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Abstract: We will review some recent results on the existence of monochromatic subgraphs

with certain properties in edge-colored graphs.

1 Introduction

We consider only finite and simple graphs. In particular, we will mainly consider edge-colored graphs.
Given a graph whose edges are colored, on how many vertices can we find a monochromatic subgraph
of a certain type, such as a connected subgraph, or a cycle? In this short survey, we shall review some
known results and conjectures regarding these questions.

We firstly give some basic definitions. For a graph $G=(V(G), E(G))$ , let $c(G)$ be the circumference
of $G$ , i.e. the length of a longest cycle in $G$ . Let $\alpha(G)$ be the independence number of $G$ , i,e., the size
of the largest independent set of $G$ . For two disjoint graphs $A$ and $B$ , let $A+B$ be the graph obtained
from $A$ and $B$ by joining them completely with edges $($thus, $V(A+B)=V(A)\cup V(B),$ $E(A+B)=$
$E(A)\cup E(B)\cup\{ab|a\in V(A), b\in V(B)\})$ . A graph $G$ is called unicydic if it has exactly one cycle. Let
$P_{4}^{+}$ be a $P_{4}$ with the addition of a single vertex adjacent to an internal vertex of the path.

2 Monochromatic cycles

In this section, let us consider the problem of finding monochromatic subgraphs in edge-colored graphs. $A$

first result in this direction is the following observation, made along time ago by Erd\’os and Rado: A graph
is either connected, or its complement is connected. In other words, for every 2-edge-colored complete
graph, there exists a monochromatic spanning connected subgraph (or equivalently, a monochromatic
spanning tree). A substantial generalization of this observation is to ask for the existence of a large
monochromatic subgraph of a certain type in an edge-colored graph.

Given an r-edge-colored complete graph, we may ask for the existence of a long monochromatic cycle.
Throughout this section we regard $K_{i}$ as a cycle of order $i$ for $i\in\{1$ , 2 $\}$ . Let us consider the following
problem:

Problem 1 Determine the maximum value $f(n, r)$ such that every r-edge-coloring of $K_{n}$ contains a
monochromatic cycle of length at least $f(n, r)$ .

In [6] Faudree et al. showed that for every graph $G$ of order $n\geq 6$ we have $\max\{c(G), c(\overline{G})\}\geq\lceil 2n/3\rceil,$

where $\overline{G}$ denotes the complement of $G$ . Furthermore, this bound is sharp. It can be easily seen by taking
$G$ to be the graph consisting of $\lfloor n/3\rfloor$ isolated vertices and a clique on the remaining $\lceil 2n/3\rceil$ vertices. So
we have $f(n, 2)=\lceil 2n/3\rceil$ . For $r\geq 3$ , it is known that $f(n, r)\leq n/(r-1)$ .

The lower bound on $f(n, r)$ is given as follows:
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Theorem 2 ([7]) Let $n,$ $r$ be integers with $n\geq r\geq 1$ . Then any r-edge-colored complete graph $K_{n}$

contains a monochromatic cycle of order at least $\lceil n/r\rceil.$ $(i.e., f(n, r)\geq\lceil n/r\rceil.$ $)$

Very recently, Theorem 2 was slightly improved in some special cases:

Theorem 3 ([10]) Let $n,$ $r$ be integers with $n\geq r\geq 1$ . Suppose that both $n$ and $r\frac{n(n-1)-2r}{(n-2)r}\rceil$ are even.

Then any r-edge-colored complete graph $K_{n}$ contains a monochromatic cycle of order at least $r\frac{n(n-1)-2r}{(n-2)r}\rceil.$

Another recent progress on this problem is the following:

Theorem 4 ([11]) The following statements hold:

(i) $Forn\geq r\geq 3,$ $f(2r+2, r)=3.$

(ii) For any positive integers $s,$ $c$ with $s\geq 2,$ $c\geq 2,$ $f(sr+c, r)=s+1$ holds if $r$ is suficiently large
compared with $s$ and $c.$

This theorem says that there exist infinitely many pairs $n,$ $r$ such that $f(n, r)=\lceil n/r\rceil$ . But we do
not know the exact value of $f(n, r)$ in other cases. Even for the case $f(n, 3)$ , it is open.

3 Gallai-colorings and extensions

In this topic, we shall consider the task of finding monochromatic subgraphs in edge-colored complete
graphs by putting a restriction on the edge-coloring. Edge colorings of complete graphs in which no
triangle is colored with three distinct colors were called Gallai-partitions in [25], and Gallai-colorings in
[20, 21]. Here we briefly call these colorings $G$-colorings and always assume that $G$-colorings are on the
edges of a complete graph. More than just the term, the concept occurs in relation to deep structural
properties of fundamental objects. An important result, Theorem 5, from Gallai’s original paper [17]
-translated to English and endowed by comments in [26] - can be reformulated in terms of $G$-colorings.
Further occurrences are related to generalizations of the perfect graph theorem [2, 3], Ramsey-type
functions called Gallai-Ramsey numbers [13, 16], or applications in information theory [24].

Our starting point in this section is the following result of Gallai [17], see an explicit proof in [20].
We say that a color class of an edge-coloring of $G$ is connected if it together with all vertices of $G$ forms
a connected graph. Otherwise the color class is called disconnected.

Theorem 5 In every $G$ -coloring with at least three colors, at least one of the color classes must be
disconnected.

What is the role of forbidding a rainbow triangle? Call a subgraph rainbow if all colors on the edges
of the subgraph are distinct. Can we extend Theorem 5 in some way to colorings where a rainbow copy of
some other fixed graph $F$ is forbidden? This question is the central topic of this section. An edge coloring
of a complete graph $K$ is connected if every color class in $K$ is connected. Let us say that a graph $F$ has
the disconnection property, $DP$ , if there exists a natural number $m=m(F)$ (note that $m(F)$ does not
depend on the order of $K$) such that the following holds: in every edge coloring of a complete graph with
at least $m$ colors, either there is a rainbow $F$ or at least one color class is disconnected. Equivalently,
$F$ has the disconnection property if, in every connected coloring with at least $m(F)$ colors, there is a
rainbow copy of $F$ . Notice that $m(F)\geq|E(F)|$ because complete graphs which are large enough have
connected colorings using $|E(F)|-1$ colors with no rainbow $F.$

By definition, Theorem 5 tells us that $K_{3}\in DP$ . In [12] $K_{1}+(K_{1}\cup K_{2})\in DP$ is shown. The recent
progress on this topic is the following:

Theorem 6 ([9]) The following statements hold:

(i) If $F\in DP$ is connected and bipartite, then $Fi_{\mathcal{S}}$ a tree or a unicyclic graph or two such components
joined by an edge.
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(ii) For any $F\in DP$ , there exists an edge $e\in E(F)$ such that $F-e$ is bipartite.

(iii) If $F\in DP$ is connected, then $F$ can be obtained from a tree by adding at most two edges.

(iv) If $F$ is a unicyclic graph such that its cycle is a triangle, then $F\in DP$ . (hence, any forest belongs

to $DP.)$

We do not know whether small cycles with at least 4 vertices are in $DP$ . So we propose the following
problem:

Problem 7 Is $C_{4}\in DP^{9}$ More generally, are even cycles in $DP^{9}$

In [9] the authors construct an example which shows that if $C_{4}\in DP$ then $m(C_{4})>4(=|E(C_{4})$

4 Covering by monochromatic subgraphs and related topics

So far, much work has been done on covering problems in edge-colored complete graphs. Those come
from a variety of background, but mostly the purpose in this topic is to cover the whole vertex set of $K_{n}$

by monochromatic connected components. One such example is the following, which is the equivalent
formulation of the Ryser’s conjecture on multi-partite hypergraphs [22, 27]:

Conjecture 8 In every r-edge-coloring of a complete graph, the vertex set can be covered by the vertices
of at most $r-1$ monochromatic connected components.

This conjecture is open for $r\geq 6$ . It is trivially true for $r=2$ , the cases $r=3$ , 4 are solved in [18]
and in [5], and for the case $r=5$ , see [5, 28].

Gy\’arf\’as and Lehel discovered a bipartite version of this conjecture.

Conjecture 9 In every r-edge-coloring of a complete bipartite graph, the vertex set can be covered by
the vertices of at most $2r-2$ monochromatic connected components.

It is easy to check that any r-edge-coloring of a complete bipartite graph contains at most $2r-1$
monochromatic connected components covering the whole vertex set. Indeed, let $u$ and $v$ be two vertices
in opposite classes of $K_{m,n}$ , and take the monochromatic double star with centers $u$ and $v$ , along with
the remaining monochromatic stars centered at $u$ and $v$ (there are at most $2r-2$ such stars). On the
other hand, it is shown in [4] that there is an r-edge-coloring of a complete bipartite graph where we
need at least $2r-2$ monochromatic connected components to cover the vertex set.

The recent progress on this conjecture is the following:

Theorem 10 ([4]) Conjecture 9 is true for $r\leq 5.$

We now give a quick review concerning the existence of large monochromatic trees in edge-colored
graphs with given independence number. In [19], Gy\’arf\’as and S\’ark\"ozy investigated the size of monochro-
matic trees in edge-colored graphs.

Theorem 11 ([19]) Any 2-edge-colored graph $G\omega$ntains a monochromatic tree $T$ of order at least
$|V(G)|/\alpha(G)$ .

Theorem 12 ([19]) Any $G$ -colored graph $G$ contains a monochromatic tree $T$ of order at least $|V(G)|/(\alpha(G)^{2}+$

$\alpha(G)-1)$ .

The bound on $T$ in Theorem 11 is sharp. To see this, consider $\alpha(G)$ disjoint monchromatic complete
graphs of equal order. We do not know about the best possiblity on the order of $T$ in Theorem 12.

Recently, Theorem 11 was extended to a result on partitioning $V(G)$ by monochromatic connected
subgraphs.
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Theorem 13 ([8]) Any 2 edge-colored graph $G$ can be partitioned into at most $\alpha(G)$ monochromatic
connected parts.

Now we consider another different covering problem concerning highly connected monochromatic
subgraphs in edge-colored complete graphs. Returning to the case $r=2$ in Conjecture 8, we see that any
2-coloring of $K_{n}$ is covered by a monochromatic connected subgraph. However, when we try to find such
a subgraph with higher connectivity, we can not hope to find such a spanning subgraph. In order to see
this, consider the following example:

Let $G_{n}=H_{1}\cup\cdots\cup H_{6}$ where $H_{i}$ is a red complete graph $K_{k-1}$ for $i\leq 4$ and $H_{5}$ is a red $K_{n}-4(k-1)$

where $n>4(k-1)$ . To this structure, we add all possible red edges between $H_{5},$ $H_{1}$ and $H_{2}$ and from
$H_{1}$ to $H_{3}$ and from $H_{2}$ to $H_{4}$ . All edges not already colored in red are colored in blue. In either color,

there is no $k$-connected subgraph of order larger than $n-2(k-1)$ . Since a spanning monochromatic
subgraph is more than we could hope for, we consider finding a highly connected subgraph that is as
large as possible. Along this line, Bollob\’as and Gy\’arf\’as [1] proposed the following conjecture.

Conjecture 14 $Forn>4(k-1)$ , every 2-coloring of $K_{n}$ contains a monochromatic $k$ -connected subgraph
with at least $n-2(k-1)$ vertices.

In order to see that the bound on $n$ is the best possible, consider the example $G_{n}$ above with $n=$

$4(k-1)$ $(so H_{5}=\emptyset)$ . In [1], the authors showed that this conjecture is true for $k\leq 2.$

The recent progress concerning Conjecture 14 is the following:

Theorem 15 ([14]) If $n>6.5(k-1)$ then any 2-edge coloring of $K_{n}$ contains a monochromatic k-
connected subgraph of order at least $n-2(k-1)$ .

By the example $G_{n}$ , we must give up finding a monochromatic $k$-connected subgraph covering the
vertex set of a 2 edge colored $K_{n}$ . But how about covering “almost all the vertices by a monochromatic
$k$-connected subgraph? If $n$ is extremely large compared with $k$ , one can say from Theorem 15 that
any 2 edge coloring of $K_{n}$ contains a monochromatic $k$-connected subgraph which covers “almost” all
of the vertices. Can we have a similar statement for any r-edge-coloring of $K_{n}$ with $r\geq 3$? This is
not true in general. If we consider an r-edge-coloring of $K_{n}$ and try to find the largest monochromatic
$k$-connected subgraph of $K_{n}$ , it was shown in [23] that the best result one could possibly hope for would
be a monochromatic $k$-connected subgraph of order approximately $\frac{n}{r-1}$ . Thus, in order to find larger
monochromatic $k$-connected subgraphs, it becomes necessary to assume additional restrictions on the
coloring.

Finding a monochromatic $k$-connected subgraph covering almost all of the vertices corresponds to
finding one color class inducing an “almost” $k$-connected graph. In contrast to the concept $DP$ in the
previous section, one very natural restriction would be to forbid the existence of a rainbow subgraph.

Thus, we have the following question:

Problem 16 Let $n,$ $r,$
$k$ be positive integers with $n\gg r\gg k$ . For what connected graphs $G$ does the fol-

lowing statement hold9 In any rainbow $G$ -free coloring of $K_{n}$ using at $lea\mathcal{S}tr$ colors, there is a monochro-
matic $k$ -connected subgraph of order at least $n-f(G, r, k)$ for some function $f$ not depending on $n.$

The following result gives an answer toward this question:

Theorem 17 ([15]) The set of graphs $G$ such that $G$ satisfies Question 16 is precisely $K_{3},$ $P_{4}^{+}$ and $P_{6}$

and their subgraphs.
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