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1 Introduction

Let X be a metric space and 7 : X — X a nonexpansive mapping, that is, 7" satisfies
that d(Tz,Ty) < d(z,y) for all z,y € X. A point z € X such that Tz = z is called
a fixed point of T. Approximation of fixed points of T is one of the central topics in
fixed point theory because it includes various types of problems in nonlinear analysis.

In particular, approximation of fixed points of a mapping defined on a complete
CAT(k) space is a trend of this study and there are a large number of researches
related to this problem. For example, the following result is a convergence theorem
of an iterative scheme called the shrinking projection method on a CAT(1) space.

Theorem 1 (Kimura-Satd [5]). Let X be a complete CAT(1) space such that d(u,v) <
7/2 for every u,v € X and suppose that the subset {z € X : d(z,u) < d(z,v)} of X
is convex for every u,v € X. Let T : X — X be a nonezpansive mapping such that
the set of fived points F = {z € X : Tz = z} is nonempty. For a given initial point
zo € X and Cy = X, generate a sequence {z,} as follows:

Cnv1={2€ X :d(Tzp,2) < d(xpn,2)} NChy,
Tn+1 = PCn.;.lmO)

for each n € N. Then {z,} is well defined and converges to Przg € X, where

Pc : X — C is the metric projection of X onto a nonempty closed convex subset C
of X.

The shrinking projection method was first proposed by Takahashi, Takeuchi, and
Kubota [10], and it has been generalized to various directions. See, for instance,
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Takahashi and Zembayashi [11], Plubtieng and Ungchittrakool [8], Inoue, Takahashi,
and Zembayashi [2], Qin, Cho, and Kang [9], Wattanawitoon and Kumam [13, 12],
Kimura, Nakajo, and Takahashi [4], Kimura and Takahashi [7], Kimura [3], Kimura
and Saté [6], and others.

In this paper, we deal with an approximation of common fixed points for two
mappings. We attempt to prove the main result without using the notion of A-
convergence because it is not easy to understand for the beginners of this study. The
proof shown in this paper only uses basic notions.

2 Preliminaries

Let X be a metric space. We say that X is a geodesic space if, for any u,v € X, there
exists a mapping ¢ : [0,d(u,v)] — X, which is called a geodesic between endpoints
u and v, such that ¢(0) = u, ¢(d(u,v)) = v, and d(c(s),c(t)) = |s —t| for every
s,t € [0,d(u,v)].

If a geodesic is unique for each pair of endpoints, X is said to be uniquely geodesic.
In what follows, we always assume that X is a complete uniquely geodesic space such
that d(u,v) < w/2 for every u,v € X. On a uniquely geodesic space, the convex
combination of two points u,v € X can be defined in a natural way and we denote it
by au® (1—a)v, where a € [0,1]. For C C X, if every geodesics having the endpoints
in C is contained in C, then C is said to be convex.

Let S? be a unit sphere of 3-dimensional Euclidean space R3 and ds2 be the spherical
metric defined on S2. A geodesic space X is called a CAT(1) space if for each geodesic
triangle on X is thinner than or equal to its comparison triangle on S2. Namely, every
p,qg € A C X and their comparison points §,§ € A C S? satisfy the following which
is called CAT(1) inequality:

d(p,q) < ds:(D,q)-

If X is a CAT(1) space, then for z,y,z € X and t € [0, 1], the following inequality
holds; see [5].

cosd(tx ® (1 — t)y, z) sind(z,y)
> cosd(z, z) sin(td(z, y)) + cosd(y, z) sin((1 — t)d(z,y)).

Let C be a nonempty closed convex subset C' of X. Since X satisfies in our setting
that d(u,v) < 7/2 for every u,v € X, we know that for every x € X, there exists
a unique y, € C such that d(z,y,) = d(z,C), where d(z,C) = infyec d(z,y). We
define a mapping Pc : X — C by Pcx = y, for x € X and we call it the metric
projection of X onto C.

For more details of CAT(1) spaces and related notions, see [1].

We say a mapping T : X — X is quasinonexpansive if the set F(T) = {z € X :
Tz = 2} of fixed points is nonempty and d(T'z,z) < d(z,z) for every z € X and
z € F(T). We also know that if X is CAT(1) space with d(u,v) < m/2 for every
u,v € X, then F(T) is closed and convex.



3 Approximation of a common fixed point

In this section, we prove a convergence theorem of an iterative sequence generated
by the shrinking projection method for two quasinonexpansive mappings defined on
a complete CAT(1) space.

Theorem 2. Let X be a complete CAT(1) space such that d(u,v) < m/2 for every
u,v € X and suppose that the subset {z € X : d(z,u) < d(z,v)} of X is convex for
every u,v € X. 'Let S and T be continuous quasinonezpansive mappings of X to itself
such that the set of common fized points F = {2z € X : Sz = z = Tz} is nonempty.
Let {an} be a real sequence in [0,1] such that there exists a subsequence {a,,} of {an}
converging to as € |0,1[. For a given initial point zg € C' and Cy = X, generate a
sequence {x,} as follows:

Yn = Cl{nS.'L'n 2] (1 - an)Txnv
Crny1={2€ X : d(yn, 2) < d(zn,2)} NCy,

xn—l—l Pcn+1

for each n € N. Then {z,} is well defined and converges to Ppxy € X, where
Pc : X — C is the metric projection of X onto a nonempty closed convex subset C
of X.

To prove this type of convergence theorems, one tends to make use of the following
theorem.

Theorem 3 (Kimura-Satd [5]). Let X be a complete CAT(1) space and {C,} a
sequence of nonempty closed T-conver subsets of X. Let Co, be a nonempty closed
mw-conver subset of X. Then the following are equivalent:

(i) Coo = AiM-lim,, o Chr;

(ii) for z € X and a subsequence {Cpn,} of {Cvn}, if one of limsup,_, . d(z,Ch,)
and d(z, Cwo) is less than /2, then the other is also less than w/2 and {Pg, .z}
converges to Po_ .

Although this result is useful, one may think that it is rather difficult to understand
because it requires the notion of A-Mosco convergence of a sequence of subsets in X.
We actually do not need to use this concept since we only use the result for the case
where a sequence {Cy,} of subsets of X is decreasing with respect to inclusion. Here,
we show the proof of Theorem 2 without using the notion of A-Mosco convergence.

Proof of Theorem 2. We first prove the well-definedness of {z,,} by showing that every
Cn is closed, convex, and it includes F' # @ by induction. It is trivial that Cyp = X
is a closed convex set such that F C Cy, and a point 2o € X is given. Suppose that
Ck is defined as a closed convex subset of X which includes F for some k € N. Then,
xx = Pg,xqg is defined. Since S and T are quasinonexpansive and sint is concave on
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t € [0,7m/2] with sin0 = 0, for z € F we have that

cos d(yk, z) sin d(Szy, Txk)

= cos d(ax Sz ® (1 — ag)Tzk, 2) sind(Sz, Txk)

> cos d(Szk, z) sin(agd(Szk, Tzk)) + cos d(Txk, 2) sin((1 — ax)d(Szk, Tr))
> cos d(zk, z)(sin(axd(Szk, Txk)) + sin((1 — ag)d(Szr, Tr)))

> cos d(xk, z)(ak sind(Szk, Tzr) + (1 — ag) sind(Szg, Txx))

= cos d(zg, ) sin d(Szk, Tzk),

and thus d(yk, 2) < d(xg,2). This implies that
Fc{ze X :d(yk,2) < d(zk,2)} N C = Cry1-

It is obvious from the continuity of the metric and the assumption of the space that
Cy is closed and convex. Hence {z,} is well defined and {C,} is a sequence of closed
convex subsets of X satisfying that F C C, for every n € N.

It holds by definition that {C,,} is decreasing with respect to inclusion and C =
Mo~ ; Cyr is nonempty since Coo O F. Since z, = Pc,xo for every n € N, we
have that {d(z,,z0)} is nondecreasing and bounded above. Thus there exists d =
limy, 0 d(Zn, o)-

Let m,n € N such that m < n. Then, both z,, and z, belong to C,, and since Cy,
is convex, we have that

cos d(Zm, To) Sin d(Tm, Tn)

1 1
> cosd (ixm + an,zo) sind(zm, Tn)

1 1
> cos d(Zm,, Zg) sin (—2-d(xm,xn)) + cosd(zy, o) sin (§d(mm,mn)) .
Since
. . (1 1
08 d(ZTm, To) Sind(ZTm, Tn) = 2 cos d(Tm, Zo) sin <§d(mm,mn)) cos (éd(xm,xn)) ,
we have that
1
2 cos d(Tpm, To) COS <§d(wm, mn)) > 08 d(Tm, o) + cos d(Tn, Zo)

and since d(Z,,xo) < d(xn,xo), Wwe get that

1 cosd(zm, o) + cosd(zy, xo)
=d myn >
€08 ( (@m, )) 2 cos d(xm, o)
cos d(zy, To)
= cosd(Tm, o)’



which is equivalent to that
1
—logcos (.id(xm, wn)> < logcos d(xm, zo) — log cos d(zn, o).
Since {log cos d(zn, o)} is a convergent sequence to log cosd, there exists a sequence
{t.} converging to 0 such that
0 < logcos d(xym, xo) — log cos d(zn, zo) < t,

for all m,n € N with m < n. Then we have that

d(Tm,Tn) < 2arccose™ "

for all m,n € N with m < n and lim,,_,., 2arccose™®» = 0. It shows that {z,} is a
Cauchy sequence and therefore it has a limit z., € X.

For fixed k € N, {zn4} is a sequence in Cy. It follows from the closedness of Cj
that x, is a point in C}, and thus we have that

d(yky -Z'oo> S d(:L'kH 'TOO)

Tending k — oo, we obtain that {yx} also converges to z,. In addition, we also have
that z., € ﬂzc’:l Cr = C. We next show that z., belongs to F. For z € F, we have
that z € C and

cos d(yn, z) sin d(Szy, T'zy,)

= cos d(anSzn ® (1 — an)Tzy, 2) sind(Sz,, Tz,)

> cos d(Sy, 2) sin(and(Szn, Ty)) + cos d(TTy, 2) sin((1 — an)d(Szn, Tzy))
> €08 d(Tn, 2) (sin(and(Szn, Tzy,)) + sin((1 — ar)d(Szn, Ty)))

= 2cosd(zy, z) sin (%d(Smn, T:cn)) cos ((% - an) d(Szy, Twn)> .

Since . .
sind(Szy,Tz,) = 2sin (Ed(Smn, T:zn)> cos (Ed(Sa:n,Tmn)> ,

we have that
cos d(yn, ) cos (%d(Szn, Txn))
« 1
> cosd(xy, 2) cos ((5 - an) d(Szy, T:cn)) .
for all n € N. Then, for a subsequence {an, } of {a,} whose limit is aw €]0, 1],

1
cos d(Z oo, 2) COS (5 limsup d(Szy,, Tzp, ))

100
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1
> cos d(Z o, 2) COS ((5 — aoo> lim sup d(Smm,Twni)> ,

3—00
which implies that lim;_,oo d(SZn,, TZn,) = 0. Hence we have that

d(Too, SToo) = lim d(Yn,, STn,)
= lim d(an,STn, ® (1 — an,)TZn,, Stp,)

11— 00

= lim (1 — ap,)d(Tzp,, Stn;)
1— 00

= (1 — awo) lim d(Tzy,, Sty,)

=0,

and, in a similar fashion, we get that d(Zeo, TToo) = 0. Thus 2 € F(S)NF(T) = F.
Since F' C Cy, we have that

d(:l)o,.’L‘oo) = ,lim d(wo,PCixo) < d(SCo,PFCL‘o) < d(xo,l’oo)

and, from the uniqueness of the minimizing point of the distance between zo and F/,
we have Too = Przo. This is the desired result. O
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