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1. INTRODUCTION

In this summary, we consider maximal L!-regularity of the Cauchy problem for para-
bolic equations in the non-reflexive homogeneous Besov space.

Let X be a Banach space and A be a closed linear operator in X with a densely defined
domain D(A). Given f € L?(0,T;X) (1 < p < o0), we consider the abstract Cauchy
problem with 0 < ¢t < T < oo:

d
a—t-u+Au—f, t>0, (1.1)

u(0) =0, t=0

Then it is called that A has maximal L? regularity if there exists a unique solution
u € WHP(0,T; X) N LP(0,T; D(A)) to the abstract parabolic equation (1.1) and satisfies
the estimate

d
Bt A xy < C XY 1.2
“dtu LoOTX) + || U“LP(O,T,X) S ||f”LP(0,T,X) (1.2)

where C' is a positive constant independent of f. In a general theory, maximal regular-
ity is well established for any Banach space X that satisfies “Unconditional Martingale
Difference” (called as UMD). See for the details [2], [4], [8], [13], [14], [15], [20], [21],
[26]. On the other hand, maximal regularity on non-UMD Banach spaces, for instance
non-reflexive Banach space such as L or L*-like spaces, requires a different way to show
it. When we consider the Cauchy problem for the linear parabolic equation the estimate
for maximal regularity (1.2) reflects directly full regularity of the solution. Let u solve
the Cauchy problem

ou—Lou=f, t>0 z€R"
{t qu=f (1.3)

U(O,Q?) = 'LL()(:E), T € R’n,
where the operator £, denotes the uniformly elliptic operator of second order, 9, denotes
the partial derivative by ¢ and ug and f are given initial and external data. Then general
theory is stated avoding the end point spaces such as L' or L* in both space and time

variables. In the case of Lo = A, we explicitly proved maximal regularity on the homoge-
nous Banach spaces [22], [23]. To state the result precisely, we first recall the definition
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of the Besov space. Let {@,};cz be the Littlewood-Paley dyadic decomposition of unity

satisfying that

PRAGES!

j€z
for all £ # 0, where ¢ is the Fourier transform of ¢ and supp ¢; C {€ € R”| Pl < gl <
2+1}. For s € R and 1 < p,0 < o0, we define the homogeneous Besov space Bj ,(R™) by

B;,(R™) = {f € §"/P; | fll,, < o0}
with the norm
. 1/0
(S 2*lgs = f1g) 10 <o,
s, =4 5%
sup 2”°||¢; * fllp, o =00
JE€Z
and P denotes all polynomials. We also introduce the inhomogeneous Besov spaces
B; ,(R") by
B, (R") ={f € &% ||f]

B}s’)a < OO}

with the norm

. 1/o
(= £llg + 22065+ £l5) 1< 0 < o0,
1 £llss, = 720
I * fll, + s.1>110) 2°\|p; * fllp, 0 =00
JZ

where 1 is a smooth cut off function with

PO+ b6 =1
320
for all £ € R™ (cf. [5], [6], [25]).
One of a general result in the Besov spaces can be seen in [23]:

Proposition 1.1 (endpoint maximal regularity). Let Lo = A, 1 < p,0 < o0 and [ =
[0,T) be an interval with T < co. For f € LP(I; BY (R™)) and uo € Blz’(pl_l/p)(]R”), let
u be a solution of the Cauchy problem of the heat equation (1.3). Then there exists a
constant Cyr > 0 such that

“atu“LP(I;B‘f,p) + “Vzu”Lp(I;Bg,p) < CM('IUOI|B§f;—l/ﬂ) + “f”LP(I;B?,p))'

Proposition 1.1 does not cover the end-point case p = 1, partially because the argument
in the proof in [23] involves a duality structure and it is not clear if maximal L!-regularity
holds by applying the method utilized there. On the other hand, Danchin [10], [11] (see
also Haspot [17]) obtained maximal regularity in the homogeneous Besov space for the
case p = 1. In this paper, we reconsider maximal L!-regularity in the Besov space and its
optimality in the homogeneous Besov spaces.
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2. RESULTS FOR A CONSTANT COEFFICIENT CASE
Our main statement for the Cauchy problem for the heat equation (1.3) is the following:

Theorem 2.1 (optimal maximal L! regularity). Let L, = A, 1 < p < oo. For f €
L'(Ry; B (R™)) andug € B, (R™) there exists a unique solution u to (1.3) which satisfies
the estimate: There exists a positive constant Cp > 0 only depending on n, p such that

100l xr, ) + 11Vl a0,y <O (Juollag, + 1l xais, ) - (2.1)

Besides if f = 0, then the reqularity condition for the initial data is optimal. Namely
there ezists a constant Cr, = Cp(n,p) > 0 such that for all uo € BY,(R")

Crlluollgg, <10l ag, ) + [ V2l sy (2.2)

The upper estimate of (2.1) was obtained by Danchin [9], [10], [11] and Haspot [17]
with 1 < p < oo (see also Danchin-Mucha [12]). However our method to obtaining the
estimates (2.1) seems very different from those existing arguments. In fact, our method
admits the fractional order ellipic operator such as £, = (—A)*/2 for & > 0 and an
analogous estimate in Theorem 2.1 also holds. We state this version precisely in below
(Theorem 2.9).

If we replace up € BY, (R") into uo € BY,(R™) or K2, (R") for 1 < o < 00, then maximal
regularity in L!'(Ry; BS (R™) or L} (R ; F9, (R™)) fails since the lower bound by the initial
data and the strict inclusion result for the sub-sufix o such as Bg,l(R") - BS,U(R"). In
particular the estimate in L'(R,; L?(R"));

/0 lAePuq,dt < Cllull, (2.3)

generally fails. If 1 < p < 2, then Bg,l CIF= F£2 - Bgyz, and if 2 < p < oo then
Bl C BY, C F, = L so that the estimate (2.3) contradicts the result (2.2) for general
data uy. The equivalence between the homogeneous Besov norm and the expression of

the heat kernel is also pointed out in Bahouri-Chemin-Danchin [3] by the following form:

oo
| el = ol
0 ,

See for the application of this expression to the initial boundary value problem for the
incomressible Navier-Stokes equation, Cannone-Planchon-Schonbek [7].

Giga-Saal [16], proved maximal L!-regularity over the class of Fourier transformed finite
Radon measures FM(R™). Let M(R") be a class of signed finite Radon measures and
let

FMER™) = {f=f,u e MR"}
with the norm || f||Fa¢ = ||pliam1, where ||u||pm denotes the total variation of u € M(R™).

Proposition 2.2 (Giga-Saal). Let u be a solution to the Cauchy problem of the heat
equation (1.3) with Lo = A. Then there exists a constant C > 0 such that Then for



uy € FM(R") and f € LYR,; FM(R")) mazimal L'-reqularity for the heat equation
holds:

18eull 1 zppey + V20| 2 rmpgy < Cmallluollzme + 1f lzacrizag). (2.4)
They applied this estimate for solving the Cauchy problem of the incompressible Navier-

Stokes equations with the Coriolis force. Our result is a version of improvement of the
Giga-Saal estimate (2.4) since the following embedding holds.

FM(R")/{constant} — Bf,’o,l (R™).

In particular the embedding is continuous. For the case initial data is constant, then
maximal regularity is trivial. If f = 1 and u = 0 then u(¢,z) = t is a unique solution and
again maximal regularity holds in FM. The homogeneous Besov space can not include
this case however the estimate itself is trivial.

As a corollary of Theorem 2.1, we obtain the lower estimate for f # 0 case.

Corollary 2.3. Let L5 = A, 1 < p < oo and the constants Cyy and Cp, represents
the upper bound of (2.1) and the lower bound of (2.2), respectively. If ug € Bg’l and

f e LY (Ry; Bg’l) satisfy
Coa £l osie y < Comluolze,
or
Culluolige, < I1fllzrmysm0,):
then there exists a constant C(n,p) > 0 such that the solution to the heat equation (1.3)
satisfies
C(”UOHBg,l + “f“Ll(m;Bg’l)) < Hatu”Ll(R%Bgyl) + IIV2UI|L1(R+;B&1)'
For the case ug = 0, the lower estimate holds for the sum of the norm for 8,u and V3u
as
1l crcrast ) < 100l + 197l rga, s

On the other hand, for the case that f = 0, the lower estimate (2.2) holds for the each
term of the right-hand side as

C_IHUOHBg‘I(Rn) < Ilf?tullp(m;gg’l(mn)),

- 2
C IHUOHB&I(]R") <V u”Ll(]R_HBg,l(]R")))

which are derived from the following proposition.

Proposition 2.4. For 1 < p < oo, let ug € Bg’l.
(1) Then there ezists a constant C > 0 such that for any k € Z it holds

9—2¢+2

CTY e xuolly <Y /2 18e* ugll,ds < € min(1, e ™) |, * uolly. (2.5)

<k o<k 727 jez
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(2) For I = [0,T), there exists an integer { = ["%[;TE] and a constant C > C > 0

only depending on n, p and ||¢||; such that

T -
C Y lIgs*uoll, < / 1A S ugllpds < €y min(2079, 1)[1¢; * uoll,-  (26)
0

it JEZ

When we consider a time local problem to (1.3), then the initial data can be chosen in
the inhomogeneous Besov space Bg,l. Indeed, we have the following:

Theorem 2.5. Let 1 < p < oo and for T < oo let I = [0,T). For ug € BY,, there exists

1)
Co>0and Cr>0
T
Colualsg, < [ 1A¢" ualds < Crlualsg,

where Cp ~ Cr = O(log T). In particular mazimal L* regularity in the local interval holds
for I =[0,T). For the solution of the heat equation (1.3), there exists a constant Cr > 0
such that

HatuHLl(I;Bg,l) + ||V2u||LI(I;B,‘,3,1) < CZ’T(”“’O”B;)’1 + ”f“Ll(I;Bgyl))’ (27)

where Cp = O(logT) as T — 0o. The estimate can be uniform in T if we exchange into
the homogeneous Besov space BY ;.

Now we shall show the results for the Cauchy problem of the heat equation with constant
coefficients in a slightly general setting. We consider the Cauchy problem of the parabolic

equation with the fractional Laplacian £, = —(—A)*/2 with o > 0:
atu_‘cau:‘fa t>0)x€Rn)

n (2.8)

u(0, z) = up(z), z € R"™

Theorem 2.6 (optimal maximal L' regularity). Let o > 0 and 1 < p < oo. For
f € L}Ry; BY (R™)) and up € BY|(R™) there exists a unique solution u to (2.8) which
satisfies the estimate: There exists a positive constant Cpy > 0 only depending on a, n, p
such that

100l 2 g0,y + ICatllagm, iy <Cnt (luollse, +Ifln@yey) - (29)

Besides if f = 0, then the regularity condition for the initial data is optimal. Namely
there ezists a constant Cp, = Cr(n,p) > 0 such that for all ug € BY;(R™)

Cm“UOHB;,{1 < ||3tu||L1(m+;Bg,l) + ”Ea“”Ll(m;BgJ) ‘ (2.10)

Theorem 2.1 is a direct consequence from Theorem 2.6 with o = 2 and the bound-
edness of the singular integral operator from BS,I to itself. This general form has some
applications. See for instance Iwabuchi [18].



3. RESULTS FOR A VARIABLE COEFFICIENT CASE
We consider the case where a coefficient is variable.
Ou—a(t,x)Au=f, t>0,z€eR"
{ u(0, z) = up(x), z € R"™
We assume that a(t, z) satisfies the following:

(1) a(t,z) =1+ b(t, z),
(2) there exists b > —1 s.t. b(t,z) > b a.e z,
(3) be Lo(I; By (R™) N C(I; Bpi(R™)) for 1 < g < oo,

Theorem 3.1. Let 1 < p < o0, 1 < g < 0o and a variable coefficients a(t, x) satisfies the
assumption (1), (2), (3). For T > 0 we set I = [0,T) and v := inficq zern (1 + b(¢, x)).
For b € L®(I; BJYY(R™) N O(I; By1“(R™), uo € B3 (R™) and f € LY0,T; B, (R™)),

2
there exists Cpr > 0 the solution u to (3.1) satisfies the estimate:

Hﬁtu[ILl(O’T;B&l) + Z||V2UHL1(0,T;B,‘3,1)

2
<Ot {1+ 10l ey €50 (BT (L 1Bl o)’ } il

T T »
2
+Cun [ e (1 [0+ 10 gy ) 176l .
0 3 q, Py

where p = (CCv)?log(1l + Cyy).
Theorem 3.2. Let 1 <p < o0, 1< g < oo and a variable coefficients a(t, ) satisfies the
assumption (1), (2), (3). For I =[0,T), we set k = [—%%;g‘%]. For b e L*>(I; BZ{"(]R")) N
C(; Bz/lq(R”)), ug € BY,(R™), (3.1) with f = 0 admits a unique solution u which satisfies

c 2
(1 ¥ ”b”Loo(I.B"/‘l)) ; ||¢€ * UOHP < (“atu“Ll(I;Bgl) + Hv u“Ll(I;Bg'l))'
+*q,1 =

Theorem 3.2 shows that for b € L*(I; Bz/lq(R")) N C(I; B:/lq(R")), the class BY, (R")
of up could not be replaced by L*(R"), B,?,U(R”), FgG(R”) (1 < 0 < o) for maximal
L'-regularity.

Danchin [9] and Haspot [17] obtained an analogous estimate for the variable coefficient
case by an elegant usage of L? type energy estimate and the Chemin-Laners spaces. In
this case, the Chemin-Laners space coincides with the Bochner space as

LNI;BY)) = I ({Ll(I; L?)}jeZ) = L'(I; 32,1),
thanks to the fact that the time L! norm and Littlewood-Paley sequence ¢! norm can
be interchanged, where L? denotes the Littlewood-Paley decomposed L? space given by
I/ 1= ||¢; * fllp- As in the constant coefficient case, our method is very much different
from theirs. We use the estimate for the constant coefficient case (Theorem 2.1) and

enploy a freezing arugment in space-time variables and then time variable to obtain the
above result for variable coeflicient. Our theorems Theorem 3.1 and 3.2 can be generalized
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for more general parabolic type equation with a second order uniformly elliptic operator
L:
(1) a parabolic system

du— Y ay(t,)%0u=f, t>0,z€R",
ij=1
u(0, z) = uo(z), z € R”,
where a;;(t, z) satisfies
() aij(t, ) € L(0,T; BYIRY) N C(; B RY), 1< p,q< oo,
(b) aij(t, ) = 0;; + bij(t,z), 1<14,5 < oo,
(C) bij(tvx) = bji(t)x)’ 1 S Z:] S 0,
(d) there exists A > 0 such that 3 7._; a;;&€; > A|¢|? for all € € R™,
(2) the vector valued system such as the Stokes equation or the Lamé equation:
{8tu—Au+V7r=f, t>0,zeR"

u(0,z) = up(x), r € R
Ou — (n+ N)Au + AV(div u) = f, t>0,zeR"
{ U(O, x) = U()(Z'), z € R".

To treat the variable coefficients, we remark that the estimate in the Besov space such
as

lafllse, < Cllallll /1130,

fails in. genera,l.. This is the reason why we adapt the space BZ {q(Rn) for the variable
coefficient which plays a role instead of L* space.

Proposition 3.3. Let 1 <p< oo andl < g< oo. For f € Bqa,l and g € 32,1 there exists
C > 0 such that
Ialsg, < ISl 3 lollg, (32)

,1

For the proof, we refer to Abidi-Paicu [1].

The space Bz/lq(R") has nice embedding property. Let
Co(R™) ={f € C(R") | |f(z)| — 0 as |z| — oo}.

Proposition 3.4. Let 1 < g < 0o and S(R™) be the rapidly decreasing smooth functions.
Then

S(R™) — B(R™) < C,(R™). (3.3)
In particular, the embedding of the left-hand side is dense.
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