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Abstract

In the paper we study the second order neutral delay half-linear differential equation

$[r(t)\Phi(z’(t))]’+q(t)\Phi(x(\sigma(t)))=0,$

where $\Phi(t)=|t|^{p-2}t,$ $p\geq 2$ and $z.(t)=x(t)+b(t)x(\tau(t))$ . We summarize three different methods
available to derive oscillation criteria for this equation and compare them on the particular ex-
ample of Euler type equation and proportional delay. We show that for this particular equation
the comparison method produces better results if the delay is significant, whereas Riccati equa-
tion method produces sharper results if the delay argument is close to the classical argument.
We also point out some recent development in this area.
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1 Introduction

Consider the second order half-linear neutral differential equation

$[r(t)\Phi(z’(t))]’+c(t)\Phi(x(\sigma(t)))=0, z(t)=x(t)+b(t)x(\tau(t))$ , (1)

where $\Phi(t)=|t|^{p-2}t$ is the power type nonlinearity and $p\geq 2$ , which ensures that the function $\Phi$

is a convex function on $(0, \infty)$ .

Under the solution of (1) we understand any differentiable function $x(t)$ which does not identi-
cally equal zero $eventually_{\rangle}$ such that $r(t)\Phi(z’(t))$ is differentiable and (1) holds for large $t.$

The solution of equation (1) is said to be oscillatory if it has infinitely many zeros tending to
infinity. Equation (1) is said to be oscillatory if all its solutions are oscillatory. In the opposite $case_{\}}$

i.e., if there exists an eventually positive solution of (1), equation (1) is said to be nonoscillatory.
There are many oscillation criteria for equation (1) obtained by an application of essentially one

of three main methods:
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(i) using comparison with a half-linear second order equation based on apriori bound for the
quotient $x(t)/z(t)$ (see e.g. [2,8,18

(ii) using the comparison method (comparison with linear first order delay differential equation,
see e.g. [4-7, 9, 11, 13, 15]) and

(iii) using the Riccati type substitution (see e.g. [10,14,17

The underlying principle of all methods is to replace the equation (1) by a simpler object. The
special focus is usually devoted to the second term, since the most disturbing thing in equation (1)
is the presence of both $z(t)$ and $x(t)$ in one equation and it is easier to eliminate $x$ than $z.$

It is typical that all new criteria published in the literature are compared against the criteria
obtained by the same method. The aim of this paper is to collect available methods which can be
used to derive oscillation criteria for equation (1) and compare them together. On a test of Euler
type equation we will show that one of the methods produces sharper results for small delays and
another one for large delays. We will also modify the currently used approach in (i) and derive a
result which is based on the comparison with second order delay differential equation rather than
second order ordinary differential equation.

We will use the following assumptions on the coefficients and parameters. The coefficients $r$

and $b$ are subject of usual conditions $r\in C^{1}([t_{0}, \infty), \mathbb{R}^{+})$ , $b\in C^{1}([t_{0}, \infty), \mathbb{R}_{0}^{+})$ and the coefficient
$c$ is positive $c\in C([t_{0}, \infty), \mathbb{R}^{+})$ . Further we suppose that the deviating arguments are unbounded,
increasing and sufficiently smooth functions which satisfy the commutative law: $\tau\in C^{2}([t_{0}, \infty), \mathbb{R})$ ,
$\tau’(t)>0,$ $\lim_{tarrow\infty}\tau(t)=\infty,$ $\sigma\in C^{1}([t_{0}, \infty), \mathbb{R})$ , $\sigma’(t)>0,$ $\lim_{tarrow\infty}\sigma(t)=\infty$ and $\sigma(\tau(t))=\tau(\sigma(t))$

(for the weaker assumption $\sigma(\tau(t))\geq\tau(\sigma(t))$ see [10]). Depending on the method which will be
used to handle the problem, we will use some additional conditions, such as $b(t)\leq b_{0}$ or $b(t)<1.$

For simplicity we will also suppose that both $\sigma$ and $\tau$ are delays and that the retardation in the
differential term is smaller than the retardation in the second term, i.e. we will suppose $\sigma(t)\leq$

$\tau(t)\leq t.$

In the paper the number $q=\overline{p}\overline{1}\underline{\not\simeq}$ is the conjugate number to the number $p$ . Given a positive
parameter $\varphi$ further define the function $Q$ as minimum of $c(t)$ and $\varphi c(\tau(t))$

$Q(t; \varphi)=\min\{c.(t), \varphi c(\tau(t))\}$ (2)

Finally, we will use the assumption

$\int^{\infty}r^{1-q}(t)dt=\infty$ (3)

which (together with nonnegativity of $c(t)$ ) ensures that all eventually positive solutions satisfy
$z’(t)>0$ eventually, see Lemma 1 below. Thus there is only one family of solutions which has
to be eliminated in order to ensure oscillation. Note that the opposite case to (3) is also handled
frequently in the literature and since in that case we have to eliminate two types of solutions (with
$z’(t)>0$ and $z’(t)<0$ eventually), the resulting oscillation criteria consist of two (similar but
relatively independent) conditions–each condition eliminates one of the families.

2 Monotonocity lemma

The following lemma ensures that the eventually positive solutions satisfy $z’(t)>0$ for large $t$ . The
proof utilizes the condition (3) and can be found in many papers dealing with oscillation criteria
for (1), see e.g. the first part of the proof of [10, Theorem 1].
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Lemma 1. If $x(t)$ is an eventually nonoscillatory solution of (1), then the corresponding function
$z(t)=x(t)+b(t)x(\tau(t))$ satisfies

$z(t)>0, z’(t)>0, (r(t)\Phi(z’(t)))’<0$

eventually.

3 Method of apriori bound

The first idea how to remove the simultaneous presence of both $x(t)$ and $z(t)$ in (1) is to replace
$x(\sigma(t))$ by a lower bound in term of $z(\sigma(t))$ .

If $x(t)$ is eventually nonegative, then $x(\tau(t))$ is also eventually nonegative and since $z(t)$ is
increasing and clearly $z(t)\geq x(t)$ , we have

$z(t)=x(t)+b(t)x(\tau(t))\leq x(t)+b(t)z(\tau(t))\leq x(t)+b(t)z(t)$ .

Thus if $b(t)<1$ , the resulting inequality can be utilized to obtain the apriori bound for the quotient
$x(t)/z(t)$

$0<1-b(t) \leq\frac{x(t)}{z(t)}$ . (4)

This approach is summarized in the following lemma. The special case $\eta(t)=a(t)$ has been used in
most papers dealing with the method of apriori bound. The idea to replace $\sigma$ by a smaller function
$\eta$ (and thus increase the delay $t-\sigma(t)$ ) is new but very simple and allows to improve results obtained
by an application of a the so-called Myshkis-type criterion from Theorem 1 below.

Lemma 2. Let $\eta(t)$ be continuous function such that $\eta(t)\leq\sigma(t)$ and $\lim_{tarrow\infty}\eta(t)=\infty$ . Suppose
that

$b(t)<1$ (5)

holds eventually and suppose that the inequality

$[r(t)\Phi(z’(t))]’+c(t)(1-b(\sigma(t)))^{p-1}\Phi(z(\eta(t)))\leq 0$ (6)

does not have an eventually positive solution. Then (1) is oscillatory.

Proof. It is sufficient to show that if $x(t)$ is an eventually positive solution of (1), then the corre-
sponding function $z(t)$ satisfies (6) eventually. If $\eta\equiv\sigma$ , then (6) follows immediately from (1) and
inequality (4). The fact that $\sigma(t)$ can be replaced by $\eta(t)\leq\sigma(t)$ follows from the monotonicity of
the function $z(t)$ , see Lemma 1. $\square$

Inequality (6) is the second order delay differential inequality which does not contain delay in
the differential term and is not neutral anymore. If $p=2$ , then this inequality is handled by the
following theorem of Koplatadze.

Theorem 1 ([12, Theorem 2]). Let

$\lim_{tarrow}\inf_{\infty}\int_{\eta(t)}^{t}\eta(s)c(s)ds>\frac{1}{e}.$
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Then the inequality
$x”(t)$ sgn $x(\eta(t))+c(t)|x(\eta(t))|\leq 0$

is oscillatory.

Note that the constant $\frac{1}{e}$ is optimal and cannot be improved in general, but in some particular
cases a refinement of Koplatadze’s results is possible, see [16]. As a consequence of Theorem 1,
equation

$x”(t)+ \frac{\beta}{t^{2}}x(\lambda t)=0$

is oscillatory if

$\beta>\frac{l}{e\lambda\ln\frac{1}{\lambda}}$ (7)

holds. You may see that the right hand side of this inequality becomes unbounded if $\lambda$ approaches
1. This undesired effect can be eliminated by suitable choice of the function $\eta$ from Lemma 2, see
(24) below.

Theorem 1 cannot be applied in the general case $p\geq 2$ . In this case it is possible to use another
apriory bound

$k \frac{\sigma(t)}{t}\leq\frac{z(\sigma(t))}{z(t)}$ for arbitrary $k\in(0,1)$ and large $t$ (8)

or
$\frac{\sigma(t)}{t}\leq\frac{z(\sigma(t))}{z(t)}$ for large $t$ (9)

which holds if

$\int^{\infty}c(s)(1-b(\sigma(s)))^{\rho-1}(\sigma(s))^{p-1}ds=\infty$ , (10)

see [8, Theorem 13] for details.
Thus (6) does not have an eventually positive solution if the corresponding equation is oscillatory

which is true if either

$[r(t) \Phi(z’(t))]’+kc(t)(1-b(\sigma(t)))^{p-1}(\frac{\sigma(t)}{t})^{p-1}\Phi(z(t))=0$ (11)

is oscillatory for some $k\in(O, 1)$ , or if (10) holds and

$[r(t) \Phi(z’(t))]’+c(t)(1-b(\sigma(t)))^{p-1}(\frac{\sigma(t)}{t})^{p-1}\Phi(z(t))=0$ (12)

is oscillatory.
Various oscillation criteria for half-linear ordinary differential equations (12) and (11) are in

details discussed in the book [3] which covers main directions in oscillation theory of the half-linear
differential equations.

4



4 Comparison method

The main idea of the comparison method is to compare equation (1) with certain first order delay
differential inequality. Consider the original equation (1) and the same equation shifted from $t$

to $\tau(t)$ . This gives in the second term expressions involving $x(\sigma(t))$ and $x(\sigma(\tau(t)))$ which can be
combined into $z(\sigma(t))$ . This allows to eliminate $x(t)$ in equation (1) and introduce $z(t)$ instead.
More precisely, we consider the equation (1) and the equation

$\frac{1}{\tau’(t)}[r(\tau(t))\Phi(z’(\tau(t)))]’+c(\tau(t))\Phi(x(\sigma(\tau(t))))=0$ (13)

which arises from (1) by shifting from $t$ to $\tau(t)$ . Then we take a suitable linear combination of both
equations and use a series of estimates which allow to compare the resulting equation with certain
first order linear differential inequality. Note that the main steps to accomplish the desired result
are inequality

$c(t)x^{p-1}( \sigma(t))+c(\tau(t))b_{0}^{p-1}x^{p-1}(\sigma(\tau(t)))\geq\min\{c(t)$ , $c(\tau(t))\}(x^{p-1}(\sigma(t))+b_{0}^{p-1}x^{p-1}(\sigma(\tau(t))))$

(14)
followed by the assumption on commutativity between $\tau$ and $\sigma$ and by inequality

$x^{p-1}(\sigma(t))+b_{0}^{p-1}x^{p-1}(\tau(\sigma(t)))\geq 2^{p-2}(x(\sigma(t))+b_{0}x(\tau(\sigma(t)))^{p-1}\geq 2^{p-2}z^{p-1}(\sigma(t))$ , (15)

where $b_{0}$ is a constant upper bound of the function $b(t)$ .
A closer examination of the published results shows, that these inequalities are in some sense

weak points of the comparison method and posses some improvement. See [10] for detailed discussion
and also for more general version of these inequalities and see also [8] for application of these ideas
to the equation (1) and the comparison method. One of the main results of [8] states the following.

Theorem 2 $($ [8, Corollary (9), statement (ii)] $)$ . Suppose that there exists a number $b_{0}$ such that
$b(t)\leq b0$ . Equation (1) is oscillatory if there exists a number $\varphi>0$ and a function $\eta(t)$ satisfying
$\eta(t)\leq\sigma(t)$ and $\lim_{tarrow\infty}\eta(t)=\infty$ such that $\eta(t)<\tau(t)\leq t$ and for every $T$ there exists $t_{1}$ such that

$\lim inftarrow\infty\int_{\tau^{-1}(\eta(t))}^{t}Q_{\eta}^{*}(s;\varphi, t_{1})ds>\frac{1}{e}(1+(\frac{\varphi}{\tau_{0}})^{q-1}b_{0})^{p-1}$ (16)

where

$Q_{\eta}^{*}(t; \varphi, t_{1}):=Q(t;\varphi)[\int_{t_{1}}^{\eta(t)}r^{1-q}(s)ds]^{p-1}$

Observe the presence of the function $\eta(t)$ in Theorem 2. An absolute majority of the recent
papers does not consider function like $\eta$ in the comparison method and deal just with the special
case $\eta(t)=\sigma(t)$ . However, the influence of $\eta(t)$ to the value of the limes inferior on the left hand
side of the inequality (16) is ambivalent: bigger $\eta$ gives bigger $Q^{*}$ and thus has a positive influence
on the condition (16), but bigger $\eta$ also makes the interval of integration in (16) shorter and this
has a negative influence on the condition (16). As a consequence, some of the oscillation criteria
obtained by comparison method which produce poor results if $\sigma(t)$ is close to $t$ or $\tau(t)$ can be
improved by a suitable choice of $\eta(t)<\sigma(t)$ , see the examples with some discussion in [10, Example
2 and Figure 1], [9, Example 10 and Figure 2]. As far as the author knows, the only papers dealing
with comparison method which consider the $\eta$-like function are [8, 15].
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5 Riccati equation method

The Riccati equation method is based on the Riccati type substitution

$\omega(t)=\rho(t)\frac{r(t)(z’(t))^{p-1}}{z^{p-1}(\sigma(t))}$ . (17)

which implies

$\omega’(t)=\rho’(t)\frac{r(t)(z’(t))^{p-1}}{z^{p-1}(\sigma(t))}+\rho(t)\frac{(r(t)(z’(t))^{p-1})’}{z^{p-1}(\sigma(t))}-(p-1)\rho(t)\frac{r(t)(z’(t)(\sigma(t))\sigma’(t)}{))}.$

From $\sigma(t)\leq t$ and from the monotonicity of $r(t)\Phi(z’(t))$ we have

$z’( \sigma(t))\geq(\frac{r(t)}{r(\sigma(t))})^{q-1}z’(t)$

and combining these computations with (1) we get

$\omega’(t)-\frac{\rho’(t)}{\rho(t)}\omega(t)+\frac{(p-1)\sigma’(t)}{\rho^{q-1}(t)r^{q-1}(\sigma(t))}\omega^{q}(t)\leq-\rho(t)\frac{c(t)x^{p-1}(\sigma(t))}{z^{p-1}(\sigma(t))}$ . (18)

Note that to perform these steps it is necessary to suppose differentiability of $\sigma(t)$ and $\sigma(t)\leq t.$

Together with this computation we derive a variant of the last inequality which contains $x^{p-1}(\tau(\sigma(t)))$

instead of $x^{p-1}(\sigma(t))$ . Then we will be able to use the same inequalities as in the comparison method
to combine $x(\sigma(t))$ and $x(\tau(\sigma(t)))$ into $z(\sigma(t))$ . To accomplish this task we define

$v(t)= \rho(t)\frac{r(\tau(t))(z’(\tau(t)))^{p-1}}{z^{p-1}(\sigma(t))}$ , (19)

use the obvious fact $v(t)>0$ and differentiate

$v’(t)= \rho’(t)\frac{r(\tau(t))(z’(\tau(t)))^{p-1}}{z^{p-1}(\sigma(t))}+\rho(t)\frac{(r(\tau(t))(z’(\tau(t)))^{p-1})’}{z^{p-1}(\sigma(t))}-(p-1)\rho(t)\frac{r(\tau(t))(z’(\tau(t)))^{p-1}z’(\sigma(t))\sigma’(t)}{z^{p}(\sigma(t))}.$

Using the monotonicity of $r(t)\Phi(z’(t))$ and $\sigma(t)\leq\tau(t)$ we have

$z’( \sigma(t))\geq(\frac{r(\tau(t))}{r(\sigma(t))})^{q-1}z’(\tau(t))$

and hence from the above computations and from (13) we get

$v’(t)- \frac{\rho’(t)}{\rho(t)}v(t)+\frac{(p-1)\sigma’(t)}{\rho^{q-1}(t)r^{q-1}(\sigma(t))}v^{q}(t)\leq-\rho(t)\frac{\tau’(t)c(\tau(t))x^{p-1}(\sigma(\tau(t)))}{z^{p-1}(\sigma(t))}$ . (20)

Note that these steps require $\sigma(t)\leq\tau(t)$ and differentiability of both $\tau(t)$ and $\sigma(t)$ .
Let $l>1$ and $l^{*}=l/(l-1)>1$ be mutually conjugate numbers. Using linear combination of

(18), (20) with coeffcients $l^{p-2},$ $(l^{*})^{p-2}$ and using essentially the same estimates as in the comparison

method we can obtain inequality

$l^{p-2} \omega’(t)+(l^{*})^{p-2}\frac{[b(\sigma(t))]^{p-1}\varphi}{\tau(t)}v’(t)-l^{p-2}[\frac{\rho’(t)}{\rho(t)}\omega(t)-\frac{(p-1)\sigma’(t)}{\rho^{q-1}(t)r^{q-1}(\sigma(t))}\omega^{q}(t)]$

$-(l^{*})^{p-2} \frac{[b(\sigma(t))]^{p-1}\varphi}{\tau(t)}[\frac{\rho’(t)}{\rho(t)}v(t)-\frac{(p-1)\sigma’(t)}{\rho^{q-1}(t)r^{q-1}(\sigma(t))}v^{q}(t)]\leq-\rho(t)Q(t)$
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which can be studied using just slight modifications of classical methods. You can see [10, Theorem
1] for details.

From the technical point of view, the problem is much simpler if we have a constant upper
bound for the expressions $b(t)$ and $\frac{1}{\tau(t)}$ , see [10, Corollary 1]. The following theorem is a variant
of [10, Corollary 1] which is more suitable for comparison with other methods.

Theorem 3. Suppose that (3), $\sigma(t)\leq t$ and $\sigma(t)\leq\tau(t)$ are satisfied and there exist constants
$b_{0}\geq 0$ and $\tau_{0}>0$ such that $b(t)\leq b_{0}<\infty$ and $\tau’(t)\geq\tau_{0}$ . If there exist a positive number $\varphi$ and a
positive function $\rho(t)$ such that

$\lim tarrow\infty\sup\int_{t_{0}}^{t}\rho(s)Q(s)-\frac{1}{p^{p}}\frac{\rho(s)r(\sigma(s))}{(\sigma(s))^{p-1}}(1+\frac{b_{0}\varphi^{q-1}}{\tau_{0}^{q-1}})^{p-1}(\frac{\rho’(s)}{\rho(s)})_{+}^{p}ds=\infty$ , (21)

then (1) is oscillatory.

Proof. Follows from [10, Corollary 1], Really, taking constant function $\varphi(t)$ in the condition (20)
of [10, Corollary 1] we get

$\lim tarrow\infty\sup\int_{t_{0}}^{t}\rho(s)Q(s)-\frac{1}{p^{p}}\frac{\rho(s)r(\sigma(s))}{(\sigma(s))^{p-1}}[l^{p-2}+(l^{*})^{p-2}\frac{b_{0}^{p-1}\varphi}{\tau_{0}}](\frac{\rho’(s)}{\rho(s)})_{+}^{p}ds=\infty$ , (22)

$($where $l, l^{*} are$ mutually conjugate numbers) as a sufficient condition for oscillation of (1). Taking
$l=1+ \frac{b_{0}\varphi^{q-1}}{\tau_{0}^{q-1}}$ and $l^{*}= \frac{l}{l-1}=1+\frac{\tau_{0}^{q-1}}{b_{0}\varphi^{q-1}}$ (which gives a minimum for the function inside brackets

with respect to $l$ variable, see [8, Lemma 1]) we see that (22) takes the form (21). $\square$

6 Comparison across available methods for Euler type equation

Let us test the strength of the above introduced methods on an example of Euler type equation.
This equation is suitable for testing oscillation criteria, since it is conditionally oscillatory. As a
well known particular case,

$x”+ \frac{\gamma}{t^{2}}x=0$

is oscillatory if and only if $\gamma>\frac{1}{4}.$

Now let us consider the half-linear extension of Euler equation with proportional delay and with
neutral term also with proportional delay, i.e, we consider equation in the form

$( \Phi(z’(t)))’+\frac{\beta}{t^{p}}\Phi(x(\lambda_{2}t))=0$ (23)

where
$z(t)=x(t)+b_{0}x(\lambda_{1}t)$ ,

and $\lambda_{2}<\lambda_{1}<1$ . Hence $\sigma(t)=\lambda_{2}t,$ $\sigma’(t)=\lambda_{2},$ $\tau(t)=\lambda_{1}t,$ $\tau’(t)=\lambda_{1},$ $\tau_{0}=\lambda_{1},$ $c(t)=p_{p}t,$

$c(\tau(t))=\not\leq_{\lambda_{1}\overline{t^{p}}}$ . We choose the parameter $\varphi$ such that $c(\tau)=\varphi c(\tau(t))$ and thus we loose nothing

when taking minimum in (2). Consequently, $\varphi=\lambda_{1}^{p}$ and $Q(t;\varphi)=4_{p}t.$
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Method 1: Apriori bound. Using method of apriori bound we compare the equation with second
order ordinary differential equation. As a result of this comparison, equation (23) is oscillatory if

$[ \Phi(z’(t))]’+k\frac{\beta}{t^{p}}(1-b_{0})^{p-1}\lambda_{2}^{p-1}\Phi(z(t))=0$

is oscillatory for some $k\in(0,1)$ , which is true if

$\beta>(\frac{p-1}{p})^{p}\frac{1}{\lambda_{2}^{p-1}(1-b_{0})^{p-1}}.$

Methodlb: Apriori bound in the linear case. If $p=2$ and the equation is linear, we can also
utilize Lemma 2 and Theorem 1. Thus

$z”(t)+ \frac{\beta}{t^{2}}x(\lambda_{2}t)=0$

is oscillatory if

$z”(t)+ \frac{\beta}{t^{2}}(1-b_{0})z(\lambda t)=0$ for some $\lambda\leq\lambda_{2}$

is oscillatory which is guaranteed (see (7)) by the condition

$\beta>\min_{\lambda\in(0,\lambda_{2}]}\frac{1}{(1-b_{0})e\lambda\ln\frac{1}{\lambda}}$ . (24)

Method 2: Riccati method. Equation (23) has been examined in [10, Example 1] and it turns
out that (1) is oscillatory if

$\beta>(\frac{p-1}{p})^{p}\frac{(1+b_{0}\lambda_{1})^{p-1}}{\lambda_{2}^{p-1}}$ . (25)

This result has been obtained using Riccati equation method from Theorem 3 with the choice
$\rho(t)=t^{p-1}$ . Note that this example shows, that an improvement of the classical approach based on
(14) and (15) has to be revisited, if we wish to obtain the sharp oscillation constant in the limiting

case when the delays shrink to zero and equation (1) becomes second order ordinary differential
equation. Note also that the fact that (25) sharp in some sense can be verified by the fact$\cdot$ that if
we formally put $\lambda_{1}=\lambda_{2}=1$ and $b_{0}=0$ in (25), the condition (25) gives

$\beta>(\frac{p-1}{p})^{p}$

which is known to be sharp and nonimprovable oscillation condition for (23) if $\lambda_{1}\cdot=\lambda_{2}=1$ and
$b_{0}=0.$

Method 3: Comparison method (comparison with first order equation). Let us investigate equa-
tion (23) from the point of view of the comparison method, i.e. we will use Theorem 2. The choice
$\eta(t)=\lambda t,$ $\lambda\leq\lambda_{2}$ and direct computation shows

$Q^{*}(t; \varphi, t_{1})=\frac{\beta}{t^{p}}[\lambda t-t_{1}]^{p-1}$

and

$\int_{\tau^{-1}\eta(t)}^{r_{t}}Q^{*}(t;\varphi, t_{1})dt=\int_{\frac{\lambda}{\lambda_{1}}t}^{t}\frac{\beta}{t}[\lambda-\frac{t_{1}}{t}]^{p-1}dt>\beta\lambda^{p-1}$ In $\frac{\lambda_{1}}{\lambda}.$
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Thus the comparison method gives the result that equation (1) is oscillatory if

$\beta>\frac{1}{e}(1+b_{0}\lambda_{1})^{p-1}\min_{\lambda\in(0,\lambda_{2}]}\frac{1}{\lambda^{p-1}}\frac{1}{\ln_{\lambda}^{\lambda}\lrcorner}.$

Existence of nonoscallatory solution. Motivated by the classical ordinary differential equation
we may test the conditions under which equation (23) has a nonoscillatory solution $x(t)=t^{\alpha}$ for
some $\alpha$ . Direct substitution into (23) reveals, that (23) has a nonoscillatory solution if a satisfies

$\alpha^{p-1}(\alpha-1)(p-1)+\beta\Phi(\frac{\lambda_{2}^{\alpha}}{1+b_{0}\lambda_{1}^{\alpha}})=0.$

Given $p,$ $\lambda_{1},$ $\lambda_{2}$ and $b_{0}$ we may look for maximal value of $\beta$ for which this equation is satisfied for
some $\alpha\in \mathbb{R}$ . Thus (23) is not oscillatory if

$\beta\leq\max_{\alpha\in(0,1)}\alpha^{p-1}(1-\alpha)(p-1)\Phi(\frac{1+b_{0}\lambda_{1}^{\alpha}}{\lambda_{2}^{\alpha}})$ .

On the following graphs we illustrate these bounds as functions of $\lambda_{2}$ . In order to allow both
variants of method of apriori bound, we will consider the linear case $p=2$ . Thus Methods 1
and lb reffer to the method of apriory bound with comparison to second order ordinary and delay
differential equation, respectively. Further Methods 2 and 3 reffer to the method of Riccati equation
and comparison method. The dotted curve which branches off the curve for Method 3 denotes the
result of comparison method without considering the case $\eta\neq\sigma$ in Theorem 2, i.e. without the
$\min$ operator in (24), which is often considered in the literature.

Observe, that if $b_{0}$ is small, then estimate based on Method 1 is reasonably good, but becomes
worse as $b_{0}$ increases. Note also that we obtain better results from Riccati method if $\lambda_{2}$ is large.
On the contrary, if $\lambda_{2}$ is small, better bound for the oscillation constant $\beta$ can be obtained from the
comparison method. Note also that the curves for Methods lb and 3 end up with constant parts,
the other curves are decreasing.

The following three pictures demonstrate the fact that no method beats the other ones and that
the mutual relationship of the obtained curves is rich. However these pictures (as well as exploring
more similar portaits) give the general impression that

$\circ$ apriory method (Methods 1 and lb) wastes of $b_{0}$ is not small enough,

$\bullet$ for large delay (large difference $t-\sigma(t)$ , i.e. $\sigma(t)\ll t$ ) it is more convenient to use the methods
based on Myshkis-type oscillation criteria for delay differential equations, i.e. Method lb (if
$b_{0}$ is small) and Method 3

$\bullet$ for small delay (small difference $t-a(t)$ ) it is more convenient to use the methods based on
oscillation criteria for ordinary differential equations, i.e. Method 1 (if $b_{0}$ is small) and Method
2.
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Figure 1: $b_{0}=0.1,$ $\lambda_{1}=0.75,$ $p=2$ , Method 1 almost coincides with Method 2,

Figure 2: $b_{0}=0.6,$ $\lambda_{1}=0.75,$ $p=2$

10



o.oo 0. $05$ 0. $10$ 0.15 0.20
$\lambda_{2}$

0.25 0.30 0.35

Figure 3: $b_{0}=0.6,$ $\lambda_{1}=0.4,$ $p=2$

11



References

[1] R. P. Agarwal, M. Bohner, T. Li, Ch Zhang, Oscillation of second-order Emden-Fowler neutral
delay differential equations, Ann. Mat. Pura Appl. (2014) 193, 1861-1875.

[2$|$ J. G. Dong, Oscillation behavior of second order nonlinear neutral differential equations with
deviating arguments, Comp. Math. Appl. 59 (2010), 3710-3717.

[3] O. Do\v{s}l\’y, P. \v{R}eh\’ak, Half-Linear Differential Equations. North-Holland Mathematics Studies
202, Elsevier, 2005.

[4] B. Bacul\’ikov\’a, J. D\v{z}urina, Oscillation theorems for second-order neutral differential equations,
Comp. Math. Appl. 61 (2011), 94-99.

[5] B. Bacul\’ikov\’a, J. D\v{z}urina, Oscillation theorems for second-order nonlinear neutral differential
equations, Comp. Math. Appl. 62 (2011), 4472-4478.

[6] B. Bacul\’ikov\’a, T. Li, J. D\v{z}urina, Oscillation theorems for second order neutral differential
equations, E. J. Qualitative Theory of Diff. Equ., No. 74 (2011), 1-13.

$[7|$ B. Bacul\’ikov\’a, T. Li, J. D\v{z}urina, Oscillation theorems for second-order superlinear neutral
differential equations, Math. Slovaca 63 No. 1 (2013), 123-134.

[8] S. Fi\v{s}narov\’a, R. Ma\v{r}\’ik, Oscillation of half-linear differential equations with delay, Abstr. Appl.
Anal. (2013), Article ID 583147, 1-6.

$[9|$ S. Fi\v{s}narov\’a, R. Ma\v{r}\’ik, On eventually positive solutions of quasilinear second order neutral
differential equations, Abstr. Appl. Anal. 2014 (2014), Article ID 818732, 1-11.

[10] S. Fi\v{s}narov\’a, R. Ma\v{r}\’ik, Oscillation criteria for neutral second-order half-linear differential
equations with applications to Euler type equations, Bound. Value Probl. 2014:83 (2014), 1-
14.

[11] Z. Han, T. Li, S. Sun, W. Chen, Oscillation criteria for second-order nonlinear neutral delay
differential equations, Adv. Difference Equ. (2010), Article ID 763278, 1-23.

[12] R. G. Koplatadze, Criteria for the oscillation of solutions of differential inequalities and second-
order equations with retarded argument, (Russian) Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy
17 (1986), 104-121.

[13] T. Li, Comparison theorems for second-order neutral differential equations of mixed $type_{\}}$

Electron. J. Diff. Equ., Vol. 2010(2010), No. 167, 1-7.

[14] T. Li, Z. Han, Ch. Zhang, H. Li, Oscillation criteria for second-order superlinear neutral dif-
ferential equations, Abstr. Appl. Anal. (2011), Article ID 367541, 1-17.

[15] T. Li, Y. V. Rogovchenko, Ch. Zhang, Oscillation of second order neutral differential equations,
Funkcial. Ekvac. 56 (2013), 111-120.

[16] Z. Oplu\v{s}til, J. \v{S}remr, On oscillations of solutions to second-order linear delay differential equa-
tions, Georgian Math. J. 20 (2013), No. 1, 65-94.

12



[17] S. Sun, T. Li, Z. Han, H. Li, Oscillation theorems for second order quasilinear neutral functional
differential equations, Abstr. Appl. Anal. (2012), Article ID 819342, 1-17.

[18] M. Hasanbulli, Y. Rogovchenko, Oscillation criteria for second order nonlinear neutral differ-
ential equations, Appl. Math. Comp. 215 (2010), 4392-4399.

Department of Mathematics
Mendel University in Brno
Zem\v{e}d\v{e}lsk\’a 1
61300 Brno
CZECH REPUBLIC
$E$-mail address: marik@mendelu.cz

13


