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It is well-known that, whenever $(S, *)$ is a rack, then putting

(1) $(x_{1}, , x_{n})\cdot\sigma_{i}=(x_{1}, , x_{i-1}, x_{i+1}, x_{i}*x_{i+1}, x_{i+2}, x_{n})$ ,

induces a well-defined action of the braid group $B_{n}$ on $S^{n}[1$ , 14$]$ . When the operation $*$

is the conjugacy of a group, this action is called the Hurwitz action, and it is natural to
use the same terminology in the case of an arbitrary rack.

When $(S, *)$ is a shelf, but not a rack, that is, $if*is$ a right self-distributive operation
on $S$ but it is not assumed that its right translations are bijective, then the Hurwitz action
of $B_{n}$ on $S^{n}$ is defined only for positive braids, that is, for braids that can be expressed
without using any negative generator $\sigma_{i}^{-1}$ . The aim of this text is to explain how this
limitation can be avoided, at least in some cases, at the expense of allowing for a partial
action (see precise definition below). The proofs are nontrivial and rely on a specific braid
word tool called subword reversing.

The current approach was first developed in [6] and it appears (in its left counterpart
version) in [12, Chapter IV], but with arguments only sketched. At the expense of resorting
to some combinatorial results involving braid word equivalence, the current text gives a
full exposition of the topological part of the the argument.

1 The Hurwitz action on a rack

A shelf is an algebraic structure $(S, *)$ consisting of a set $S$ equipped with a binary
operation $*$ that obeys the right-distributivity law

(2) $(x*y)*z=(x*z)*(y*z)$ .

It is well-known that (2) is closely connected with Reidemeister moves of type III or,
equivalently, with the braid relation $\sigma_{1}\sigma_{2}\sigma_{1}=\sigma_{2}\sigma_{1}\sigma_{2}$ . As a result, whenever $(S, *)$ is a
shelf, then using (1) and extending it multiplicatively provides a well-defined right action
of the braid monoid $B_{n}^{+}$ on the nth power $S^{n}.$

The above action, hereafter called the Hurwitz action, can be easily interpreted in

terms of colorings of braid diagrams. By definition, an $n$-strand braid diagram is the
concatenation of finitely many elementary $n$-strand diagrams corresponding to $\sigma_{i}$ and $\sigma_{i}^{-1},$

and, therefore, every $n$-strand braid diagram is encoded in an $n$ -strand braid word, namely
a finite sequence of letters $\sigma_{i}$ and $\sigma_{i}^{-1}$ . Hereafter, it will be important to distinguish

between braids and braid words: the braid group $B_{n}$ admits the presentation

(3) $\langle\sigma_{1}$ , $\cdots$ , $\sigma_{n-1}|\sigma_{i}\sigma_{j}\sigma_{i}=\sigma_{j}\sigma_{i}\sigma_{j}\sigma_{i}\sigma_{j}=\sigma_{j}\sigma_{i}$ forfor $|i-j|=1|i-j|\geq 2\rangle,$
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which means that an $n$-strand braid, that is, an element of $B_{n}$ , is an equivalence class
of $n$-strand braid words: two braid words $w,$ $w’$ represent the same braid if, and only
if, they are equivalent with respect to the least equivalence relation that is compatible
with multiplication and contains the pairs listed in (3). We shall write $[w]$ for the braid
represented by a braid word $w$ , that is, for its $\equiv$-equivalence class: thus $w\equiv w’$ is
equivalent to $[w]=[w’]$ . To avoid confusion between braids and braid words, we shall use
the symbol $|$ for word concatenation. Then the (obvious) connection between braid word
concatenation and braid multiplication is

(4) $[w_{1}|w_{2}]=[w_{1}]\cdot[w_{2}].$

Note that, as usual, we shall write $\sigma_{i}$ both for the length-one braid word and for the
braid it represents, and similarly for $\sigma_{i}^{-1}$ . But we shall distinguish between, say, the braid
word $\sigma_{1}|\sigma_{2}|\sigma_{1}$ and the braid $\sigma_{1}\sigma_{2}\sigma_{1}$ it represents.

In this framework, the Hurwitz action of braids can be visualized using braid diagram
colorings. We first consider the special case of positive braid diagrams (no $\sigma_{i}^{-1}$ crossing).
Then the base principle (which goes back at least to Alexander) consists in putting colors
from $S$ on the left (input) ends of the strands, and propagating the colors to the right
using at every crossing the rule

(5) $yX_{y}x*yX$

We then look at the right (output) colors: if $x$ is the initial sequence of colors, and $w$ is
the (positive) braid word encoding the diagram – throughout the text, we use $x$ as a
generic notation for sequences, and then $x_{i}$ for the corresponding ith entry – then, by
definition, the final sequence of colors, denoted $x$ $\bullet$ $w$ , is defined by (1) and the induction
rule

(6) $x\cdot w|\sigma_{i}=(x\cdot w)\cdot\sigma_{i}.$

We then wonder if this action of positive braid words induces a well-defined action of
the braid monoid $B_{n}^{+}$ . It is known since Garside [16] that $B_{n}^{+}$ admits, as a monoid, the
presentation (3), so the question is whether positive braid diagrams that are equivalent
with respect to the relations of (3) lead to the same output colors. The (easy) answer is
what explains the specific interest of shelves here:

Proposition 1.1. The action $ofn$ -strand positive braid words on $S^{n}$ defined in (1) induces
a well-defined action of the positive braid monoid $B_{n}^{+}$ if, and only if, $(S, *)$ is a shelf

Proof. It is clear that, for $|i-j|\geq 2$ , the braid words $\sigma_{i}|\sigma_{j}$ and $\sigma_{j}|\sigma_{i}$ act in the same way.
$For|i-j|=1$ , the diagrams of Figure 1 show that $\sigma_{i}|\sigma_{j}|\sigma_{i}$ and $\sigma_{j}|\sigma_{i}|\sigma_{j}$ act in the same
way precisely if, and only if, the operation $*$ on $S$ obeys the law (2). $\square$

In order to extend the Hurwitz action on $S^{n}$ from the monoid $B_{n}^{+}$ to the braid group $B_{n},$

we have to define an action of $\sigma_{i}^{-1}$ on sequences of colors. Without loss of generality,
assume that the coloring of negative crossings takes the form

(7) $yx\nearrow_{\backslash _{y\overline{*}x}}^{y\underline{*}x}\backslash$
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Figure 1: Whenever the operation $*$ obeys the right-distributivity law (2), the output colors are the same
when the diagrams encoded by the braid words $\sigma_{1}|\sigma_{2}|\sigma_{1}$ and $\sigma_{2}|\sigma_{1}|\sigma_{2}$ are colored.

where $\overline{*}and\underline{*}are$ two new binary operations on $S$ . Then we obtain an action of arbitrary
(signed) braid words and want the latter to be invariant under the braid relations of (3)$-$
which follows from Proposition $1.1$–and under the free group relations $\sigma_{i}\sigma_{i}^{-1}=\sigma_{i}^{-1}\sigma_{i}=1.$

Lemma 1.2. Completing the action of (5) with (7) provides a well-defined action of the
braid group $B_{n}$ if, and only if, the operations $\overline{*}and\underline{*}$ satisfy

(8) $y\underline{*}x=x$ and $(y\overline{*}x)*x=(y*x)\overline{*}x=y.$

In this case, for every $x$ in $S$ , the right translation of $*$ associated with $x$ is a bijection,
and then $\overline{*}is$ defined $from*by$

(9) $y\overline{*}x=the$ unique $y’$ satisfying $y’*x=y.$

Proof. Expressing that, for all $x,$ $y$ in $S$ , one has $(x, y)$ $\bullet$
$\sigma_{1}|\sigma_{1}^{-1}=(x, y)\bullet\sigma_{1}^{-1}|\sigma_{1}=(x, y)$

directly translates into the formulas of (8). The rest is then straightforward. $\square$

Lemma 1.2 says that the only way to complete the definition of diagram coloring is to
assume that the right translations of $(S, *)$ are bijections and to put

(10) $xy\nearrow_{\backslash the}^{x}\backslash$

unique $y’$ satisfying $y’*x=y,$

which amounts to completing (1) with

(11) $x\cdot\sigma_{i}^{-1}=(x_{1}, x_{i-1}, x’, x_{i}, x_{i+2}, , x_{n})$ , for $x’$ satisfying $x’*x_{i}=x_{i+1}.$

In this way, we obtain the classical result:

Proposition 1.3 (Brieskorn [1], Fenn-Rourke [14]). Say that a shelf $(S, *)$ is $a$ rack if
all right translations $of*are$ bijections. Then, for every $n$ , the relations (1) and (11)
provide a well-defined action of the braid group $B_{n}$ on $S^{n}.$

Many racks are known. In particular, every group equipped with the conjugacy opera-
tion $x*y=y^{-1}xy$ is a rack. The Hurwitz action of braids on powers of various racks leads
to a number of results, in particular in terms of representations of the braid groups (Artin
representation, Burau representation, etc In the same way as the RD-law corresponds
to an invariance under Reidemeister move III, the laws of (8) correspond to an invariance
under Reidemeister move II.

Going one step further, one then checks that Reidemeister move I corresponds to the
idempotency law $x*x=x$ . Therefore, if one defines a quandle to be an idempotent rack,

one obtains an isotopy invariant [17, 20], and, from there, applications in Knot Theory,
in particular using the cohomological approach initiated in [15] and [2]. All this is now
well-known, see for instance the survey [3].

75



2 Shelves that are not racks

The above approach however is perhaps not the end of History, because there exist many
racks that are not quandles, and many shelves that are not racks. Here is one typical
example.

Example 2.1. [6] On the infinite braid group $B_{\infty}$ , define

(12) $x*y=sh(y)^{-1}\cdot\sigma_{1}\cdot sh(x)\cdot y,$

where sh: $B_{\infty}arrow B_{\infty}$ is the shift endomorphism defined to map $\sigma_{i}$ to $\sigma_{i+1}$ for every $i$ , see
Figure 2. Once the definition (12) (which comes from the approach to self-distributivity
developed in [8]) is given, it is easy to check that the operation $*$ obeys the self-distributive
law (2), that is, $(B_{\infty\rangle}*)$ is a shelf. This (remarkable) shelf is not a rack: for instance,

(12) implies, for every $x$ in $B_{\infty\rangle}$ the equality $x*1=\sigma_{1}sh(x)$ , whence $x*1\neq 1$ , since
$\sigma_{1}^{-1}$ does not lie in the image of sh, which is the subgroup of $B_{\infty}$ generated by $\sigma_{2},$ $\sigma_{3},$

Hence, the right translation of $(B_{\infty\rangle}*)$ associated with 1 is not surjective, and a fortiori
not bijective. See [8] for more about this weird braid operation.

Figure 2: $A$ “strange self-distributive operation on the braid group $B_{\infty}$ (here in its right version): on
the diagram, applying the shift endomorphism sh amounts to adding one bottom unbraided strand.

In this text, we do not address the question of extending quandle tools to racks that are
not quandles (for this, see [21, 22, 4, 5] among others), but we shall address the question
of extending (some of) the rack tools to shelves that are not racks. More specifically, we
address

Question 2.2. Can one obtain a well-defined action of the group $B_{n}$ on $S^{n}$ when $S$ is a

shelf that is not a $rack’$?

Our claim is that, in spite of Lemma 1.2, a positive answer can be given, at the expense
of weakening the conclusion into the existence of a partial action, in a sense that we shall
now make precise.

Hereafter, we use $BW_{n}$ (resp. $BW_{n}^{+}$ ) for the (free) monoid of all $n$-strand braid words
(resp. positive $n$-strand braid words). If $w,$ $w’$ are positive braid words, we write $w\equiv w’+$

if $w$ and $w’$ represent the same element of the monoid $B_{n}^{+}$ , that is, if one can transform $w$

into $w’$ using the relations of (3) exclusively (no introduction of negative generator $\sigma_{i}^{-1}$

allowed). Garside’s fundamental embedding result [16] says that $\equiv+is$ merely the re-
striction of $\equiv$ to $BW_{n}^{+}$ : if two positive braid words are equivalent, they are positively
equivalent. With such notation, what Proposition 1.1 says is that, if $(S, *)$ is a shelf,

then, for every $n$ , (1) defines an action of $BW_{n}^{+}$ on $S^{n}$ such that

(13) For all $x$ in $S^{n}$ and $w,$ $w’$ in $BW_{n}^{+}$ satisfying $w\equiv+w’$ , we have $x\bullet w=x\cdot w’.$
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This is the statement we shall extend.

Definition 2.3. A shelf $(S, *)$ is called right-cancellative if $x*y=x’*y$ implies $x=x’$

for all $x,$ $x’,$ $y$ in $S.$

This is the standard notion of right-cancellativity for a set equipped with a binary
operation. Racks are those shelves in which right translations are both injective and
surjective; in a right-cancellative shelf, we only keep half of the assumptions.

Example 2.4. The shelf $(B_{\infty}, *)$ of Example 2.1 is not a rack, since right translations
are not surjective. However, it is right-cancellative: indeed, $x*y=x’*y$ expands into
$sh(y)^{-1}\cdot\sigma_{1}\cdot sh(x)\cdot y=sh(y)^{-1}\cdot\sigma_{1}\cdot sh(x’)\cdot y$ , leading to $sh(x)=sh(x’)$ , whence $x’=x$

since the shift endomorphism sh is injective.

Let us observe that, if $(S, *)$ is a right-cancellative shelf, then (9) still makes sense
when the involved element $x’$ exists, since, given $x$ and $y$ in $S$ , there exists at most one $x’$

in $S$ satisfying $x’*y=x$ . However, there is no guarantee that such an element $x’$ exists
in general. This amounts to extending (9) into

(14) $xy\nearrow_{\backslash the}^{x}\backslash$

unique $y’$ satisfying $y’*x=y$ , if it exists.

In this way, we obtain a partial action of $BW_{n}$ on $S^{n}$ : by definition, $x\cdot u|v$ exists if
and only if $x\cdot u$ and $(x\bullet u)$ $\bullet$ $v$ exist, and, in this case, we have $x\bullet u|v=(x\bullet u)\bullet v$ . The
question is whether this partial action of braid words induces $a$ (partial) action of braids.
We shall establish the following positive answer:

Proposition 2.5. Assume that $(S, *)$ is a right-cancellative shelf. Then, for every $n$ , (1)
and (14) define a partial action of $BW_{n}$ on $S^{n}$ with the following properties:

(15) For all $x$ in $S^{n}$ and $w$ in $BW_{n}^{+}$ , the sequence $x\cdot w$ is defined.
(16) For all $w_{1}$ , , $w_{p}$ in $BW_{n}$ , there exists $x$ in $S^{n}$ such that $x\cdot w_{k}$ is defined for

each $k.$

For all $x$ in $S^{n}$ and $w,$ $w’$ in $BW_{n}$ satisfying $w\equiv w’$ , we have $x\cdot w=x\bullet w’$

(17)
whenever the latter are defined.

Proposition 2.5 says that we obtain a well-defined partial action of $B_{n}$ on $S^{n}$ that
extends the (total) action of $B_{n}^{+}$ by defining $x\cdot b=y$ whenever $x\bullet w=y$ holds for some
braid word $w$ representing $b$ : (17) guarantees the invariance under braid equivalence,
whereas (16) ensures that, though partial, the action is nevertheless meaningful in that
there always exist sequences for which is it defined.

3 Subword reversing

From now on, our aim is to establish Proposition 2.5. This turns out to be a nontrivial
task, requiring subtle techniques involving the algebraic properties of braid monoids as
investigated after Garside [16]. These techniques, based on word transformations generi-
cally called subword reversing, have their own interest and can be useful in a number of
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situations. Here we shall survey some of their properties only (see [10] for a more complete
account).

For all subsequent arguments, it is absolutely necessary to go down to the level of braid
words: considering braids, that is, equivalence classes of braid words, would not enable
us to control the situation precisely enough. The main idea is to introduce (proper)
subrelations of the braid equivalence relation $\equiv$ , namely two relations $\wedge$ and $\cup$ on braid
words such that $w\sim w’$ and $w\cup w’$ both imply $w\equiv w’$ , but the converse implication
need not be true in general. By very definition, the relations $\wedge$ and $\cup$ involve the various
representatives of one braid, and their only counterpart at the level of braids is an identity.

Definition 3.1. [10] Assume that $w,$ $w’$ are braid words. We say that $w$ is right-reversible
to $w’$ , written $w\wedge w’$ , if $w’$ can be obtained from $w$ by iteratively

-deleting a subword $\sigma_{i}^{-1}|\sigma_{i}$ , or
-replacing a subword $\sigma_{i}^{-1}|\sigma_{j}$ with $|i-j|\geq 2$ by $\sigma_{j}|\sigma_{i}^{-1}$ , or
-replacing a subword $\sigma_{i}^{-1}|\sigma_{j}$ with $|i-j|=1$ by $\sigma_{j}|\sigma_{i}|\sigma_{j}^{-1}|\sigma_{i}^{-1}.$

Example 3.2. Let $w$ be the length-5 braid word $\sigma_{1}|\sigma_{2}^{-1}|\sigma_{3}|\sigma_{2}^{-1}|\sigma_{1}$ . Then $w$ contains
the factor $\sigma_{2}^{-1}|\sigma_{3}$ , so it is right-reversible to $w_{1}=\sigma_{1}|\sigma_{3}|\sigma_{2}|\sigma_{3}^{-1}|\sigma_{2}^{-1}|\sigma_{2}^{-1}|\sigma_{1}$ . Note that
$w$ also contains the factor $\sigma_{2}^{-1}|\sigma_{1}$ , implying that it is also right-reversible to $w_{1}’=$

$\sigma_{1}|\sigma_{2}^{-1}|\sigma_{3}|\sigma_{1}|\sigma_{2}|\sigma_{1}^{-1}|\sigma_{2}^{-1}$ . Restarting from $w_{1}$ , the latter contains $\sigma_{2}^{-1}|\sigma_{1}$ , hence it is right-
reversible to $w_{2}=\sigma_{1}|\sigma_{3}|\sigma_{2}|\sigma_{3}^{-1}|\sigma_{2}^{-1}|\sigma_{1}|\sigma_{2}|\sigma_{1}^{-1}|\sigma_{2}^{-1}$ , etc. The reader can check that every
sequence of right-reversings from $w$ leads in six steps to the length-ll braid word

$\sigma_{1}|\sigma_{3}|\sigma_{2}|\sigma_{1}|\sigma_{2}|\sigma_{3}|\sigma_{2}^{-1}|\sigma_{3}^{-1}|\sigma_{1}^{-1}|\sigma_{1}^{-1}|\sigma_{2}^{-1}.$

The latter word cannot be right-reversed, since it contains no factor of the form $\sigma_{i}^{-1}\sigma_{j}.$

The definition makes it obvious that $w\wedge w’$ implies $w\equiv w’$ , since each elementary
right-reversing step consists in replacing a factor of the considered word by an equivalent
word. Conversely, for a given braid word $w$ , it is false that every braid word equivalent to $w$

can be obtained by right-reversing from $w$ : for instance, starting from the word $\sigma_{1}|\sigma_{1}^{-1},$

we cannot reach the empty word: actually, we can reach no word other than $\sigma_{1}|\sigma_{1}^{-1}$ since
the latter contains no factor of the form $\sigma_{i}^{-1}|\sigma_{j}.$

Right-reversing is a word transformation that takes advantage of the particular form
of the braid relations to replace a negative-positive pattern of length two by a positive-
negative pattern of length zero, two, or four, depending on the distance between the
indices of the initial letters.

As already noted in Example 3.2, the braid words that are terminal with respect to
right-reversing, that is, those that cannot be further reversed, are the words that contain
no factor of the form $\sigma_{i}^{-1}|\sigma_{j}$ , hence the words of the form $u|v^{-1}$ , where $u$ and $v$ are
positive words (no negative letter). As right-reversing may increase the word-length (in
Example 3.2, we start with a word of length 5 and finish with a word of length 11), it is
not a priori obvious that every braid word is right-reversible to a terminal word. However,

it is:

Lemma 3.3. For every braid word $w$ , there exist positive braid words $u,$ $v$ such that $w$ is

right-reversible to $u|v^{-1}.$
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Proof (Sketch). This is a termination problem. We have to show that, starting from a
word $w$ , at least one sequence of reversing steps leads in finitely many right-reversing
steps to a positive-negative word. It is not hard to see that it is sufficient to do it when
the initial word $w$ is a negative-positive braid word, that is, we have $w=u^{-1}|v$ for some
positive braid words $u$ and $v$ . Let $R(u, v)$ be the family of all braid words that can be
derived from $u^{-1}|v$ using right-reversing. The point is that, in the braid monoid $B_{n}^{+},$

the braids represented by $u$ and $v$ admit a least common right-multiple, say $b$ , and that
every word $w$ of $R(u, v)$ has the property that, for every prefix $w’$ of $w$ , the braid $[u|w’]$

is positive and it left-divides $b$ . The number of such braids is finite, hence so is the
family $R(u, v)$ . $\square$

By definition, the braid relations of (3) are symmetric, and we can consider a left
counterpart of right-reversing where, instead of transforming negative-positive factors into
positive-negative words, we transform positive-negative factors into negative-positive
words.

Definition 3.4. [10] Assume that $w,$ $w’$ are braid words. We say that $w$ is left-reversible
to $w’$ , written $w\cup w’$ , if $w’$ can be obtained from $w$ by iteratively

-deleting a subword $\sigma_{i}\sigma_{i}^{-1}$ , or
-replacing a subword $a_{i}\sigma_{j}^{-1}$ with $|i-j|\geq 2$ by $\sigma_{j}^{-1}\sigma_{i}$ , or
-replacing a subword $\sigma_{i}\sigma_{j}^{-1}$ with $|i-j|=1$ by $\sigma_{j}^{-1}\sigma_{i}^{-1}\sigma_{j}\sigma_{i}.$

Example 3.5. As in Example 3.2 above, consider $w=\sigma_{1}|\sigma_{2}^{-1}|\sigma_{3}|\sigma_{2}^{-1}|\sigma_{1}$ . Then $w$ con-
tains the factor $a_{1}|\sigma_{2}^{-1}$ , so it is left-reversible to $w_{1}=\sigma_{2}^{-1}|\sigma_{1}^{-1}|\sigma_{2}|\sigma_{1}|\sigma_{3}|\sigma_{2}^{-1}|\sigma_{1}$ . Then $w_{1}$

contains the factor $\sigma_{3}|\sigma_{2}^{-1}$ , so it is left-reversible to $w_{2}=\sigma_{2}^{-1}|\sigma_{1}^{-1}|\sigma_{2}|\sigma_{1}|\sigma_{2}^{-1}|\sigma_{3}^{-1}|\sigma_{2}|\sigma_{3}|\sigma_{1},$

etc. The reader can check that all sequences of left-reversings from $w$ leads in six steps to
the word $\sigma_{2}^{-1}|\sigma_{1}^{-1}|\sigma_{1}^{-1}|\sigma_{3}^{-1}|\sigma_{2}^{-1}|\sigma_{2}|\sigma_{3}|\sigma_{1}|\sigma_{2}|\sigma_{3}|\sigma_{1}$ . The latter word cannot be left-reversed,
for it contains no factor of the form $\sigma_{i}|\sigma_{j}^{-1}.$

As in the case of right-reversing relation $\wedge$ , it is obvious that $w\cup w’$ implies $w\equiv w’.$

Note that $w\cup w’$ does not imply $w’\cap w$ : for instance, we have $\sigma_{i}^{-1}|\sigma_{i}\cup\epsilon$ (the empty
word), but $\epsilon V\vee\sigma_{i}^{-1}|\sigma_{i}.$

The braid words that are terminal with respect to left-reversing are the words that
contain no factor $\sigma_{i}|\sigma_{j}^{-1}$ , hence the words of the form $u^{-1}|v$ with $u,$ $v$ positive. By an
argument symmetric to the one used for Lemma 3.3, one obtains

Lemma 3.6. For every braid word $w$ , there exist positive braid words $u,$ $v$ such that $w$ is
left-reversible to $u^{-1}|v.$

4 Proof of Proposition 2.5

With reversing transformations at hand, we can come back to the Hurwitz action of n-
strand braid words on $S^{n}$ when $(S, *)$ is a right-cancellative shelf. We begin with two
results that connect colorings with the right- and left-reversing relations of Section 3.
These two results are the technical core of the argument.
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Lemma 4.1. Assume that $(S, *)$ is a right-cancellative shelf and $w,$ $w’$ are $n$ -strand braid
words satisfying $w\cap w’$ . Then, for every sequence $x$ in $S^{n}$ , if $x\cdot w$ is defined, so is $x\bullet w’,$

and we have $x\bullet w’=x\bullet w.$

Proof. It suffices to treat the case of a one-step right-reversing. The cases of $\sigma_{i}^{-1}|\sigma_{i}c\sim\epsilon$

and $\sigma_{i}^{-1}|\sigma_{j}\wedge a\cdot|\sigma_{i}^{-1}$ with $|i-j|\geq 2$ are straightforward, so the point is to prove the

result for $\sigma_{i}^{-1}|\sigma_{j}$ with $|i-j|=1$ . Hence, it is sufficient to consider the cases of $\sigma_{1}^{-1}|\sigma_{2}$

and $\sigma_{2}^{-1}|\sigma_{1}$ (which do not coincide).
So we first assume that $(x, y, z)\bullet\sigma_{1}^{-1}|\sigma_{2}$ is defined. By definition, we have $\sigma_{1}^{-1}|\sigma_{2}c\sim$

$\sigma_{2}|\sigma_{1}|\sigma_{2}^{-1}|\sigma_{1}^{-1}$ , so we aim at proving that $(x, y, z)\cdot\sigma_{2}|\sigma_{1}|\sigma_{2}^{-1}|\sigma_{1}^{-1}$ is defined as well and
equal to $(x, y, z)\cdot\sigma_{1}^{-1}|\sigma_{2}$ . Now the assumption that $(x, y, z)\cdot\sigma_{1}^{-1}$ is defined implies that
there exists $y’$ satisfying $y’*x=y$ . Using (2), we deduce

$(y’*z)*(x*z)=(y’*x)*z=y*z,$

and the top diagrams in Figure 3 witness that $(x, y, z)\cdot\sigma_{2}|\sigma_{1}|\sigma_{2}^{-1}|\sigma_{1}^{-1}$ is indeed defined
and equal to $(y’, z, x*z)$ , hence equal to $(x, y, z)\bullet\sigma_{1}^{-1}|\sigma_{2}.$

Assume now that $(x, y, z)\bullet\sigma_{2}^{-1}|\sigma_{1}$ is defined. By definition, we have $\sigma_{2}^{-1}|\sigma_{1}\subset\sim$

$\sigma_{1}|\sigma_{2}|\sigma_{1}^{-1}|\sigma_{2}^{-1}$ , so our aim is to prove that $(x, y, z)\cdot\sigma_{1}|\sigma_{2}|\sigma_{1}^{-1}|\sigma_{2}^{-1}$ is defined and equal

to $(x, y, z)\bullet\sigma_{2}^{-1}|\sigma_{1}$ . Then the assumption that $(x, y, z)\cdot\sigma_{2}^{-1}$ is defined implies that there
exists $z’$ satisfying $z’*y=z$ . Using (2), we deduce

$(x*z’)*y=(x*y)*(z’*y)=(x*y)*z,$

and the bottom diagrams in Figure 3 witness that $(x, y, z)\cdot\sigma_{1}|\sigma_{2}|\sigma_{1}^{-1}|\sigma_{2}^{-1}$ is defined and
equal to $(z’, x*z’, y)$ , hence equal to $(x, y, z)\bullet\sigma_{2}^{-1}|\sigma_{1}.$

$\square$

Figure 3: Colorability $vs$ . right-reversing: if $(x, y, z)\cdot\sigma_{1}^{-1}|\sigma_{2}$ exists, then so does $(x, y, z)\cdot\sigma_{2}|\sigma_{1}|\sigma_{2}^{-1}|\sigma_{1}^{-1}$

and it takes the same value (top diagrams); similarly, if $(x, y, z)\bullet\sigma_{2}^{-1}|\sigma_{1}$ exists, then so does $(x, y, z)$ $\bullet$

$\sigma_{1}|\sigma_{2}|\sigma_{1}^{-1}|\sigma_{2}^{-1}$ and it takes the same value (bottom diagrams).

We now consider left-reversing, for which we obtain a symmetric (but not parallel)

result: if $w$ left-reverses to $w’$ , then the colorability of $w’$ implies that of $w.$

Lemma 4.2. Assume that $(S, *)$ is a right-cancellative shelf and $w,$ $w’$ are $n$ -strand braid

words satisfying $w\cup w’$ . Then, for every sequence $x$ in $S^{n}$ , if $x\cdot w’$ is defined, so is
$x\bullet w$ , and we have $x\bullet w’=x\bullet w.$
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Proof. As above, it suffices to treat the case of a one-step left-reversing, and the cases
of $\sigma_{i}|\sigma_{i}^{-1}\cup\epsilon$ and $\sigma_{i}|\sigma_{j}^{-1}\cup\sigma_{j}^{-1}|\sigma_{i}$ with $|i-j|\geq 2$ are straightforward. So the point
is to prove the result for $\sigma_{i}|\sigma_{j}^{-1}$ with $|i-j|=1$ . Hence, it is sufficient to consider
the cases of $\sigma_{1}|\sigma_{2}^{-1}$ and $\sigma_{2}|\sigma_{1}^{-1}$ . By definition, we have $\sigma_{1}|\sigma_{2}^{-1}\cup\sigma_{2}^{-1}|\sigma_{1}^{-1}|\sigma_{2}|\sigma_{1}$ and
$\sigma_{2}|\sigma_{1}^{-1}\cup\sigma_{1}^{-1}|\sigma_{2}^{-1}|\sigma_{1}|\sigma_{2}.$

Assume first that $(x, y, z)\bullet\sigma_{2}^{-1}|\sigma_{1}^{-1}|\sigma_{2}|\sigma_{1}$ is defined. We want to prove that $(x, y, z)$ $\bullet$

$\sigma_{1}|\sigma_{2}^{-1}$ is defined and equal. The assumption that $(x, y, z)\cdot\sigma_{2}^{-1}|\sigma_{1}^{-1}$ is defined implies
that there exist $z’$ and $z”$ satisfying $z’*y=z$ and $z”*x=z’$ . Using (2), we deduce

$(z”*y)*(x*y)=(z”*x)*y=z’*y=z,$

and the top diagrams in Figure 4 witness that $(x, y, z)\cdot\sigma_{1}|\sigma_{2}^{-1}$ is defined and equal
to $(y, z”*y, x*y)$ , hence equal to $(x, y, z)\cdot\sigma_{2}^{-1}|\sigma_{1}^{-1}|\sigma_{2}|\sigma_{1}.$

Assume now that $(x, y, z)$ $\bullet$
$\sigma_{1}^{-1}|\sigma_{2}^{-1}|\sigma_{1}|\sigma_{2}$ is defined. The assumption that $(x, y, z)$ $\bullet$

$\sigma_{1}^{-1}|\sigma_{2}^{-1}$ is defined implies that there exist $y’$ and $z’$ satisfying $y’*x=y$ and $z’*x=z.$
Using (2), we deduce

$(y’*z’)*x=(y’*x)*(z’*x)=y*z,$

and the bottom diagrams in Figure 4 witness that $(x, y, z)\cdot\sigma_{2}^{-1}|\sigma_{1}$ is defined and equal
to $(z’, x, y*z)$ , hence equal to $(x, y, z)\bullet\sigma_{1}^{-1}|\sigma_{2}^{-1}|\sigma_{1}|\sigma_{2}.$ $\square$

Figure 4: Colorability $vs$ . left-reversing: if $(x, y, z)\bullet\sigma_{2}^{-1}|\sigma_{1}^{-1}|\sigma_{2}|\sigma_{1}$ is defined, then so is $(x, y, z)\bullet\sigma_{1}|\sigma_{2}^{-1}$

and it takes the same value (top diagrams); similarly, if $(x, y, z)\sigma_{1}^{-1}|\sigma_{2}^{-1}|\sigma_{1}|\sigma_{2}$ is defined, then so is
$(x, y, z)\bullet\sigma_{2}|\sigma_{1}^{-1}$ and it takes the same value (bottom diagrams).

We can now establish Proposition 2.5.

Proof of Proposition 2.5. Owing to the rules (5) and (14), for each initial sequence $x$ in $S^{n}$

and each $n$-strand braid word $w$ , either the initial colours can be propagated throughout
the diagram $D(w)$ encoded by $w$ and there is exactly one output sequence which is denoted
by $x\cdot w$ , or there exists at least one negative crossing where the division is impossible
and then $x\bullet w$ does not exist.

The point is to guarantee that $S$-colorings satisfy (15), (16), and (17). First, (15)
follows from Proposition 1.1 and from the assumption that $(S, *)$ is a shelf.

Let us now consider (16), that is, the existence of at least one sequence of colors eligible
for a braid word or, more generally, a finite sequence of braid words. We first consider
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the case of one unique braid word $w$ . By Lemma 3.6, there exist positive braid words $u,$ $v$

satisfying $w\cup u^{-1}|v$ . We observe that, if $x$ is any sequence in $S^{n}$ , then starting from
the colors $x$ in the middle of the diagram $D(u^{-1}|v)$ and propagating the colors to the left
through $u^{-1}$ and to the right through $v$ as in the diagram

$x\cdot u arrow x arrow x\cdot v$

provides a legal $S$-coloring. In other words, one has, for every sequence $x,$

$(x\cdot u)\cdot u^{-1}|v=x\cdot v.$

Since $w\cup u^{-1}|v$ holds, Lemma 4.2 then implies $(x\bullet u)\bullet w=x\bullet v$ , showing that $y\bullet w$ is
defined for any initial sequence of colors $y$ of the form $x\bullet u.$

Consider now a finite family of braid words $w_{1}$ , , $w_{p}$ with $p\geq 2$ . For every $k$ , there
exist positive braid words $u_{k},$ $v_{k}$ satisfying $w_{k}\cup u_{k}^{-1}|v_{k}$ . Then, in the involved braid
monoid $B_{n}^{+}$ , the braids $[u_{1}]$ , , $[u_{p}]$ admit a common left-multiple [16], that is, there exist
positive braid words $u_{1}’$ , , $u_{p}’$ satisfying $u_{1}’|u_{1}\equiv$ $\equiv u_{p}’|u_{p}$ . Let $x$ be an arbitrary
sequence in $S^{n}$ . Then, for every $k$ , the sequence $x$ $\bullet$ $u_{k}’|u_{k}$ is defined since $u_{k}’|u_{k}$ is a
positive braid word. Let $y=x\cdot u_{1}’|u_{1}$ . Then, for every $k$ , as we have $u_{k}’|u_{k}\equiv u_{1}’|u_{1},$

whence $u_{k}’|u_{k}\equiv u_{1}’+|u_{1}$ since all involved words are positive, and, therefore, (13) implies
$x\bullet u_{k}’|u_{k}=y$ . Hence, as before, $y\bullet(u_{k}’|u_{k})^{-1}$ , that is, $y\bullet u_{k}^{-1}|u_{k}^{J-1}$ , is defined, and it is
equal to $x$ . So, a fortiori, $y\bullet u_{k}^{-1}$ is defined for every $k$ , and so is $y\cdot u_{k}^{-1}|v_{k}$ since $v_{k}$ is
positive. Finally, since $w_{k}\cup u_{k}^{-1}|v_{k}$ holds, Lemma 4.2 implies that $y\bullet w_{k}$ is also defined
for every $k$ , which completes the proof of (16).

Finally, let us consider (17). So assume that $w,$ $w’$ are equivalent (signed) braid words,

and $x\cdot w$ and $x\cdot w’$ are defined. Write $y=x\cdot w$ and $y’=x\cdot w’$ . We want to
show that $y$ and $y’$ are equal. By Lemma 3.3, there exist positive words $u,$ $v,$ $u’,$ $v’$ such
that $wc\sim u|v^{-1}$ and $w’\cap u’|v^{\prime-1}$ . Then Lemma 4.1 implies $y=x\cdot u|v^{-1}$ (meaning in
particular that the latter is defined) and, similarly, $y’=x\bullet u’|v^{\prime-1}$ . In the monoid $B_{n}^{+}$ , the
braids $[u]$ and $[u’]$ admit a common right-multiple [16], so there exist positive words $w_{0},$ $w_{0}’$

satisfying $u|w_{0}\equiv+u’|w_{0}’$ , whence $u|w_{0}\equiv u’|w_{0}’$ . Then the assumption $w\equiv w’$ implies
$u|v^{-1}\equiv u’|v^{\prime-1}$ , whence $v|u^{-1}\equiv v’|u^{\prime-1}$ , and we deduce

$v|w_{0}\equiv v|u^{-1}|u|w_{0}\equiv v’|u^{\prime-1}|u|w_{0}\equiv v’|u^{;-1}|u’|w_{0}’\equiv v’|w_{0}’,$

which in turn implies $v|w_{0}\equiv+v’|w_{0}’$ since these words are positive and $B_{n}^{+}$ embeds in $B_{n}.$

For every sequence $z$ in $S^{n}$ and every positive $n$-strand braid word $w_{1}$ , the sequence
$z$ $\bullet$ $w_{1}|w_{1}^{-1}$ is defined and equal to $z$ . So the equality $x\bullet u|v^{-1}=y$ implies

(18) $x\cdot u|w_{0}|w_{0}^{-1}|v^{-1}=y.$

Put $z=x\bullet$ $u|w_{0}$ . Then (18) implies $z\bullet w_{0}^{-1}|v^{-1}=y$ and, therefore, we have

(19) $x\bullet u|w_{0}=z$ and $y\cdot v|w_{0}=z.$
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Putting $z’=x\cdot u’|w_{0}’$ , we similarly obtain

(20) $x\cdot u’|w_{0}’=z’$ and $y’\cdot v’|w_{0}’=z’.$

Now, we saw above that $u|w_{0}$ and $u’|w_{0}’$ on the one hand, and $v|w_{0}$ and $v’|w_{0}’$ on the
other hand, are equivalent positive braid words. By (13), we first deduce $z=z’$ , and
then $y=y’$ by uniqueness of the action of negative braids when they are defined. So (17)
is satisfied, and the proof of Proposition 2.5 is complete. $\square$

Remark 4.3. It is explained in [12, Chap. IV] how the Hurwitz (partial) action associated
with the shelf of Example 2.1 (that is not a rack) allows for constructing a left-invariant
linear ordering on the braid group $B_{n}$ . It is perhaps worth mentioning that, in [12],
the left counterpart of (2), that is, the left version of self-distributivity is considered,
and, therefore, what is considered is the symmetric version of the braid operation of
Example 2.1. Of course, one obtains entirely symmetric properties by exchanging the
left and the right sides in computation. However, in terms of braid colorings, the results
are not symmetric, unless the numbering of braid strands is also reversed (starting from
the top strand instead of from the bottom one). Nevertheless, in any case and whatever
convention is used, the symmetry is not complete, because the shift endomorphism sh
of $B_{\infty}$ has no symmetric counterpart: there exists no endomorphism of $B_{\infty}$ mapping $\sigma_{i}$

to $\sigma_{i-1}$ for every $i$ . So some care is definitely needed to adapt the results of [12, Chap. IV]
to a right self-distributive context.

We conclude with an application of Proposition 2.5. Say that a shelf $(S, *)$ is orderable
if there exists a linear ordering $\prec onS$ that is right-invariant $(x\prec y$ implies $x*z\prec y*z$

for every z) and satisfies $y\prec x*y$ for all $x,$ $y$ . Then, for instance, one can show that the
shelf $(B_{\infty}, *)$ of Example 2.1 is orderable. As this shelf is right-cancellative, it is eligible
for Proposition 2.5 and, therefore, every braid diagram $D(w)$ is $(B_{\infty}, *)$ -colorable in at
least one way. Then we immediately deduce:

Proposition 4.4. A braid word in which all generators $\sigma_{i}$ with maximal $i$ are positive
(no $\sigma_{i}^{-1}$) is not trivial that is, it does not represent the braid 1.

Proof. Assume that $w$ is an $n$-strand braid word in which $\sigma_{n-1}$ occurs but $\sigma_{n-1}^{-1}$ does not.
We color the diagram $D(w)$ using $(B_{\infty}, *)$ (or any orderable shelf), By Proposition 2.5,
there exists at least one sequence $y$ that can be propagated through the diagram $D(w)$ .
Then, with the notation of Figure 5, we have

$y_{n}\prec x*y_{n}\prec x’*(x*y_{n})\prec$ ,

so the output color on the nth strand is certainly strictly larger than $y_{n}$ , whereas, using
the same input colors, the output color of the nth strand in the diagram $D(\epsilon)$ is $y_{n}.$

Hence, $w\equiv\epsilon$ is impossible. $\square$

So we see in this example that even a partial action may be useful and, therefore, so
are techniques like the ones explained above.

To conclude, let us recall that the current techniques only allow for extending the Hur-
witz action to shelves that need not be racks but neverthess are right-cancellative. As there
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$\neq y_{n}$

Figure 5: A braid diagram in which all top crossings have the same orientation is not trivial: using
the partial action of Proposition 2.5 and coloring the strands using an orderable shelf, the colors keep
increasing on the top strand, so the diagram cannot be trivial.

exist a number of such structures (in particular, all free shelves are right-cancellative), the
range of applications is promising. However, there also exist a number of shelves that are
not right-cancellative: here we think in particular of the finite Laver tables [18, 11, 13, 19],
which have fascinating combinatorial properties and appear as natural candidates for po-
tential topological applications. So, clearly, further extensions of the techniques explained
above are desirable: for instance, one might renounce to consider individual sequences of
colors and, instead of going from one sequence of input colours to one sequence of output
colours, consider a correspondence involving finite families of sequences.
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