € D and the vertices in C;
whenever z has £|C;| neighbors in C;, is cospectral with T (see [7]). The operation of
constructing I’ from I is called the Godsil-McKay switching.

In the next section, we take I' to be the Grassmann graph J;(2e + 1,e + 1), and
define an equitable partition C of [ezl] \ D for an appropriate D.



3 An equitable partition of the Grassmann graph
derived from a polarity

We keep the same notation as in Section 1. Let

Co={WeA|WNH=U} (Ue [H}),

e
H
D= L—}-l]’

C={CyUCyu | U e [ﬂ} (1)

Then
A= |J Cv (disjoint),

velZ]

Lemma 1. For U € (7] and W, € D,

. 1
{W1 € Cyu Co) | dim Wy N W, =e}| € {|Cy U CU(U)I, §|C’U U Ca(U)l,O}-
Proof. Since

Cy iftWy,D>U ,
#  otherwise,

{W1€CU|dimW1ﬂW2=e}:{

we have

]{Wl € CU UCU(U) I dim W1 N W2 = 6}|
|Cy UCU(U)I it Wo DU +0(U),

|Cy| if Wo D U and W, 5 o(U),
|Ca(U)| if W2 Z U and W2 D O'(U),
0 otherwise.

1
€ {ICU U CU(U)I, '2'ICU U Cg(U)'J O}
O

Lemma 2. Let {C},Cs,...,C:} be an equitable partition of the graph J,(2e,e) with
vertex set [Z] Let

) 4
L= ; <1 <t).
G {WGLH]WnHeQ} (1<i<t)

Then {Cy,Cs, ..., Cy} is an equitable partition of the subgraph Jo(2e+1,e+1) induced
by A.
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Proof. By the assumption, for 1 <4, j < t, there exists an integer m;; such that
HU € C; | dimUNU' =e—1} =my; (YU € C)).
For W’ € C;, we have U' = W/ N H € C;, so
H{W € C; | dimW N W' = e}
=Y {we [ ] |WNH=U, dmW NW'=e}|

UeC;j

% :
_ UGXC: |{WGL+1]|WOH=U,W0W¢H}|
dimUﬁU’]=el
. _q_'U_“QﬂH e[ ][WOH U Wnw' ¢ HY|

UECj
dim UNU'=e~-1

1 1%
—— ¥ |{<x,w>e<W'\H>><[ 1]|WﬂH=U,er}|
T —q vec, e+
dim UNU'=e~1
1
= e __ qe—1 Z |W/\H|
q q UGCj
dim UNU’'=e—1
qe+1 e
Zq—e':—l{UEC |d1mUﬂU'—e—1}|
= qm;;.

Therefore, every vertex in C; has exactly gm;; neighbors in C’j. O

Lemma 3. Let o be a polarity of H. Then the partition
-
(woyve [T

of the graph J,(2e,e) with vertex set [‘Z], is equitable.
Proof. This is immediate since dim UNU’ = dim o(U)Na(U’) for any U, U’ € [Ij] O

Lemma 4. The partition C defined in (1) is an equitable partition of the subgmph of
Jy(2e+1,e + 1) induced by A.

Proof. Immediate from Lemmas 2 and 3. O



4 The isomorphism

By Lemmas 1 and 4, we can apply the Godsil-McKay switching to the Grassmann
graph Jy(2e+1,e+1). Let T be the Godsil-McKay switching of J,(2e+1,e+ 1) with
respect to C. We claim that ¢ : [ ] — A’ U B’ defined by

c(WNH)UW\ H)] ifWeuA,
(W] otherwise.

(W) = {

is an isomorphism from I to the block graph of the design ([V], A uUB).
Let W1, W; € [e::l]. First suppose W1, W, € A. Since

[W1nWo]| = |[[WinWen H]| + |[(W1 N W) \ H]|

WinHIN Wy H| + |[W, \ H| N [W, \ H]|
o(WinH)|N[o(We N H)| + |[Wi\ H| N W\ H]|
WinH)U Wi\ H)In[e(Wo N H)U (W2 \ H)]|

(W) N g(Wa)],

li

I
I
[0
o
= ¢

we have

W1~W2inf‘ = W1~W2inF
< dimW NnW,=e
_r-1
= ”WlﬂWQ]l— q—].
€—1
<> [p(W1) N g(Wr)| = %:_T
= ¢(W1) ~ ¢(Wa).

Next suppose W) € A, Wy € D. Then there exists U € [f] such that W; € Cy.
Since

[o(U)] N [W2]]

[o(U)] N [We]|

[o(U) U (W1 \ H)] N [Wo|
[c(Win H)U (Wi \ H)] N [Wo)|
= |p(W1) N $(W2)],

we have

Wi~WoinT <= Wy DU and Wy D a(U) or Wy 2 U and W, D o(U)
< Wy D o(U)
= [W2] 5 [o(U)]
= [o(U)]N[Wa] = [o(U)]
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= |[o(U)]NWe]| = |lo(U)]l
<= [[lo(Win H)]N [Wa]| = [[o(V)]]

=l o)l = L=

= (W) ~ ¢(Wa).

Finally, suppose Wy, W, € D. Since

W N Wa]| = |[Wh] N [Wr]]
= |¢p(W1) N ¢(W2)],

we have

Wi~ W, < dimWiNnWy=e

€e—-1
> |[W10W2]]=‘;_1

= low) nowa) = L=

= ¢(W1) ~ d(Ws).

Note that the Godsil-McKay switching we have described depends on a polar-
ity of the hyperplane H. One might wonder whether different choice of a polarity
gives rise to nonisomorphic graphs. This question has already been addressed in the
context of pseudo-geometric designs in [8]. Since the composition of two polarities
is a collineation of (the projective space defined by) H, and every collineation of H
extends to that of V, the resulting switched graphs are isomorphic. The fact that the
resulting graph is not isomorphic to the original Grassmann graph is related to the
existence of an extra automorphism (i.e., a polarity) of the Grassmann graph J,(2e, €)
with vertex set [f], which does not extend to an automorphism of J,(2e + 1,e + 1).
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