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1 Introduction

This note is a summary of our works for the slice-ribbon conjecture and Akbulut-Kirby’s
conjecture on knot concordance.

The slice-ribbon conjecture is one of the most important problems in knot theory given
by Fox ([7]). It asks whether any slice knot is a ribbon knot. There are many studies
on this conjecture. On the other hand, until recently, few direct consequences of this
conjecture were known. This situation has been changed by the recent Baker’s work ([3]).
In this note, we explain the consequence of the slice-ribbon conjecture given in [2]. This is
the report of the second author’s talk at the conference “Intelligence of Low-dimensional
Topology”’ held in RIMS in May, 2015. Throughout this note, we work in smooth category.

2 Preliminaries

In this section, we will explain terminologies used in this note.
Let $K_{0}$ and $K_{1}$ be oriented knots in $S^{3}$ . Then, $K_{1}$ is concordant to $K_{0}$ (denoted

$K_{1}\sim K_{0})$ if there exists a properly embedded oriented annulus $A\subset S^{3}\cross[0$ , 1 $]$ such that
$\partial(S^{3}\cross[0,1], A)=(S^{3}, K_{1})u(-S^{3}, -K_{0})$ , where $-S^{3}$ and $-K_{0}$ are the reverses of $S^{3}$ and
$K_{0}$ , respectively. It is well known that the set of concordance classes forms an abelian
group under the group operation induced by connected sum. The group is called the knot
concordance group and denoted by Conc$(S^{3})$ . An oriented knot is slice if its concordance
class is the unit in Conc $(S^{3})$ , that is, the knot is concordant to the unknot.

Let $p:S^{3}\cross[0$ , 1 $]$ $arrow[0$ , 1 $]$ be the natural projection. Let $K_{0}$ and $K_{1}$ be oriented
knots in $S^{3}$ . Then, $K_{1}$ is ribbon concordant to $K_{0}$ (denoted $K_{1}\geq K_{0}$ ) if there exists
a properly embedded oriented annulus $A\subset S^{3}\cross[0$ , 1 $]$ such that $\partial(S^{3}\cross[0,1], A)=$

$(S^{3}, K_{1})u(-S^{3}, -K_{0})$ and the restriction map $p|_{A}:Aarrow[O$ , 1 $]$ is a Morse function without
local maxima ([11]). We call this annulus $A$ a ribbon concordance from $K_{1}$ to $K_{0}$ . An
oriented knot is ribbon if the knot is ribbon concordant to the unknot. Obviously, the
relation $\geq$ is reflexive and transitive. Gordon ([11]) conjectured that it is antisymmetric,
that is, $K_{1}\geq K_{0}$ and $K_{0}\geq K_{1}$ imply $K_{1}=K_{0}$ . In particular, he conjectured the relation

数理解析研究所講究録

第 1960巻 2015年 18-36 18



$\geq is$ a partial ordering on the set of oriented knots in $S^{3}$ . By definitions, it is clear that
ribbon knots are slice. The slice-ribbon conjecture ([7]) asks whether the converse is true.
On ribbon concordance, Gordon proved the following:

Theorem 2.1 ([11, Lemmas 3.1 and 3.4]). Let $K_{0}$ and $K_{1}$ be oriented knots, and $A\subset$

$S^{3}\cross[0$ , 1$]$ be a ribbon concordance from $K_{1}$ to $K_{0}$ . Put $X_{i}$ $:=S^{3}\backslash K_{i}(i=0,1)$ and
$Y:=S^{3}\cross[0, 1]\backslash A$ . Let $\tilde{X}_{i}$ be the infinite cyclic cover of $X_{i}$ , and $\tilde{Y}$ be the infinite cyclic
cover of Y. Then, we obtain the following:

$\bullet$ the homomorphism $\pi_{1}(X_{1})arrow\pi_{1}(Y)$ induced by the inclusion is surjective,

$\bullet$ the homomorphism $\pi_{1}(X_{0})arrow\pi_{1}(Y)$ induced by the inclusion is injective,

$\bullet$ $\dim H_{1}(\tilde{X}_{1};Q)\geq\dim H_{1}(\tilde{Y};Q)\geq\dim H_{1}(\tilde{X}_{0};Q)$ ,

$\bullet$ if $\dim H_{1}(\tilde{X}_{1};Q)=\dim H_{1}(\tilde{X}_{0};Q)$ and $\pi_{1}(\tilde{X}_{1})$ is residually nilpotent, then $K_{1}=K_{0}.$

Here, a group is residually nilpotent if the intersection of all the terms of its lower

central series are trivial group. For example, if $K_{1}$ is fibered knot then $\pi_{1}(\tilde{X}_{1})$ is residually
nilpotent because it is known that the commutator subgroup of the knot group of a fibered
knot is free and free groups are residually nilpotent,

Miyazaki ([15]) introduced the notion of homotopically ribbon concordance. Let $K_{i}$ be
an oriented knot in an integral homology 3-sphere $M_{i}(i=0,1)$ . Then, $K_{1}$ is homotopically
ribbon concordant to $K_{0}$ (denoted $K_{1}\geq’K_{0}$ ) if there exist a compact oriented 4-manifold
$V$ with $H_{*}(V)\cong H_{*}(S^{3}\cross[0,1])$ and a properly embedded oriented annulus $A\subset V$ such
that they satisfy the following:

$\bullet$ $\partial(V, A)=(M_{1}, K_{1})\sqcup(-M_{0}, -K_{0})$ ,

$\bullet$ the homomorphism $\pi_{1}(M_{1}\backslash K_{1})arrow\pi_{1}(V\backslash A)$ induced by the inclusion is surjective,

$\bullet$ the homomorphism $\pi_{1}(M_{0}\backslash K_{0})arrow\pi_{1}(V\backslash A)$ induced by the inclusion is injective.

By Theorem 2.1, $K_{1}\geq K_{0}$ implies $K_{1}\geq’K_{0}$ . Moreover, the third and the forth properties
in Theorem 2.1 hold for homotopically ribbon concordance because to prove Theorem 2.1
we only use homotopical properties of ribbon concordance. An oriented knot in an integral
homology 3-sphere is homotopically ribbon if it is homotopically ribbon concordant to the
unknot in $S^{3}$ . Originally, the definition of homotopically ribbon knots was given by Casson
and Gordon ([4]). On homotopically ribbon concordance, Miyazaki proved the following:

Theorem 2.2 (a corollary of [15, Theorem 5.5]). Let $K_{i}$ be an oriented knot in $S^{3}(i=$

$0$ , 1). Suppose that each $K_{i}$ satisfies either (1) or (2) below:

(1) $K_{i}$ is minimal with respect $to\geq’$ among all fibered knots in integral homology 3-
spheres,

(2) there is no $f(t)\in Z[t]\backslash \{\pm t^{k}\}_{k\geq 0}$ such that $f(t)f(t^{-1})|\triangle_{K_{i}}(t)$ , where $\triangle_{K_{i}}(t)$ is the
Alexander polynomial of $K_{i}.$

Then, if $K_{1}\#\overline{K_{0}}\geq’0$ , we obtain $K_{1}=K_{0}$ , where $0$ is the unknot.
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Corollary 2.3. Let $K_{0}$ and $K_{1}$ be oriented knots in $S^{3}$ with irreducible Alexander poly-
nomials. Then, if $K_{1}\#\overline{K_{0}}\geq 0$ , we obtain $K_{1}=K_{0}.$

Remark 2.4 (cf. [3, the proof of Theorem 3 Baker observed that if $K_{i}\subset S^{3}$ , we may
replace the condition (1) in Theorem 2.2 with the following condition (1)’.

(1)’ $K_{i}$ is minimal with respect $to\geq’$ among all fibered knots in $S^{3}.$

3 Baker’s work on knot concordance

In this section, we mention Baker’s work on knot concordance ([3]).
A fibered knot in a 3-manifold is tight if it is the binding of an open book decomposi-

tion of the 3-manifold which supports a tight contact structure. Hedden gave equivalent
conditions to be tight as follows.

Theorem 3.1 ([12, Proposition 2.1]). Let $K$ be a fibered knot in $S^{3}$ . Then the following
are equivalent:

$\bullet$ $K$ is tight.

$\bullet$ $K$ is strongly quasipositive.

$\bullet$ $c(\xi_{K})=0$ , where $c(\xi_{K})$ is the Ozsv\’ath-Szab\’o contact invariant associated to the
contact structure $\xi_{K}$ coming from the fibered knot $K.$

$\bullet$ $K$ satisfies $g(K)=\tau(K)$ , where $\tau(K)$ is Ozsv\’ath-Szab\’o’s knot concordance invariant
$\tau$ of $K.$

Remark 3.2. It is known that all algebraic knots are fibered and their monodromies are
products ofpositive Dehn twists. Hence, any algebraic knot is tight fibered. Other examples

of tight fibered knots are introduced in [2, Lemma 3.2].

On tight fibered knots, Baker proved the following:

Theorem 3.3 ([3, Lemma 2 Let $K$ be a tight fibered knot in $S^{3}$ . Then, $K$ is minimal
with respect to homotopically ribbon concordance $\geq’$ among fibered knots in $S^{3}.$

Proof. For the sake of completeness, we give the proof. Let $J$ be a fibered knot in $S^{3}$ . Let
$\tilde{X}_{1}$ and $\tilde{X}_{0}$ be the infinite cyclic covers of $S^{3}\backslash K$ and $S^{3}\backslash J$ , respectively. Assume that
$K\geq’J$ . Then, by Theorem 2.1, we obtain

$2g(K)=\dim H_{1}(\tilde{X}_{1}; Q)\geq\dim H_{1}(\tilde{X}_{0}; Q)=2g(J)$ . (1)

By Theorem 3.1 and properties of Ozsv\’ath-Szab\’o’s $\tau$-invariant, we have

$g(J)\geq\tau(J)=\tau(K)=g(K)$ . (2)

Hence, by (1) and (2), we obtain

$\dim H_{1}(\tilde{X}_{1};Q)=\dim H_{1}(\tilde{X}_{0};Q)$ .

Here, by the remark after Theorem 2.1, $\pi_{1}(\tilde{X}_{1})$ is residually nilpotent. By Theorem 2.1,
we have $K=J$. This implies $K$ is minimal with respect to $\geq’$ among all fibered knots in
$S^{3}.$ $\square$
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As a corollary of Baker’s theorem, we obtain the following consequence of the slice-
ribbon conjecture.

Corollary 3.4 (cf. [3, Corollary 4], [2, Lemma 3.1]). Suppose that the slice-ribbon con-
jecture is true. Let $K_{1}$ , . . . , $K_{n}$ be prime, mutually distinct tight fibered knots. Then,
$K_{1}$ , . . . , $K_{n}$ are linearly independent in Conc $(S^{3})$ .

Proof. Suppose that for some $a_{1}$ , . . . , $a_{m}\geq 0$ and $a_{m+1}$ , . . . , $a_{n}\leq 0$ , we have

$a_{1}K_{1}\#\ldots\# a_{n}K_{n} :=a_{1}K_{1}\#\ldots\# a_{m}K_{m}\#\overline{(-a_{m+1})K_{1}\#\ldots\#(-a_{n})K_{n}}\sim 0.$

By the slice-ribbon conjecture, we obtain

$a_{1}K_{1}\#\ldots\# a_{m}K_{m}\#\overline{(-a_{m+1})K_{1}\#\ldots\#(-a_{n})K_{n}}\geq 0.$

It is known that the connected sum of two strongly quasipositive fibered knots is also
strongly quasipositive ([8, 18 By Theorem 3.1, the knots

$a_{1}K_{1}\#\ldots\# a_{m}K_{m}$ and $(-a_{m+1})K_{1}\#\ldots\#(-a_{n})K_{n}$

are tight fibered. By Theorem 2.2 and Remark 2.4, we obtain

$a_{1}K_{1}\#\ldots\# a_{m}K_{m}=(-a_{m+1})K_{1}\#\ldots\#(-a_{n})K_{n}.$

By the prime decomposition theorem, $a_{1}=\cdots=a_{n}=$ O. This implies $K_{1}$ , . . . , $K_{n}$ are
linearly independent in Conc $(S^{3})$ . $\square$

Rudolph gave a question which asks whether the set of algebraic knots are linearly
independent in Conc $(S^{3})$ ([17]). Motivated by Rudolph’s question, Baker conjectured
that if two tight fibered knots are concordant then they are the same. This conjecture is
equivalent to the following:

Conjecture 3.5 (cf. [3, Conjecture 1 Prime tight fibered knots are linearly independent
in Conc $(S^{3})$ .

By Corollary 3.4, if the slice-ribbon conjecture is true, Conjecture 3.5 is also true,

4 Akbulut-Kirby’s conjecture

In this section, we show our main theorem given in [2]. In particular, we prove that if
the slice-ribbon conjecture is true, modified Akbulut-Kirby’s conjecture (Conjecture 4.1)
is false.

Conjecture 4.1 ([13, Problem 1.19]). If $0$ -surgeries on two unoriented knots give the
same 3-manifold, then the knots with relevant orientations are concordant.

Remark 4.2. In the original statement of Akbulut-Kirby’s conjecture is the following: If
$0$ -framed surgeries on two knots give the same 3-manifold, then the knots are concordant.
Livingston ([14]) showed that there exists an oriented knot $K$ such that it is not concor-
dant to its reverse. Hence, we need to modify the claim of the original Akbulut-Kirby’s
conjecture as Conjecture 4.1.
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We consider the following conjecture instead of Conjecture 4.1.

Conjecture 4.3. If $0$ -surgeries on two unoriented knots $K_{0}$ and $K_{1}$ give the same 3-
manifold, then $K_{0}\#\overline{K_{1}}$ is ribbon by giving relevant orientations.

Since $K_{0}\#\overline{K_{1}}$ is slice if and only if $K_{0}$ and $K_{1}$ are concordant, Conjecture 4.3 im-
plies Conjecture 4.1. Moreover, if the slice-ribbon conjecture is true, Conjecture 4.1 and
Conjecture 4.3 are equivalent. By the following theorem, we see that Conjecture 4.3 is
false.

Theorem 4.4 (cf. [2, Theorem 1.6]). Conjecture 4.3 is false.

Proof. Let $K_{0}$ and $K_{1}$ be knots satisfying the following conditions:

$\bullet K_{0}\neq K_{1},$

$\bullet$ $K_{0}$ and $K_{1}$ have the same $0$-surgery,

$\bullet$ $K_{0}$ and $K_{1}$ are fibered, and

$\bullet$ $K_{0}$ and $K_{1}$ have irreducible Alexander polynomials.

For example, the knots depicted in Figure 1 satisfy these conditions. By Corollary 2.3,

$K_{O} K_{1}$
Figure 1: The definitions of $K_{0}$ and $K_{1}$ . Each rectangle labeled 1 implies a full-twist.

$K_{0}\#\overline{K_{1}}$ is not ribbon for any orientations of $K_{0}$ and $K_{1}$ . Hence, the pair $(K_{0}, K_{1})$ is a
counterexample of Conjecture 4.3. $\square$

As a corollary of this result, we obtain the following:

Corollary 4.5 ([2, Theorem 1.6]). If the slice-ribbon conjecture is true, Conjecture 4.1
is false.

Proof. If the slice-ribbon conjecture is true, Conjecture 4.1 and Conjecture 4.3 are equiv-
alent. By Theorem 4.4, Conjecture 4.1 is false. $\square$

Remark 4.6. Recently, Kouichi Yasui ([20]) proved that there are infinitely many coun-
terexamples of Conjecture 4.1.
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5 Construction of counterexamples

In this section, we give a method to find pairs of knots satisfying the conditions in the
proof of Theorem 4.4. First, we recall Osoinach’s annular twisting techniques ([16]).

5.1 Annulus twists and annulus presentations

Let $A\subset S^{3}$ be an embedded annulus and $\partial A=c_{1}\cup c_{2}$ . Note that $A$ may be knotted and
twisted. In Figure 2, we draw an unknotted and twisted annulus. An $n$ -fold annulus twist
along $A$ is to apply $(+1/n)$ -surgery along $c_{1}$ and $(-1/n)$-surgery along $c_{2}$ with respect to
the framing determined by the annulus $A$ . For simplicity, we call a 1-fold annulus twist
along $A$ an annulus twist along $A.$

Remark 5.1. An $n$ -fold annulus twist does not change the ambient 3-manifold $S^{3}$ (see
[16, Theorem 2.1]).

Figure 2: An unknotted annulus $A\subset S^{3}$ with a $+1$ full-twist.

Abe, Jong, Omae and Takeuchi ([1]) introduced the notion of an annulus presentation
of a knot (in their paper it is called “band presentation Here, we extend the definition
of annulus presentations of knots.

Let $A\subset S^{3}$ be an embedded annulus with $\partial A=c_{1}\cup c_{2}$ , which may be knotted and
twisted. Take an embedding of a band $b:I\cross Iarrow S^{3}$ such that

$\bullet$ $b(I\cross I)\cap\partial A=b(\partial I\cross I)$ ,

$\bullet$ $b(I\cross I)\cap Int$ $A$ consists of ribbon singularities, and

$\bullet$ $A\cup b(I\cross I)$ is an immersion of an orientable surface,

where $I=[0$ , 1 $]$ . If a knot $K$ is isotopic to the knot $(\partial A\backslash b(\partial I\cross I))\cup b(I\cross\partial I)$ , then we
say that $K$ admits an annulus presentation $(A, b)$ .

Example 5.2. The knot 63 (with an arbitrary orientation) admits an annulus presentation
$(A, b)$ , see Figure 3.

Let $K$ be a knot admitting an annulus presentation $(A, b)$ . Then, by $A^{n}(K)$ , we denote

the knot obtained from $K$ by $n$-fold annulus twist along $\tilde{A}$ with $\partial\tilde{A}=\tilde{c}_{1}\cup\tilde{c}_{2}$ , where $\tilde{A}\subset A$

is a shrunken annulus. Namely, $A\backslash \tilde{A}$ is a disjoint union of two annuli, each $\tilde{c_{i}}$ is isotopic

to $c_{i}$ in $\overline{A\backslash \tilde{A}}$ for $i=1$ , 2 and $A\backslash (\partial A\cup\tilde{A})$ does not intersect $b(I\cross I)$ . For simplicity, we
denote $A^{1}(K)$ by $A(K)$ .
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Figure 3: The definitions of the knot 63 (left) and its annulus presentation (right).

Figure 4: A shrunken annulus $\tilde{A}$ for the annulus presentation of 63 (left) and the knot $A(6_{3})$ (right).

Example 5.3. We consider the knot 63 with the annulus presentation $(A, b)$ in Figure 3.
Then $A(6_{3})$ is the right picture in Figure 4.

Then, Osoinach proved that the $0$-surgery on $A^{n}(K)$ is diffeomorphic to that of $K$

(though he did not use the notion of an annulus presentation).

Lemma 5.4 ([16]). Let $K$ be a knot admitting an annulus presentation $(A, b)$ . Then, the
3-manifold obtained by $0$ -surgery on $A^{n}(6_{3})$ does not depend on $n\in Z.$

5.2 Construction

In this subsection, we construct counterexamples of Conjecture 4.3. Let $K$ be a knot
satisfying the following:

$\bullet$ $K$ is fibered,

$\bullet$ $K$ has an irreducible Alexander polynomial, and

$\bullet$ $K$ admits an annulus presentation $(A, b)$ .

For example, 63 depicted in Figure 3 satisfies the conditions. Then, by Lemma 5.4, the
$0$-surgeries on $A^{n}(K)$ and $K$ are the same. Hence, by Gabai’s result ([9]), $A^{n}(K)$ is
also fibered. It is known that the Alexander module of a knot is isomorphic to the first
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homology of the infinite cyclic cover of the $0$-surgery on the knot as $Z[t, t^{-1}]$ -modules.
Hence, the Alexander polynomial of $A^{n}(K)$ is equal to that of $K$ , and it is irreducible,

As a result,

$\bullet$ $A^{n}(K)$ and $K$ have the same $0$-surgery,

$\bullet$ $A^{n}(K)$ is fibered, and

$\bullet$ $A^{n}(K)$ has an irreducible Alexander polynomial.

By the proof of Theorem 4.4, if $A^{n}(K)\neq A^{m}(K)$ , then $(A^{n}(K), A^{m}(K))$ is a counterex-
ample of Conjecture 4.3.

Corollary 5.5. Let $K$ be as above. Then, if $A^{n}(K)\neq A^{m}(K)$ , the pair $(A^{n}(K), A^{m}(K))$

is a counterexample of Conjecture 4.3.

5.3 Infinitely many counterexamples

In this subsection, we construct infinitely many counterexamples of Conjecture 4.3. By
Corollary 5.5 and Lemma 5.6 below, we obtain infinitely many counterexamples of Con-
jecture 4.3.

Lemma 5.6 (cf. [2, Remark 5.11]). The knots $A^{n}(6_{3})$ and $A^{m}(6_{3})$ are ambient isotopic
as unoriented knots if and only if $n=m$ or $n+m=-1.$

Proof. Suppose that $n+m=-1$ . Then, by Figure 5, we see that $A^{n}(6_{3})$ and $A^{m}(6_{3})$ are
ambient isotopic as unoriented knots.

Conversely, suppose that $A^{n}(6_{3})$ and $A^{m}(6_{3})$ are ambient isotopic. Orient $A^{n}(6_{3})$

arbitrarily and give $A^{m}(6_{3})$ the corresponding orientation. Recall that $A^{n}(6_{3})$ and $A^{m}(6_{3})$

are fibered. Let $f_{i}:Farrow F$ be the monodromy of $A^{i}(6_{3})$ for $i=n,$ $m$ . Then, $(F, f_{i})$ gives
an open book decomposition of $S^{3}$ . Let $\xi_{i}$ be a contact structure supported by the open
book decomposition $(F, f_{i})$ . By the assumption, we see that $f_{n}$ and $f_{m}$ are conjugate. In
particular, $\xi_{n}$ and $\xi_{m}$ are isotopic. Let $d_{3}$ be the homotopy invariant of plane fields given
by Gompf ([10]). Then, by Section 6, we obtain

$d_{3}( \xi_{n})=-n^{2}-n+\frac{3}{2},$

for $n\in$ Z. Note that the result of our computation is independent of the choice of the
orientation of $A^{n}(6_{3})$ . Now, $d_{3}(\xi_{n})=d_{3}(\xi_{m})$ since $\xi_{n}$ and $\xi_{m}$ are isotopic. Hence, we
obtain $n=m$ or $n+m=-1.$ $\square$

6 Computation of $d_{3}(\xi_{n})$

In this section, we compute $d_{3}(\xi_{n})$ for the contact structure $\xi_{n}$ given in the proof of
Lemma 5.6. In Section 6.1, we recall the definition of monodromies. In Section 6.2, we in-
troduce the notion of annulus presentations compatible with fiber surfaces. In Section 6.3,
we give the monodromy $f_{n}$ of $A^{n}(6_{3})$ , and compute $d_{3}(\xi_{n})$ .
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$A^{n}(6_{3})$ $?$

Figure 5: $A^{n}(6_{3})$ is ambient isotopic to $A^{-n-1}(6_{3})$ .

6.1 Open book decompositions

Let $F$ be an oriented surface with boundary and $f:Farrow F$ a diffeomorphism on $F$ fixing
the boundary. Consider the pinched mapping torus

$\hat{M}_{f}=F\cross[0, 1]/_{\sim},$

where the equivalent relation $\sim$ is defined as follows: $(x, 1)\sim(f(x), 0)$ for $x\in F$ , and
$(x, t)\sim(x, t’)$ for $x\in\partial F$ and $t,$ $t’\in[0$ , 1 $]$ . Here, we orient $[0$ , 1 $]$ from $0$ to 1 and we
give an orientation of $\hat{M}_{f}$ by the orientations of $F$ and $[0$ , 1 $]$ . Let $M$ be a closed oriented

3-manifold. If there exists an orientation-preserving diffeomorphism from $\hat{M}_{f}$ to $M$ , the
pair $(F, f)$ is called an open book decomposition of $M$ . The map $f$ is called the monodromy

of $(F, f)$ . Note that we can regard $F$ as a surface in $M$ . The boundary of $F$ in $M$ , denoted
by $L$ , is called a fibered link in $M$ , and $F$ is called a fiber surface of $L$ . The monodromy

of $L$ is defined by the monodromy $f$ of the open book decomposition $(F, f)$ . Let $M$ be
a closed oriented 3-manifold, and $(F, f)$ an open book decomposition of $M$ . Let $C$ be a
simple closed curve on a fiber surface $F\subset M$ . Then, a twisting along $C$ of order $n$ is

defined as performing $(1/n)$-surgery along $C$ with respect to the framing determined by
$F$ . Then we obtain the following.

Lemma 6.1 (Stallings). The resulting manifold obtained from $M$ by a twisting along $C$ of
order $n$ is (orientation-preservingly) diffeomorphic to $\hat{M_{t_{C}^{-n}\circ f}}$ , where $t_{C}$ is the right-hanled

Dehn twist along $C.$

26



6.2 Compatible annulus presentations

Let $K\subset S^{3}$ be a fibered knot admitting an annulus presentation $(A, b)$ , and $F$ a fiber
surface of $K$ . We say that $(A, b)$ is compatible with $F$ if there exist simple closed curves
c\’i and $c_{2}’$ on $F$ such that

$\bullet$

$\partial\tilde{A}=\tilde{c}_{1}\cup\tilde{c}_{2}$ is isotopic to $c_{1}’\cup c_{2}’$ in $S^{3}\backslash K$ , where $\tilde{A}\subset A$ is a shrunken annulus
defined in Section 5.1, and

$\bullet$ each annular neighborhood of $c_{i}’$ in $F(i=1,2)$ is isotopic to $A$ in $S^{3}.$

Let $\tilde{c}_{1}\cup\tilde{c}_{2}$ be the framed link with framing $(1/n, -1/n)$ with respect to the framing
determined by the annulus $A$ , and $c_{1}’\cup c_{2}’$ the framed link with framing $(1/n, -1/n)$ with
respect to the framing determined by the fiber surface $F$ . Then, by the first compatible
condition, $\tilde{c}_{1}\cup\tilde{c}_{2}$ is equal to $c_{1}’\cup c_{2}’$ as links in $S^{3}\backslash K$ . Moreover, by the second compatible
condition, their framings coincide. As a result, $\tilde{c}_{1}\cup\tilde{c}_{2}$ is equal to $c_{1}’\cup c_{2}’$ as framed links
in $S^{3}\backslash K$ . Hence, if $K$ is a fibered knot with $(A, b)$ which is compatible with the fiber
surface $F$ , then $A^{n}(K)$ is the knot obtained from $K$ by twisting along $c_{1}’$ and $c_{2}’$ of order
$+n$ and $-n$ , respectively. In particular, by Lemma 6.1, $A^{n}(K)$ is a fibered knot and the
monodromy of $A^{n}(K)$ is $t_{c_{1}}^{-n}ot_{c_{2}}^{n},$ of, where $f$ is the monodromy of $K$ . As a summary,
we obtain the following.

Lemma 6.2. Let $K\subset S^{3}$ be a fibered knot admitting a compatible annulus presentation
$(A, b)$ . Then $A^{n}(K)$ is also fibered for any $n\in$ Z. Moreover, the monodromy of $A^{n}(K)$

is $t_{c_{1}}^{-n}\circ t_{c_{2}}^{n},$
$\circ f_{f}$ where $f$ is the monodromy of $K$ , and $c_{1}’$ and $c_{2}’$ are simple closed curves

which give the compatibility of $(A, b)$ .

Remark 6.3. Let $K$ be a fibered knot admitting an annulus presentation $(A, b)$ (which
may not be compatible with the fiber surface for $K$). Then, by Lemma 5.4 and Gabai’s
work ([9]), $A^{n}(K)$ is also fibered.
Example 6.4. We consider the knot $6_{3}$ with the annulus presentation $(A, b)$ in Figure 3.
It is known that 63 is fibered. We choose a fiber surface as in the left picture in Figure 6,
and denote it by F. In this case, the annulus presentation $(A, b)$ is compatible with $F.$

Indeed we define simple closed curves $c_{1}’$ and $c_{2}’$ on $F$ by $\tilde{c}_{1}$ and $\tilde{c}_{2}$ , where $\partial\tilde{A}=\tilde{c}_{1}\cup\tilde{c}_{2}.$

Then $c_{1}’\cup c_{2}’$ clearly satisfies the compatible conditions.

Figure 6: A fiber surface $F$ of 63 (left) and a shrunken annulus $\tilde{A}$ (center). The annulus presentation
$(A, b)$ of 63 is compatible with the fiber surface $F$ (right).
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6.3 The monodromy of $A^{n}(6_{3})$

First, we describe the monodromy of 63. Orient 63 as in Figure 3. We draw a fiber
surface of 63 as a plumbing of some Hopf bands (see Figure 7). By Figures 7 and 9, the
monodromy of 63 is given by $t_{d}^{-1}\circ t_{b}\circ t_{c}^{-1}\circ t_{a}$ on $\Sigma_{2,1}$ , where $\Sigma_{2,1}$ is the oriented surface
depicted in Figure 9.

Now we describe the monodromy of $A^{n}(6_{3})$ . Suppose that $A^{n}(6_{3})$ has the orientation

derived from the orientation of 63. By Figures 8, 9, and Lemma 6.2, the monodromy $f_{n}$

of $A^{n}(6_{3})$ is given by $t_{c_{1}}^{-n}ot_{c_{2}}^{n},$
$\circ t_{d}^{-1}ot_{b}ot_{c}^{-1}ot_{a}$ on $\Sigma_{2,1}$ . If we give $A^{n}(6_{3})$ the opposite

orientation, the monodromy is given by $t_{a}\circ t_{c}^{-1}\circ t_{b}\circ t_{d}^{-1}\circ t_{c_{2}}^{n},\circ t_{c_{1}}^{-n}$ on $-\Sigma_{2,1}$ , where $-\Sigma_{2,1}$

is the reverse of $\Sigma_{2,1}$ . Then we obtain the following.

Figure 7: The bottom right pictures are fiber surfaces of 63 given by a plumbing of some Hopf bands.

The loops $a,$ $b,$ $c$ and $d$ are core lines of these Hopf bands.

$\sim$

Figure 8: The simple closed curves $c_{1}’$ and $c_{2}’$ on the fiber surface of 63.
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Figure 9: The monodromy $f_{n}$ of $A^{n}(6_{3})$ is $t_{c_{2}}^{n},\circ t_{c_{1}}^{-n}\circ t_{d}^{-1}\circ t_{b}\circ t_{c}^{-1}ot_{a}$ on $\Sigma_{2,1}.$

Lemma 6.5 (cf. [2, Remark 5.11]). Let $\xi_{n}$ be the contact structure on $S^{3}$ supported by
the open book decomposition $(F, f_{n})$ . Let $d_{3}$ is the invariant of plane fields given by Gompf
[10]. Then, we obtain

$d_{3}( \xi_{n})=-n^{2}-n+\frac{3}{2}.$

Moreover, even if we give $A^{n}(6_{3})$ the opposite orientation, the value of $d_{3}$ does not change,

Proof. In order to compute $d_{3}(\xi_{n})$ , we use the formula for $d_{3}$ introduced in [5, 6]. By
the above discussions, $f_{n}=t_{d_{1}}^{-n}\circ t_{c_{2}}^{n},ot_{d}^{-1}\circ t_{b}ot_{c}^{-1}ot_{a}$ . This is conjugate to $f_{n}’=$

$t_{c_{1}}^{-n}ot_{c}^{-1}ot_{c_{2}}^{n},ot_{d}^{-1}ot_{b}ot_{a}.$

First, we suppose that $n\geq 1$ . Let $X_{n}$ be the 4-manifold defined by the following:
First, deform $\Sigma_{2,1}$ as in Figure 10 by using isotopies. Note that Figure 10 gives a handle
decomposition of $\Sigma_{2,1}$ . Second, from the handle decomposition, we draw the trivial $D^{2}-$

bundle over $\Sigma_{2,1}$ as the union of a $0$-handle and 41-handles as in Figure 11. Finally,
attach 2-handles along the curves $a,$ $b,$ $c,$

$d$ , and $n$ copies of $c_{1}’$ and $c_{2}’$ appearing in the
factorization of $f_{n}’$ as the top picture in Figure 12, Here, we denote the parallel copies of
$c_{1}’$ and $c_{2}’$ by $c_{1}^{\prime(1)}$ , . . . , $c_{1}^{\prime(n)}$ and $c_{2}^{\prime(1)}$ , . . . , $c_{2}^{\prime(n)}$ , respectively. Each framing is $-1$ if the factor
is the right-handed Dehn twist, and $+1$ if the factor is the left-handed Dehn-twist, where
we consider the framings with respect to the framing determined by $\Sigma_{2,1}$ . Moreover, the
under/over informations are given by the order: $c_{1}’>c>c_{2}’>d>b>a.$

Figure 10: A handle decomposition of $\Sigma_{2,1}.$

By Kirby calculus, $X_{n}$ is represented as the union of one $0$-handle and $2n$ $2$-handles

as in Figure 12. For $i=1$ , . . . , $n$ , put $e_{i}$

$:=c_{1}^{\prime(i-1)}-c_{1}^{\prime(i)}$ and for $j=1$ , . . . , $n-1$ , put
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$\bigotimes_{:} \bigoplus_{:}$

$-\backslash$ $\ominus$ $\otimes$ \copyright$\wedge$

$i^{:}$

Figure 11: The trivial $D^{2}$-bundle over $\Sigma_{2,1}.$

$g_{j}$

$:=c_{2}^{\prime(j)}-c_{2}^{\prime(j+1)}$ . Here, we put $c_{1}^{\prime(0)}=c$ . Moreover, put $h:=c_{2}^{\prime(1)}+a-b+d+c_{1}^{\prime(n)}.$

Then, we can regard $\{e_{1}, . . . , e_{n}, h, g_{1}, . . . , g_{n-1}\}$ as a basis of $H_{2}(X_{n})$ . The intersection
form $Q_{X_{\mathfrak{n}}}$ of $X_{n}$ is represented by the following $2n\cross 2n$-matrix with respect to the basis:

$Q_{X_{\mathfrak{n}}}=(\begin{array}{lllllllll}2 -1 -1 2 \ddots \ddots \ddots -1 -1 2 -1 -l 0 -1 -1 -2 1 1 -2 \ddots \ddots \ddots 1 l -2\end{array}),$

that is, the $(i, j)$-entry $(Q_{X_{n}})_{i,j}$ is given by

$(Q_{X_{n}})_{i,j}=\{\begin{array}{ll}2 if (i, j)=(k, k) for some k\in\{1, . . . , n\},-1 if (i,j)=(k, k+1) , (k+1, k)for some k\in\{1, . . . , n+1\},0 if (i,j)=(n+1, n+1) ,-2 if (i,j)=(k, k)for some k\in\{n+2, . . . , 2n\},1 if (i,j)=(k, k+1) , (k+1, k)for some k\in\{n+2, . . . , 2n-1\},0 otherwise.\end{array}$

Note that

$Q_{X_{1}}=(\begin{array}{ll}2 -1-1 0\end{array}).$

Then, by the formula for $d_{3}$ given in [5, 6], for any $n\geq 1$ , we obtain

$d_{3}( \xi_{n})=\frac{1}{4}(c^{2}(X_{n})-3\sigma(X_{n})-2\chi(X_{n}))+q,$

where $\sigma(X_{n})$ is the signature of $X_{n},$ $\chi(X_{n})$ is the Euler number of $X_{n}$ and $q$ is the number
of the left-handed Dehn twists appearing in the factors of $f_{n}’$ . Moreover, $c^{2}(X_{n})$ is given

30



$X_{n}=$

$\approx$

Figure 12: A Kirby diagram of $X_{n}$ . The bold arc represents the parallel copies $c_{2}^{\prime(1)}$ , . . . , $c_{2}^{J(n)}$ of $c_{2}’$ and
the gray arc represents the parallel copies $c_{1}^{\prime(1)}$ , . . . , $c_{1}^{J(n)}$ of $c_{1}’$ . In the top picture, the number in on
the right of each curve represents the framing. The bottom picture is obtained from the top by Kirby
calculus as in the pictures depicted in the end of this manuscript. The bottom picture is a framed link
with $2n$ components and the numbers 2, 2, . . . , 2, $0,$ $-2,$ $-2$ , . . . $,$

$-2,$ $-2$ represent the framing.

by the following:

$c^{2}(X_{n})=$ ( $rot(e_{1}),$ $\ldots$ , rot $(e_{n})$ , rot (h) , rot $(g_{1}),$
$\ldots$ , rot $(9n-1)$ ) $Q_{X_{n}}^{-1}(\begin{array}{l}rot(e_{1})\vdotsrot(e_{n})rot(h)rot(g_{1})\vdotsrot(g_{n-1})\end{array}),$

where for a simple closed curve $\gamma$ in $\Sigma_{2,1}$ , we define rot ( $\gamma$ ) as the winding number of
$\gamma$ . Here, we fix the trivialization of the tangent bundle of $\Sigma_{2,1}$ derived from Figure 11
(for detail, see [6, Section 3.1]). Moreover, for some simple closed curves $\gamma_{1}$ , . . . , $\gamma_{m}$ and

$\epsilon_{1}$ , . . . , $\epsilon_{m}\in Z$ , we define rot $(\epsilon_{1}\gamma_{1}+\cdots+\epsilon_{m}\gamma_{m})$
$:=\epsilon_{1}$ rot $(\gamma_{1})+\cdots+\epsilon_{m}rot(\gamma_{m})$ . Obviously,

$\chi(X_{n})=1+2n$ and $q=n+2$ . By Lemma 6.6 below, $c^{2}(X_{n})=-4n(n+1)$ , $\sigma(X_{n})=0.$

Hence, we have

$d_{3}( \xi_{n})=\frac{1}{4}(-4n(n+1)-2(1+2n))+n+2=-n^{2}-n+\frac{3}{2}.$

In the case $n<1$ , we can compute $d_{3}(\xi_{n})$ similarly. By the similar discussion, the second
claim also holds. $\square$
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Lemma 6.6. We obtain $c^{2}(X_{n})=-4n(n+1)$ and $\sigma(X_{n})=0.$

Proof. Note that, in our orientations, rot $(c_{2}’)=1$ , rot $(b)=-1$ , rot(a) $=rot(c)=rot(d)=$
$rot(c_{1}’)=$ O. Hence, rot(e) $=rot(g_{j})=0$ for any $i,$ $j$ , and rot $(h)=2$ . Let $f_{n+1}$ be the
$2n$-dimensional vector whose entries are $0$ except for the $n+1-st$ entry where it is 2. By

the definition, we have

$c^{2}(X_{n})=tf_{n+1}Q_{X_{n}}^{-1}f_{n+1}$

$=2 \cross\frac{(\tilde{Q}_{X_{n}})_{n+1,n+1}}{\det(Q_{X_{n}})}\cross 2,$

where $(\tilde{Q}_{X_{n}})_{n+1,n+1}$ is the $(n+1, n+1)$-cofactor of $Q_{X_{n}}$ . By the cofactor expansion along

the $(n+1)$-th row, we obtain

$\det(Q_{X_{n}})=(-1)\det(A_{n-1})\det(-A_{n-1})-\det(A_{n})\det(-A_{n-2})$

$=(-1)^{n}n^{2}-(-1)^{n}(n+1)(n-1)$

$=(-1)^{n},$

where $A_{n}$ is the following $n\cross n$-matrix, and its determinant $\det(A_{n})$ is $n+1$ :

$A_{n}=(\begin{array}{llll}2 -1 -1 2 \ddots \ddots \ddots -1 -1 2\end{array})$

Moreover, by the definition,

$(\tilde{Q}_{X_{n}})_{n+1,n+1}=\det(A_{n})\det(-A_{n-1})=(n+1)(-1)^{n-1}n.$

Hence, $c^{2}(X_{n})=4\cross(n+1)(-1)^{n-1}n/(-1)^{n}=-4n(n+1)$ .
Next, we compute $\sigma(X_{n})$ . Let $P_{i}$ be the $2n\cross 2n$-matrix whose entries are $0$ except for

the $(i, i+1)$-entry where it is 1. Let $E_{2n}$ be the $2n\cross 2n$-unit matrix. Then, define the

matrix $P_{i}(l)$ by $E_{2n}+lP_{i}$ for any $l\in R$ and any $i=1$ , . . . , $2n-1$ . For any $n>1$ , we
define the matrix $P^{(2n)}$ by

$P^{(2n)}:=P_{1}( \frac{1}{2})\cdots P_{n-1}(\frac{n-1}{n})P_{n}(\frac{n}{n+1})P_{n+1}(\frac{-(n+1)}{n})P_{n+2}(\frac{n}{n-1})\cdots P_{2n-1}(\frac{3}{2})$ .

If $n=1$ , we define $P^{(2)}$ $:=P_{1}$ $( \frac{1}{2})$ . Then,

$tP^{(2n)}Q_{X_{n}}P^{(2n)}=(\begin{array}{lllllll}2 \ddots \frac{n+1}{n} \frac{-n}{n+1} \frac{-(n-1)}{n} \ddots \frac{-1}{2}\end{array})$

Hence, we obtain $\sigma(X_{f_{n}’})=\sigma(Q_{X_{n}})=\sigma(tP^{(2n)}Q_{X_{n}}P^{(2n)})=0.$
$\square$
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$\approx$

$(c_{2}^{\prime(1)}+a-d)(0)$ , $\cdots$ , $(c_{2}^{\prime(\iota)}+a-(l)(0)$

$\approx$
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$\approx$

$(C_{2}^{\prime(1)}\prime+a-(b-d))(-1)$ , $\cdots$
$(c_{2}^{\prime(r\iota)}\backslash .+a-(b-(l))(-1$

$\approx$

$(_{2}(^{\prime(1)}+a-(b-(1))(-1)_{:}\ldots,$ $(c_{2}^{\prime(\prime 1\rangle}+(r-(b-d))(-1)$

$\approx$
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$(c_{2}^{J(1)}+a-(b-d))(-1)_{\tau}\ldots,$ $(c_{l}^{J(\prime 1)}+a-(b-d))(-1)$

$\approx$

$\approx$
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