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Abstract

Let $G$ be a locally compact Abelian $(LCA)$ group, $A$ a commutative Banach algebra, “X”
and “Y” denote the Banach spaces $ofA$ -module. $L^{1}(G,A)$ stands for the space of all $A$ -valued
commutative Banach aIgebra with convolution product. $L^{p}(G,X)$ , $1\leq p\leq\infty$ , for each $p$ , is a
Banach space. In this note, we study the multipliers of $L^{1}(G,A)$ and the representation of the
homomorphism $L^{1}(G,A)$ module multipliers of $L^{1}(G,A)$ to $L^{p}(G,Y)$ which can be identified
by $L^{1}(G,A)\otimes L^{q}(G,Y^{*})^{*}$ under reasonable conditions, where $1<p<\infty,$ $\frac{1}{p}+\frac{1}{q}=1$ . The
multipliers of $L^{1}(G,A)$ to $C_{0}(G,X)$ is also subscribed.

Key words and phrases: locally compact Abelian (LCA) group, separable Banach space,
Radon Nikodym property, multipliers, invariant operator, projective tensor product space.

1 Introduction and preliminaries

Let $G$ be a locally compact Abelian $(=LCA)$ group with Haar measure $dt$ and
dual group $\hat{G}$ . Let $A$ be a commutative Banach algebra with a bounded approximate
identity. A continuous linear map $T\in \mathfrak{L}(A)\cong \mathfrak{L}(A,A)$ is called a multiplier of $A$ if

$T(a\cdot b)=a\cdot Tb=(Ta)\cdot b$ for all $a,b\in A.$

Denote by $\mathfrak{M}(A)$ the space of all multipliers for $A.$

Clearly, $\mathfrak{M}(A)$ is a Banach subalgebra of $\mathfrak{L}(A)$ . In particular, if $A=L^{1}(G)$ , $a$
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commutative group algebra under convolution product, then the multiplier algebra

$\mathfrak{M}(L^{1}(G))$ has the following equivalent statements $(i)\sim(iv).(See$ Larsen [7], cf also

Lai, Lee and Liu [1]):

Theorem 1. Let $T\in \mathfrak{L}(L^{1}(G))$ . Then the following statements are equivalent.

(i) $T$ commutes with convolution (call Ta multiplier)

$T(f*g)=Tf*g=f*T(g)$ , for all $f,g\in L^{1}(G)$

(ii) Tcommutes.with translation operator $\tau_{a}(a\in G)$ . (call $T$ an invariant opera-

tor)

$T\tau_{a}=\tau_{a}T,$ $\tau_{a}f(t)=f(t-a)$ , for all $a\in G,$

(iii) $\exists$ ! a $\mu\in M_{b}(G)$ , space ofall bounded regular Borel measures such that,

$Tf=\mu*f$, for all $f\in L^{1}(G)$ .

(iv) there exists a boundedfunction $\phi$ on $\hat{G}$ such that

$\hat{Tf}=\phi\hat{f}$
$or$

$\phi=\hat{\mu}\in\overline{M_{b}(G)}\neq\subset C^{b}(\hat{G})$ .

It is remarkable that

(a) the Fourier transforms $\overline{L^{1}(\hat{G})}=A(\hat{G})\neq\subset C_{0}(\hat{G})$ is dense of 1st category in

$C_{0}(\hat{G})$ , the continuous function on $\hat{G}$ , vanishing at infinite.

(b)Similarly, it is known that the Fourier -Stieltjes transforms:
$\hat{\mu}\in\overline{M_{b}(G)}_{\neq}\subset C^{b}(\hat{G})$ , the space of all bounded continuous functions on $\hat{G}.$

By Theorem 1, we see that the definition of multipliers is in various types. Actu-

ally the concept of multiplier comes from Fourier Series of a function $f$ by using a

bounded sequence $\phi(n)$ multiply the Fourier coefficient $c_{n}$ of $f$ , it still approve as

a Fourier coefficient of another function of $g$ . This ideal leads to study for multi-

pliers in harmonic analysis on locally compact Abelian group $G.$

In this Note, we would like to extend the multipliers of $L^{1}(G)$ to the multipliers

of $L^{1}(G,A)$ as well as multipliers of $L^{1}(G,X)$ to $L^{1}(G,Y)$ under module homomor-

phism of Banach $vetor-$ valued functions defined on $I\mathcal{L}A$ group $G$, and compare
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the Banach algebras $L^{1}(G,A)$ and $L^{1}(G)$ , do have the same properties as in the The-
orem 1? Actually, the invariant operator $T$ in $\mathfrak{L}(L^{1}(G,A))$ can not be a multiplier
of $L^{1}(G,A)$ provided $dimA>1.(See$ Tewari, Dutta $and$ Vaidya $[9])$ . That is, in
Theorem 1, $(ii)\Rightarrow(i)$ is false, the other implications are true.

2 Multipliers of Banach algebra.

Let $A$ be a commutative Banach algebra, we say that a Banach space $X$ is
$A$ -module if

$AX\subset X$ , and 1 $a\cdot x1x\leq$ $\Vert a\Vert_{A}$ $\Vert x\Vert_{X}$ for each $a\in A,x\in X.$

and $X$ is said to be an essential $A$ -module if

AX $=X$ , and 1 $ax1x$ $\leq$ $\Vert a\Vert_{A}$ $\Vert x\Vert_{X}$ , for each $a\in A,$ $x\in X.$

For convenience, we give following Theorem to check that an $A$ -module Banach space
to be essential.

Theorem 2. $LetA$ be a commutative Banach algebra with uniform bounded approx-
imate identity. Then any $A$ -module Banach space is essential.

For example, the group algebra $L^{1}(G)$ has bounded approximate identity: $\{e_{\alpha}\},$

where $e_{\alpha}$ is $e_{\alpha}= \frac{\chi_{V\alpha}}{|V_{\alpha}|}$ , where $\{V_{\alpha}\}$ is defined by an open neighborhood system of
the identity $\theta\in G$ with ordered by $\alpha\prec\beta$ if $V_{\beta}\subset V_{\alpha}$ , then $\Vert e_{\alpha}||_{1}=\int_{G}\frac{\chi_{V\alpha}}{|V_{\alpha}|}dt=1.$

Thus by Theorem 2, directly we get easily that

$L^{1}(G)*L^{p}(G)=L^{p}(G)$ , if $1<p<\infty$

if $p=\infty$ , we choose $C_{0}(G)$ , the space of continuous functions vanishing at infinite
on $G$ , we also have

$L^{1}(G)*C_{0}(G)=C_{0}(G)$

Remarkl It is remarkable that not every Banach algebra has a bounded approxi-
mate identity. For example, the space

$A^{p}(G)=\{f\in L^{1}(G)|\hat{f}\in L^{p}(\hat{G}), 1<p\leq\infty\}(\subset L^{1}(G))$
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with norm defined by $\Vert f\Vert_{Ap}=\Vert f\Vert_{1}+\Vert\hat{f}\Vert_{p}$ is a commutative Banach algebra

for each $p,$ $1\leq p<\infty$ . But there is an approximate identity $\{e_{\alpha}\}$ in $L^{1}(G)$ with

Fourier transform $\hat{e_{\alpha}}$ having compact support in $\hat{G}$ for each $\alpha$ , then $\hat{e_{\alpha}}\in L^{p}(\hat{G})$

shows that $\{e_{\alpha}\}$ is also an approximate identity of $A^{p}(G)$ , but this system $\{e_{\alpha}\}$ of

approximate identity is not uniform bounded in $A^{p}(G)$ . (cf. Lai [2, p254])

3 Multipliers of Banach Module Homomorphism.

Let $A$ be a commutative Banach algebra and $X,$ $YA$ -module Banach spaces. $A$

bounded linear operator $T\in \mathcal{L}(X,Y)$ satisfying

(3.1) $T(ax)=a(Tx)$ for all $a\in A,$ $x\in X,$

is called a multiplier of $X$ to $Y$ under $A$ -module. The space of such multipliers is

$A$ -module homomorphisms from $X$ to $Y$ and is denoted by

(3.2) $\mathfrak{M}_{A}(X,Y)=Hom_{A}(X, Y)=\{T\in \mathcal{L}(X,Y)|T(ax)=a(Tx),a\in A,x\in X\}.$

It is a closed subalgebra of $\mathcal{L}(X,Y)$ , the space of all bounded linear mappings of $X$

into $Y$ . In particular, if $A=X=Y=L^{1}(G)$ , then the multiplier space $\mathfrak{M}(L^{1}(G))$

coincides with the expression of isometrically isomorphic relations $\cong$” as follows.

(3.3) $\mathfrak{M}(L^{1}(G))=Hom_{L^{1}(G)}(L^{1}(G),L^{1}(G))\cong(L^{1}(G),L^{1}(G))\cong M_{b}(G)$ .

where $(E(G),F(G))$ stands for the space of all invariant operators commute with

translation operator $\tau_{a}$ on the function spaces of $E(G)$ to $F(G)$ .

In general, the multiplier space $Hom_{A}(X,Y^{*})$ was characterized by Rieffel [8] as

the following dual space of the module tensor product $X\otimes_{A}Y$ :

(3.4) $Hom_{A}(X,Y^{*})\cong(X\otimes_{A}Y)^{*},$

where $\otimes_{A}$ denotes the $A$ -module tensor product defined by $X\otimes_{A}Y=X\otimes_{\gamma}\wedge Y/K.$

$K$ is the closed linear subspace of the complete projective tensor product space $X\otimes_{\gamma}Y\wedge$

generating by elements: $ax\otimes y-x\otimes ay$ , for $a\in A,x\in X,y\in Y$

Here $\otimes_{\gamma}\wedge$ is the completion of the algebra tensor $X\otimes Y$ under the largest reasonable

cross norm $\gamma$, and

$X \otimes Y=\{u=\sum_{i}x_{i}\otimes y_{i} \sum_{i}\Vert x_{i}\Vert_{X}\Vert y_{i}\Vert_{Y}<\infty\}$
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with norm $\gamma(u)\equiv 1|u|||=\inf_{u}\sum_{i}\Vert x_{i}\otimes y_{i}$ $\inf_{u}\sum_{i}\Vert x_{i}\Vert_{x}\Vert y_{i}\Vert_{y}$ , infu means that the
infimum is taken by all representations of $u= \sum_{i}x_{i}\otimes y_{i}$ in $X\otimes Y.$

The reasonable crossnorm means that

$u\in X\otimes Y,$ $u=x\otimes y$ implies $\Vert u$ $x\otimes y$ $x\Vert_{X}\Vert y\Vert_{Y}$ ;

and
$u= \sum_{i}x_{i}\otimes y_{i},$

$\Vert u$ inf $\sum_{i}\Vert x_{i}\Vert_{X}\Vert y_{i}\Vert_{Y}.$

Note that a bounded linear operator $T\in Hom_{A}(X,Y^{*})$ in (3.4) corresponding a
continuous linear functional $\psi$ on $X\otimes_{A}Y$ is given by

$(Tx)(y)=\psi(x\otimes y)$ for all $x\in X,y\in Y.$

Here $Hom_{A}(X,Y^{*})=M_{A}(X,Y^{*})$ is the space of all $A$ -module homomorphisms

from $X$ to $Y^{*}$ , the topological dual of $Y$ , that is, each $T\in Hom_{A}(X,Y^{*})$ satisfies

$T(ax)=a(Tx)$ for all $a\in A,$ $x\in X,$ $Tx\in Y^{*}$

where $T$ is a bounded linear operator from $X$ to $Y^{*};X\otimes_{A}Y$ denotes the $A$ -module
tensor product space of $X$ and $Y.$

There are some known results in scalar-valued function space of $L^{1}(G)$ -module
by convolution. We state three typical $L^{1}(G)-$ module multiplier problems as fol-
lows.

Theorem 3. (i) $Hom_{G}(L^{1}(G),L^{1}(G))\cong M_{b}(G)$ , $(by$ Theorem $1, (iii)\Leftrightarrow(i)$)

where $Hom_{G}=Hom_{L^{1}(G)}$ , and $M_{b}(G)$ is the space of all bounded regular
Borel measures on $G.$

(ii) $Hom_{G}(L^{1}(G),L^{p}(G))\cong(L^{1}(G)\otimes_{G}L^{q}(G))^{*}=(L^{q}(G))^{*}=L^{p}(G)$ ,

for $1<p<\infty,$ $\frac{1}{p}+\frac{1}{q}=1$ where $\otimes_{G}=\otimes_{L^{1}(G)}.$

(iii) $Hom_{G}(L^{P}(G),L^{P}(G))\cong(L^{p}(G)\otimes_{G}L^{q}(G))^{*}\cong S_{p}(G)^{*},$

where $S_{p}(G)$ is a Banach algebra generated by

$\{u=\sum_{i}^{\infty}f_{i}g_{i}:f_{i}\in L^{p}(G),g_{i}\in L^{q}(G),\sum_{i}^{\infty}\Vert f_{i}\Vert_{p}\Vert g_{i}\Vert_{q}<\infty\}$

under pointwise product and the norm is defined by ($cf$ Larsen [7])

$|||u|||= \inf\{\sum_{i}^{\infty}\Vert f_{i}\Vert_{p}\Vert g_{i}\Vert_{q};u=\sum_{i}^{\infty}f_{i}\cdot g_{i}\in S_{p}(G)\}.$
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4 Multipliers of Banach-valued Functions on $G.$

Let $A$ be a commutative $semi-$ simple Banach algebra with bounded approximate

identity. Assume $X$ is on $A$ -module Banach space. It is not hard to prove that

$L^{1}(G,A)=L^{1}(G)\otimes_{7}A\wedge$ . Since both $L^{1}(G)$ and $A$ have bounded approximate identity,

thus $L^{1}(G,A)$ is a commutative Banach algebra with bounded approximate identity.

By Theorem 2

$L^{1}(G,A)*L^{p}(G,X)=L^{p}(G,X)$ , $1<p<\infty$

Denote by

$L^{1}(G,A)=$ { $f$ : $Garrow A|f$ is measurable and is Bochner integrable on $G$}

Then $L^{1}(G,A)$ is a commutative Banach algebra, under convolution.

Actually

$|f*g(t)|_{A} \leq\int_{G}|f(s-t)|_{A}|g(s)|_{A}ds$ $g \Vert_{1}\int_{G}|f(s-t)|_{A}ds$ $g\Vert_{1}\Vert f\Vert_{1},$

$\Vert f*g\Vert_{1}=\int_{G}|f*g(t)|_{A}d\iota\leq\Vert g\Vert_{1}\int_{G}|f(s-t)|_{A}dt\leq\Vert g\Vert_{1}\Vert f\Vert \mathfrak{l}$

Denote by

$L_{X}^{p}=$ { $f$ : $Garrow X|f$ is measurable and $|f$ $|_{X}\in L^{p}(G)$ }, $1\leq p<\infty,$

$\Vert f\Vert_{p}=(\int_{G}|f(t)|_{X}^{p}dt)^{\frac{1}{p}}$ , for $f\in L_{X}^{p},$ $1\leq p<\infty$ (2.1)

and for $p=\infty,$ $\Vert f\Vert_{\infty}=ess\sup_{t\in G}|f(t)|_{X}$
for $f\in L_{X}^{\infty}$ (2.2)

Show that $L_{X}^{p},$ $1\leq p\leq\infty$ are Banach spaces with the norm $\Vert f\Vert_{p},$ $1\leq p<\infty$ , as

(2.1) and if $p=\infty$ , the norm is taken $\Vert\cdot\Vert_{\infty}$ as (2.2). If $X=\mathbb{C}$ , the complex numbers,

then

$L_{X}^{p}=L^{p}=L^{p}(G)$ , $1\leq p\leq\infty.$

If $X$ and $Y$ are $A$ -module Bananch space, the multiplier space of $X$ to $Y$ is given by

$Hom_{A}(X,Y)=\{T\in \mathfrak{L}(X,Y)|T(ax)=aT(x), a\in A, x\in X\}.$
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Recall [8], Rieffel characterized the homomorphismmodule multiplier is represented

by the dual space of module tensor product as the following form:

$Hom_{A}(X,Y^{*})\cong(X\otimes_{A}Y)^{*}$ or $Hom_{A}(X,Y)\cong(X\otimes_{A}Y^{*})^{*}$ . (if $Y$ is reflexive)

where $\otimes_{A}$ is namely module tensor product of $X$ into $Y^{*}$ or of $X$ into $Y$ and $Z^{*}$ denotes

the dual space of the Banach space $Z$ . The space $\otimes_{A}$ is the complete projective tensor

product $X\otimes_{\gamma}Y^{*}\wedge$ quotients by $K$, that is, $X\otimes_{A}Y=X\otimes_{\gamma}Y\wedge/K.$

Here $K$ is the closed linear subspace of the projective tensor product space $X\otimes_{\gamma}Y\wedge$

generated by the elements $ax\otimes y-x\otimes ay$ ; for $a\in A,x\in X,y\in Y$

and $X\otimes_{7}Y$ is the completion of the algebra tensor $x\otimes y$ under the $\gamma$-norm, and

$X \otimes Y=\{u=\sum_{i}x_{i}\otimes y_{i}|x_{i}\in X,y_{i}\in Y,\sum_{i}\Vert x_{i}\Vert\Vert y_{i}\Vert<\infty\}$

$\gamma(u)=\inf_{u}\{\sum_{i}\Vert xi\Vert\Vert y_{i}\Vert|u=\sum x_{i}\otimes y_{i}\in Y\}$

$=|||u|||= \inf_{u}\sum_{i}\Vert x_{i}\otimes y_{j},x_{i}\in X,y_{i} \inf_{u}\sum_{i}\Vert x_{i}\Vert_{X}\Vert y_{i}\Vert_{Y}$

where $\inf_{u}$ means that the infimum is taken by all representations of $u= \sum_{i}x_{i}\otimes$

$y_{i}$ in $X\otimes Y$ , and the tensor norm. We state the following Theorem for the characteri-

zation of the invariant operators. For detail, we consult Lai [3,4] and [6] cf. also Lai

[5].

Theorem 4. $LetX$ and $Y$ be Banach spaces. Then the following two statements are

equivalent.

(a) $T\in(L^{1}(G,Y),L^{1}(G,X))$ is an invariant operator.

(b) There exists a unique continuous linear map $L\in \mathcal{L}(Y,M_{b}(G,X))$ such that

$T(f\otimes y)=f*L_{9}$ for all $f\in L^{1}(G)$ , $y\in Y.$

Moreover, $(L^{1}(G,Y),L^{1}(G,X))\cong \mathcal{L}(Y,M_{b}(G,X))$ .

Theorem 5. Let $A$ be a commutative semi-simple Banach algebra (not necessarily

with identity) and $X$ a Banach $A$ -module. Then

(5.1) $Hom_{L^{1}(GA)}(L^{1}(G,A),L^{1}(G,X))\cong Hom_{A}(A,M_{b}(G,X))$ .
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In Lai [6], he showed that an invariant operator is also a multiplier if and only if

the $A$ in $L^{1}(G,A)$ must be scalar space $\mathbb{C}.$

Theorem 6. $LetA$ be a commutative Banach algebra with identity ofnonn 1. $X$ be

a unit linked, order-free, Banach-module and $A$ a faithful representation on $X$, then

each invariant operator $T:L^{1}(G,A)arrow F(G,X)$ is a multiplier ifand only $ifA\cong C.$

Here $F(G,X)=L^{p}(G,X)$ for each $p,$ $1\leq p\leq\infty$, or $F(G,X)=C_{0}(G,X)$ .
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