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Duality of the James constant of Banach spaces
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1 Introduction

This note is based on [14].

Let X be a Banach space, and let Bx and Sx denote the unit ball and unit sphere
of X, respectively. Then X is said to be uniformly non-square if there exists a positive
number § such that z,y € Bx and [|27'(z + y)|| > 1 — & implies |27}z + y)|| < 1 4.
The James constant J(X) of X was defined in 1990 by Gao and Lau [2] as a measure of
how “non-square” the unit ball is, namely, the James constant is defined by

J(X) = sup{min{|lz + yl|, [l - yll} : 3,y € Sx}.

It is known that v/2 < J(X) < 2 for any Banach space X, and that X is uniformly
non-square if and only if J(X) < 2 (cf [2, 4]).

Unlike the von Neumann-Jordan constant Cy ;(X), the James constant does not satisfy
J(X*) = J(X) in general. An example of J(X*) # J(X) is given by the Day-James ¢5-¢;
space (cf. [4]), where £5-¢; is defined to be the space R? endowed with the norm

@l = { 00l 2 20

See [11] for more computations of the James constant of generalized Day-James spaces.

We remark that the norm || - [|o; is symmetric, that is, ||(z,y)[l21 = ||(y,)||21 for each
(z,y). Moreover, letting ||(z,y)||51 = ||(z +y, 2 — y)||2,1 for each (z,y) yields an absolute
norm on R?, where a norm |- || on R? is said to be absolute if || (z, y)|| = ||(|z], ly])|| for each

(z,y). Since James constant does not change under isometric isomorphisms, we already
have obtained counterexamples of two-dimensional normed spaces that are equipped with
either symmetric or absolute norms.

On the other hand, we have some examples of J(X*) = J(X). The first example is
the £;-space. In fact, the assumption on the dimension is redundant.
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Example 1.1 (Gao and Lau [2]). Let 1 < p,q < co with 1/p+1/g = 1. Then J(¢2) = 2'/",
where r = min{p, ¢}. Consequently, J((¢2)*) = J(£2) = J(£2).

The equation J(X*) = J(X) can be also satisfied by a polyhedral normed space X.
The norms defined in the following example have octagons as the unit balls.

Example 1.2 (Komuro, Saito and Mitani [6, 7]). For each 1/2 < 8 < 1, let ||(z,9)[ls =
max{|z|, ly], B(|z| + |y|)}. Then J((R? |- [ls)*) = J((R? || - I5)).

Since the £,-norms are the best and polyhedral norms are something bad in the geo-
metric sense, we have wide examples of J(X*) = J(X).

In this note, we consider the following problem: When does the equality J(X*) = J(X)
hold for a Banach space X? It is shown that if the norm of a two-dimensional space is
both symmetric and absolute then the James constant of the space coincides with that of
its dual space. This provides a global answer to the problem in the two-dimensional case.
Moreover, we present some new examples of J(X*) # J(X) by extreme absolute norms.

2 Preliminaries

We recall that a norm || - || on R? is said to be symmetric if ||(z,y)|| = ||(y, z)|| for each
(z,y), and absolute if ||(z,y)|| = ||(|z[, |y])|| for each (z,y). The main result in this note
is the following.

Theorem 2.1. Let X be a two-dimensional real normed space R? equipped with a sym-
metric absolute norm. Then J(X*) = J(X).

Since James constant is invariant under scaling, we may assume that the norm || - || is
also normalized, that is, ||(1,0)]| = [|(0,1)|| = 1. Let AN, be the set of all absolute nor-
malized norms on R2. Then it is known that the set AN} is in a one-to-one correspondence
with the set W, of all convex functions 9 on [0, 1] satisfying max{1 — ¢,t} < 9(t) <1 for
each t € [0,1] (cf. [1, 12]). The correspondence is given by the equation ¥(t) = ||(1~t,1)|
for all ¢ € [0,1]. Remark that the norm || - ||, associated with the function ¥ € ¥ is given
by

[yl .
Iz, ¥)ly = (I + lyl)¥ (|37| n |y|) if (z,y) # (0,0),
0 it (z,9) =(0,0).

We also remark that the absolute normalized norm. || - ||, on R? associated with the
function ¥ € U, is symmetric if and only if ¥(1 — t) = ¥(t) for each t € [0,1]. Let ¥§
denote the collection of all such elements in ¥y. For more information about absolute
normalized norms, for example, we refer the readers to [10, 12, 13, 15].

In what follows, we denote the normed space (R2,|| - ||;) by X, for short. For each
1 € Uy, let ¢* be the function on [0, 1] given by




for each s. Then it follows that 9* € ¥y and Xy = Xy+, and so ¢** = ; see [9]. The
function ¢* is called the dual function of ¢. If ¥ € U5, then ¢* € ¥ and the behavior
of ¢* is given by

. (1-s)(1—1)+st
d} (3) - Ogtlgxlﬂ IP(t)
for each s € [0,1/2]; see (8] for details. Under these settings, the main result is translated
as follows:

Theorem 2.1°. Let ¢ € U5. Then J(Xy+) = J(Xy).

3 Proof of the main theorem

We shall begin with the definition of piecewise linear functions. A finite sequence (t;)7, of
real numbers is said to be a partition of the interval [0,1/2]if0 =ty < t; < -+ < t, = 1/2.
Any finite subset P of [0, 1/2] including 0 and 1/2 can be viewed as a partition of [0,1/2]
by taking strictly increasing rearrangement, and so we identify the partition ()P with
the set {t; : 0 <4 < n}. A function ¢ on the interval [0, 1/2] is said to be piecewise linear
if its graph is a broken line. More precisely, ¢ is piecewise linear if there exist a partition
(t:)izo of [0,1/2] and a finite sequence (a;)2, of real numbers such that

a; — Qi—1,  Gi—1t; — a;t;
( ) tz - ti—l ti - tz’-—l ( )
for each t € [t;_1,t;]. Letting
a; — Qi a1t — a;t;_1
o =———— and fj=—2 1"
Yot —tig 2 ti =t

one has that ¥(t) = a;t + j; for each t € [t;_1,t], and that v (t;) = a; for each 0 < i < n.
We have two key lemmas to prove the main theorem.

Lemma 3.1. The function ¢ — J(Xy) is continuous on 5.

Lemma 3.2. Let ¢ € V5. Then there exists a sequence () of strictly convex functions
in U5 such that [¢n — Y]l — 0 and ||¢ — ¥*|jeo — 0 as n — oo.

Sketch of Proof. The proof proceeds as follows:
1. Establish the inequality J(Xy) < J(Xy») for piecewise linear functions ¢ € 5.

2. Approximate each strictly convex function in ¥§ by piecewise linear functions. This
and Lemma 3.1 together show that J(X,) < J(Xy+) for each strictly convex element
Y € U5,

3. Use Lemma 3.2 to approximate each elements in ¥§ by strictly convex functions
in U5 3 Applying Lemma 3.1 again shows that J(X,) < J(Xy+) for each element
w E Wz .

4. Observe that J(Xy+) < J(Xy=) = J(Xy) by ¥** = ¢. This completes the proof.
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4 New examples of J(X*) # J(X)

We conclude this paper with new examples of J(X*) # J(X). Remark that both the
sets AN, and ¥, are convex, and that the correspondence preserves the convex structure.
Namely, the following hold:

@) If || - I, || - I € ANy, then A|| - || + (1 = A)|| - || € AN, for all A € (0, 1).
(i) If 9,7’ € ¥y, then AP + (1 — Ny’ € W, for all A € (0,1).
() 1| e = M- g + (1 = N[+ for each 1,/ € ¥, and all A € (0,1).

By (iii), the extreme points of AN, and ¥, are essentially the same. Moreover, we
have the following result.

Theorem 4.1 (Grzaslewicz [3]; Komuro, Saito and Mitani [5]). For each0 < a<1/2 <
B < 1, define the function ¥a 5 by

1-t if 0<t<a,
-1 -2
Vop=d OFB-VEHF-208 g
b —«
t if B<t<l.

Then ext(¥y) = {tap:0<a<1/2< g <1}

The James constant of Xy, , is completely determined by Komuro, Saito and Mi-
tani [6]; see also [7].

Theorem 4.2 (Komuro, Saito and Mitani [6]). Let0 < a<1/2< <1 witha<1-4.
() If ap(1/2) < 1/2(1 - a), then

1
T Xe) = 4 T2y

(i) I 1/2(1 - @) < Yas(1/2) < cla, B), then
1
M a2 T @B DJ(F—a)

J(Xd’a,ﬂ) =

(iti) If c(a, B) < ta,p(1/2), then
J(Xypo5) = 2%a,p(1/2),

1 28 — 1 28 —1\?
=-|1- 1 .
c(a, B) 4( ﬂ—a+\/< +ﬁ—a) +4)
Using this result, we can provide new examples of J(X*) # J(X), where X is the
space R? endowed with an extreme absolute normalized norm on R2.

where
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Example 4.3. The computation is based on Theorem 4.2. For each 8 € (1/2,1), let v
be an asymmetric element of ¥, given by

B—1 .
Wp(t) = hop(t) = { —ﬂ——t +1 if te]0,8,
t if te[B1],

0.8 =L [1=2 26 -1\’
c(ﬂ)—c(0,5)~4( 3 \/<1+ 3 )+4

Then it follows that 13(1/2) > ¢(B) if and only if 8 > 2/3. Hence, by Theorem 4.2, we
have

and let

g_ﬁ% it §e(1/22/3),
J(Xgs) =4 3573
—5— if Be 2/3,1).
We next consider the dual function of 15. After an easy computation, we obtain
1—¢ if tel0,(268-1)/(36-1)],
wp(t) = %ﬂ— Ly 1;ﬂ if te((26-1)/(36-1)1]
From this, we have
L seqye s,
J(Xyy) = P 2 . 0
775 it Be2/3,1).

Thus, consequently, we obtain J(Xy;) # J(Xy,) whenever § # 2/3.
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