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ABSTRACT. Since we introduced the concept of abstract convex spaces in the
KKM theory, some readers raised certain questions or comments on them. In
the present note, we want to clarify such things on the concept of abstract
convex spaces raised by Ben-El-Mechaiekh [Thoughts on $KKM$, Personal Com-
munications, 2013] and Kulpa and Szymmanski [12]. A number of examples
and related matters are also added.

1. Introduction

The KKM theory, originally called by the author, is nowadays the study
of applications of various equivalent formulations or generalizations of the
Knaster-Kuratowski-Mazurkiewicz theorem (simply, the KKM theorem) in
1929. In the last two decades, the theory has been extensively studied for
generalized convex spaces (simply, G-convex spaces) and abstract convex
spaces in the sense of ourselves in a sequence of our papers; for details, see
[16-21] and the references therein.

Since the concept of $G$-convex spaces first appeared in 1993, a number of
its modifications or imitations have followed. In order to unify such things,
we introduced the so-called $\phi_{A}$-spaces in 2007 [17]. Moreover, in our previous
works [16-21], we introduced a new concept of abstract convex spaces and
multimap classes $\mathfrak{K},$

$\mathfrak{K}\mathfrak{C}$ , and $\mathfrak{K}\mathfrak{Q}$ having certain KKM property. These
new spaces and multimap classes are known to be adequate to establish the
KKM theory; see [22-26]. Especially, in [24], we generalized and simplified
known results of the theory on convex spaces, $H$-spaces, $G$-convex spaces,
and others. It is noticed there that the class of abstract convex spaces
$(E, D;\Gamma)$ satisfying the KKM principle play the major role in the KKM
theory. Therefore, it seems to be quite natural to call such spaces the KKM
spaces. In our works [24-27], we showed that a large number of well-known
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results in the KKM theory on $G$-convex spaces also hold on the KKM spaces.
Now it is evident that the class of abstract convex spaces contains many
subclasses on which it is convenient to establish the KKM theory.

Since we introduced some classes of abstract convex spaces in the KKM
theory, some readers raised certain questions or comments on them. In
the present note, we want to clarify such things on the concept of abstract
convex spaces raised by Ben-El-Mechaiekh [2] and Kulpa and Szymmanski
[12]. A number of examples and related matters are also added.

2. Abstract convex spaces

We recall a short history of the abstract convex spaces.
In the KKM theory, motivated by the convex spaces of Lassonde in 1983

and $c$-spaces or $H$-spaces of Horvath in 1990-1993, Park and Kim introduced
generalized (G-)convex spaces in 1993. Since 1998, we adopted the following
definition; see [23]:

Definition. A generalized convex space or a $G$-convex space $(X, D;\Gamma)$

consists of a topological space $X$ , a nonempty set $D$ , and a multimap
$\Gamma$ : $\langle D\ranglearrow X$ such that for each $A\in\langle D\rangle$ with the cardinality $|A|=n+1,$
there exists a continuous function $\phi_{A}$ : $\triangle_{n}arrow\Gamma(A)$ such that $J\in\langle A\rangle$

implies $\phi_{A}(\Delta_{J})\subset\Gamma(J)$ .
Here, $\langle D\rangle$ is the class of all nonempty subsets of a set $D,$ $\triangle_{n}$ is the stan-

dard $n$-simplex with vertices $\{e_{i}\}_{i=0}^{n}$ , and $\triangle_{J}$ the face of $\triangle_{n}$ corresponding
to $J\in\langle A\rangle$ ; that is, if $A=\{a_{0}, a_{1}, . . . , a_{n}\}$ and $J=\{a_{i_{0}}, a_{i_{1}}, . . . , a_{i_{k}}\}\subset A,$

then $\Delta_{J}=co\{e_{i_{0}}, e_{i_{1}}, . . . , e_{i_{k}}\}$ . We may write $\Gamma_{A}$ $:=\Gamma(A)$ for each $A\in\langle D\rangle.$

In case $X\supset D$ , the $G$-convex space is denoted by $(X\supset D;\Gamma)$ .

In [20], we clearly stated that, in certain cases, it is possible to assume
$\Gamma(A)=\phi_{A}(\triangle_{n})$ .

Example. Recall that Horvath introduced a large number of examples
of his $c$-spaces. Major examples of other $G$-convex spaces than convex
spaces or $c$-spaces are metric spaces with Michael’s convex structure, Pa-
sicki’s $S$-contractible spaces, Horvath’s pseudoconvex spaces, Komiya’s con-
vex spaces, Bielawski’s simplicial convexities, Joo’s pseudoconvex spaces,
topological semilattices with path-connected intervals, hyperconvex metric
spaces, Takahashi’s convexity in metric spaces, $L$-spaces due to Ben-El-
Mechaiekh et al., and so on. For the literature, see [15,36] and the references
therein.

Moreover, a number of authors investigated another abstract convexities
particular to $G$-convex spaces for various purposes. All of those authors
considered the case $X=D$ , contrary to the classical works of Knaster-
Kuratowski-Mazurkiewicz and Fan for the case $X\neq D$ ; see [23]. This
fact should be recognized by all peoples working in generalized abstract
convexities.
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Since $G$-convex spaces first appeared in 1993, a large number of modifi-
cations or imitations have followed.

Example. Such examples are $L$-spaces, $B’$-simplicial convexity, G-H-spaces,
pseudo-H-spaces, spaces having property (H), FC-spaces, $M$-spaces, another
$L$-spaces, simplicial spaces, $P_{1,1}$ -spaces, generalized $H$-spaces, $mc$-spaces, $L^{*}-$

spaces, minimal $G$-convex spaces, GFC-spaces, FWC-spaces, and so on. See
[15,17,29-32,35] and references therein.

These are all unified by the following concept in 2007 [17]:

Definition. A space having a family $\{\phi_{A}\}_{A\in\langle D\rangle}$ or simply a $\phi_{A}$-space

$(X, D;\{\phi_{A}\}_{A\in\langle D\rangle})$ or simply $(X, D;\phi_{A})$

consists of a topological space $X$ , a nonempty set $D$ , and a family of con-
tinuous functions $\phi_{A}$ : $\triangle_{n}arrow X$ $($ that $is,$ singular $n-$simplices) for $A\in\langle D\rangle$

with the cardinality $|A|=n+1.$

In order to unify these concepts, we introduced the following in 2006 [16]:

Definition. An abstract convex space $(E, D;\Gamma)$ consists of a nonempty set
$E$ , a nonempty set $D$ , and a multimap $\Gamma$ : $\langle D\ranglearrow E$ with nonempty values
$\Gamma_{A}$ $:=\Gamma(A)$ for $A\in\langle D\rangle.$

For any $D’\subset D$ , the $\Gamma$-convex hull of $D’$ is denoted and defined by

$co_{\Gamma}D’:=\cup\{\Gamma_{A}|A\in\langle D’\rangle\}\subset E.$

A subset $X$ of $E$ is called a $\Gamma$-convex subset of $(E, D;\Gamma)$ relative to $D’$ if
for any $N\in\langle D’\rangle$ , we have $\Gamma_{N}\subset X$ , that is, $co_{\Gamma}D’\subset X.$

In case $E=D$ , let $(E;\Gamma)$ $:=(E, E;\Gamma)$ .

Note that we clearly stated the following in 2006 [16]:

“Usually, a convexity space $(E, C)$ in the classical sense consists of a
nonempty set $E$ and a family $C$ of subsets of $E$ such that $E$ itself is an
element of $C$ and $C$ is closed under arbitrary intersection. For details, see
[34], where the bibliography lists 283 papers. For any subset $X\subset E$ , its C-
convex hull is defined and denoted by CocX $:=\cap\{Y\in C|X\subset Y\}$ . We say
that $X$ is $C$-convex if $X=Coc^{X}$ . Now we can consider the map $\Gamma$ : $\langle E\ranglearrow E$

given by $\Gamma_{A}:=Co_{\mathcal{C}}A$ . Then $(E, C)$ becomes our abstract convex space $(E;\Gamma)$ .
Notice that our abstract convex space $(E\supset D;\Gamma)$ becomes a convexity

space $(E, C)$ for the family $C$ of all $\Gamma$-convex subsets of E.”

Even in 2013, some authors still adopt the above concepts; see [42].

Later, we add to assume $E$ is a topological space in an abstract convex
space.

Definition. Let $(E, D;\Gamma)$ be an abstract convex space and $Z$ a topological
space. For a multimap $F$ : $Earrow Z$ with nonempty values, if a multimap
$G:Darrow Z$ satisfies

$F( \Gamma_{A})\subset G(A):=\bigcup_{y\in A}G(y)$
for all $A\in\langle D\rangle,$
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then $G$ is called a $KKM$ map with respect to F. AKKM map $G:Darrow E$

is a KKM map with respect to the identity map $1_{E}.$

A multimap $F:Earrow Z$ is called a $\mathfrak{K}\mathfrak{C}$-map [resp., $a\mathfrak{K}D$ -map] if, for any
closed-valued [resp., open-valued] KKM map $G:Darrow Z$ with respect to $F,$

the family $\{G(y)\}_{y\in D}$ has the finite intersection property. In this case, we
denote $F\in \mathfrak{K}\mathfrak{C}(E, Z)$ [resp, $F\in \mathfrak{K}O(E,$ $Z$

Definition. The partial $KKM$principle for an abstract convex space $(E, D;\Gamma)$

is the statement that, for any closed-valued KKM map $G$ : $Darrow E$ , the fam-
ily $\{G(y)\}_{y\in D}$ has the finite intersection property. The $KKM$ principle is
the statement that the same property also holds for any open-valued KKM
map.

An abstract convex space is called $a$ (partial) $KKM$ space if it satisfies
the (partial) $KKM$ principle, resp.

Example. We give examples of KKM spaces:

1. Every $\phi_{A}$-space is a KKM space [30].

2. A connected ordered space $(X, \leq)$ can be made into an abstract
convex space $(X \supset D;\Gamma)$ for any nonempty $D\subset X$ by defining $\Gamma_{A}$ $:=$

$[ \min A, \max A]=\{x\in X|\min A\leq x\leq\max A\}$ for each $A\in\langle D\rangle.$

Further, it is a KKM space; see [19, Theorem $5(i)$ ].

3. The extended long line $L^{*}$ can be made into a KKM space $(L^{*}\supset$

$D;\Gamma)$ ; see [19]. In fact, $L^{*}$ is constructed from the ordinal space $D:=[0, \Omega]$

consisting of all ordinal numbers less than or equal to the first uncountable
ordinal $\Omega$ , together with the order topology. Recall that $L^{*}$ is a generalized
arc obtained from $[0, \Omega]$ by placing a copy of the interval $(0,1)$ between each
ordinal $\alpha$ and its successor $\alpha+1$ and we give $L^{*}$ the order topology. Now
let $\Gamma$ : $\langle D\ranglearrow L^{*}$ be the one as in Example 2 above.

4. A $\phi_{A}$-space is a KKM space and the converse does not hold; for
example, the extended long line $L^{*}$ is a KKM space $(L^{*}\supset D;\Gamma)$ , but not a
$\phi_{A}$-space.

In fact, since $\Gamma\{0, \Omega\}=L^{*}$ is not path connected, for $A:=\{0, \Omega\}\in\langle L^{*}\rangle$

and $\triangle_{1}$ $:=[0$ , 1 $]$ , there does not exist a continuous function $\phi_{A}$ : $[0, 1]arrow\Gamma_{A}$

such that $\phi_{A}\{0\}\subset\Gamma\{0\}=\{O\}$ and $\phi_{A}\{1\}\subset\Gamma\{\Omega\}=\{\Omega\}$ . Therefore
$(L^{*}\supset D;\Gamma)$ is not a $\phi_{A}$-space.

Now we have the following diagram for triples $(E, D;\Gamma)$ :

Simplex $\Rightarrow$ Convex subset of a t.v. $s$ . $\Rightarrow$ Convex space $\Rightarrow H$-space
$\Rightarrow$ $G$-convex space $\Rightarrow\phi_{A}$-space $\Rightarrow$ KKM space

$\Rightarrow$ Partial KKM space $\Rightarrow$ Abstract convex space.
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3. Earlier concepts of abstract convex spaces

In this section, we recall some (not all) earlier concepts of particular spaces
of our abstract convex spaces:

(1) In 1971, Kay and Womble [8] defined an abstract convexity on a set $X$

as a family $\mathfrak{C}=\{A_{i}\}_{i\in I}$ , of subsets of $X$ , stable under arbitrary intersections
$( \bigcap_{i\in J}\in \mathfrak{C}, J\subset I)$ and which contains the empty and total set $(\emptyset, X\in \mathfrak{C})$ .

(2) In 1979, Penot [37] was successful in giving an abstract formulation
of Kirk’s theorem via the convexity structures as follows:

Let $M$ be an abstract set. A family $\Sigma$ of subsets of $M$ is called a convexity
structure if

(i) the empty set $\emptyset\in\Sigma$ ;
(ii) $M\in\Sigma$ ;
(iii) $\Sigma$ is closed under arbitrary intersection.

The convex subsets of $M$ are the elements of $\Sigma.$

(3) In 1984, a convexity space $(E, C)$ in the classical sense due to Sortan
[38] was appeared; see Section 2.

(4) In 1987, Bielawski [4] adopted the convexity as in (2).

(5) In 1988, Keimel and Wieczorek [9] worked in an abstract setting in
which a convexity $\mathcal{K}$ is just any family of closed sets stable under arbitrary
intersections; its members may be interpreted sets which are “closed and
convex”

(6) In 1989, Krynski [10] noted that the concept of the above convex-
ity was known in other fields of mathematics under various names, e.g., $a$

“Moore family”’ (G. Birkhoff), or $a$ (closure system”’ (P. Cohn); also cf. $a$

“cyrtology (S. Dolecki and G. Greco).

(7) In 1992, Wieczorek [41] adopted the following: A convexity on a topo-
logical space $X$ is a family $\mathcal{K}$ of closed subsets of $X$ which contains $X$ as
an element and which is closed under arbitrary intersections. Elements of
$\mathcal{K}$ are called closed convex sets (there might be subsets of $X$ not in $\mathcal{K}$ also
interpreted as convex sets).

(8) In 1998, Ben-El-Mechaiekh et al. [3] adopted a convexity structure as
above.

(9) In 2007, Amini et al. [1] adopted the same as above. Here the authors
noted that this kind of convexity was widely studied and cited works by
Ben-El-Mechaiekh et al. [3], Kay and Womble [8], J. V. Linares, and M. L. J.
Van De Vel [39].

(10) According to Horvath [7], a convexity on a topological space $X$ is
an algebraic closure operator $A\mapsto[[A]]$ from $\mathcal{P}(X)$ to $\mathcal{P}(X)$ such that
$[[\{x\}]]=\{x\}$ for all $x\in X$ , or equivalently, a family $C$ of subsets of $X$ , the
convex sets, which contains the whole space and the empty set as well as
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singletons and which is closed under arbitrary intersections and updirected
unlons.

(11) In 2013, S. Xiang, S. Xia and J. Chen [42] adopted the concept of
abstract convexity spaces as in [9,38].

4. Making new spaces from old

(1) In 2000 [15], we gave a new class of $G$-convex spaces as follows:

Proposition 4.1. Any continuous images of $G$-convex spaces are $G$ -convex
spaces.

This answers to a question raised by George Yuan at the NACA 98,
Niigata, Japan, whether there are non-trivial examples of $G$-convex spaces
which are not $c$-spaces. This is because $\omega$-connectedness is not a continuous
invariant.

Similarly, we have the following:

Proposition 4.2. Any continuous image of a $\phi_{A}$ -space is a $\phi_{A}$ -space.

Proof. Let $(X, D;\phi_{A})$ be a $\phi_{A}$-space; that is, for each $A\in\langle D\rangle$ , there exists
a continuous function $\phi_{A}$ : $\Delta_{n}arrow X$ with $|A|=n+1$ . Let $Y$ be a topological
space with a continuous surjection $f$ : $Xarrow Y$ . Let $\psi_{A}:=f\circ\phi_{A}:\triangle_{n}arrow Y$

for each $A\in\langle D\rangle$ . Then

$(Y, D;\{\psi_{A}\}_{A\in\langle D\rangle})$ or simply $(Y, D;\psi_{A})$

is a $\phi_{A}$-space. $\square$

(2) We introduce another way of making a new abstract convex space
from old as in [34]:

Definition. Let $(E, D;\Gamma)$ be an abstract convex space, $Z$ a topological
space, and $F:Earrow Z$ a map. Let $\Lambda_{A}$ $:=F(\Gamma_{A})$ for each $A\in\langle D\rangle$ . Then
$(Z, D;\Lambda)$ is called the $ab_{\mathcal{S}tract}$ convex space induced by $F.$

Let $Y\subset Z$ and $D’\subset D$ such that $\Lambda_{B}\subset Y$ for each $B\in\langle D’\rangle$ . Then $Y$

is called a $\Lambda$-convex subset of $Z$ relative to $D’$ , and $(Y, D’;\Lambda’)$ a subspace of
$(Z, D;\Lambda)$ whenever $\Lambda’=\Lambda|_{\langle D’\rangle}.$

An abstract convex space without any nontrivial KKM map seems to be
useless in the KKM theory; see [33].

Proposition 4.4. [34] AKKM map $G:Darrow Z$ on an abstract convex
space $(E, D;\Gamma)$ with respect to $F$ : $Darrow Z$ is simply a $KKM$ map on the
corresponding abstract convex space $(Z, D;\Lambda)$ induced by $F.$

Proposition 4.5. [34] For an abstract convex sp-ace $(E, D;\Gamma)$ , the corre-
$\mathcal{S}$ponding abstract convex space $(Z, D;\Lambda)$ induced by $F$ : $Darrow Z$ is a partial
$KKM$ space if and only if $F\in \mathfrak{K}\mathfrak{C}(E, Z)$ .

The abstract convex space $(Z, D;\Lambda)$ induced by $F$ : $Darrow Z$ is a $KKM$

space if and only if $F\in \mathfrak{K}\mathfrak{C}(E, Z)\cap \mathfrak{K}D(E, Z)$ .

Any cartesian product of abstract convex spaces can be made into an
abstract convex spaces:
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Proposition 4.6. [25] Let $\{(X_{i}, D_{i};\Gamma_{i})\}_{i\in I}$ be a family of abstract convex
spaces. Let $X$ $:= \prod_{i\in I}X_{i}$ be equipped with the product topology, and let
$D$ $:= \prod_{i\in I}D_{i}$ . For each $i\in I$ , let $\pi_{i}$ : $Darrow D_{i}$ be the projection. For
each $A\in\langle D\rangle$ , define $\Gamma_{A}$ $:= \prod_{i\in I}\Gamma_{i}(\pi_{i}(A))$ . Then, $(X, D;\Gamma)$ is an abstract
convex space.

5. Some questions raised by Ben-El-Mechaiekh

The following comments are given by Ben-EL-Mechaiekh [2] and some of
them are also frequently asked questions by other readers. Here the present
author gives short responses to them.

Comment 1: On abstract convex spaces I do not understand how a mul-
timap $\Gamma$ : $\langle D\ranglearrow E$ with non-empty values is enough to define an abstract
convex structure. This cannot be and is not sufficient. I believe that, to jus-
tify the terminology “convexity” the maps must directly (and not through
subsequent properties) define a convexity structure. To me, it makes more
sense (even if this appears “less general”’ than what have been written else-
where) to say:

Definition 1. A convexity structure on a given non-empty set $E$ is a col-
lection $C_{E}$ of subsets of $E$ closed for arbitrary intersections and containing
$\emptyset$ and $E.$

Definition 2. Let $E,$ $D$ be non-empty sets and $\Gamma$ : $\langle D\ranglearrow E$ a multimap
with non-empty values defined on $\langle D\rangle$ , the collection of all non-empty finite
subsets of $D$ :

(i) For any given $D’\subset D$ , let the $\Gamma$ -convex envelope of $D’$ in $E$ be denoted
and defined by

$co_{\Gamma}(D’):=\cup\{\Gamma(A)|A\in\langle D’\rangle\}\subset E.$

(ii) Call a subset $X$ of $E$ a $\Gamma$-convex subset of $E$ relative to some $D’\subset D$

if for any $A\in\langle D’\rangle$ , we have $\Gamma(A)\subset X$ , that is, $co_{\Gamma}(D’)\subset X.$

(iii) The triple $(E, D;\Gamma)$ is said to be an abstract convex space if the
collection of all $\Gamma$-convex subsets of $E$ relative to some $D’\subset D$ generates a
convexity structure $C_{E}$ on $E.$

We would then proceed, as you did, to outline only the most important
convex spaces and relate them to one another: hyperconvex metric spaces,
convex spaces of Lassonde, $c$-spaces of Horvath, spaces with simplicial con-
vexities of Bielawski, your $G$-convex spaces, $L$-spaces of Ben-El-Mechaiekh
et al., $\phi_{A}$-spaces, etc.

I claim then many of these are EQUIVALENT. If they are not, we would
provide counterexamples (preferably stemming from concrete situations”
brought up by applications, rather than artificial constructions). On an-
other matter: I cannot see the importance of the auxiliary set $D$ . Perhaps
I am not aware of concrete situation where the existence of a set $D\neq E$
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on which $\Gamma$ acts is absolutely needed. In such case, kindly send me ref-
erences. Otherwise, there is the danger (which has already happened) to
see the beauty and the simplicity of the KKM principle being overwhelmed
by theorems that are impossible to read as they impose unjustified detours
through auxiliary sets, spaces, and additional mappings.

Author’s Response: 1. The convexity structure and my abstract convex
space are equivalent in a sense. My definition (where $E$ is a topological
space) is enough to establish many statements in the KKM theory just
following Section 2.

2. According to Hichem’s suggestion, we can modify our definition as
follows:

Definition. Let $E$ be a topological space, $D$ a nonempty set, and $\Gamma$ : $\langle D\ranglearrow$

$E$ a multimap with nonempty values $\Gamma_{A}$ $:=\Gamma(A)$ for $A\in\langle D\rangle$ . The triple
$(E, D;\Gamma)$ is called an abstract convex space whenever the $\Gamma$-convex hull of
any $D’\subset D$ is denoted and defined by

$co_{\Gamma}D’:=\cup\{\Gamma_{A}|A\in\langle D’\rangle\}\subset E.$

A subset $X$ of $E$ is called a $\Gamma$-convex subset of $(E, D;\Gamma)$ relative to some
$D’\subset D$ if for any $N\in\langle D’\rangle$ , we have $\Gamma_{N}\subset X$ , that is, $co_{\Gamma}D’\subset X.$

In case $E=D$ , let $(E;\Gamma)$ $:=(E, E;\Gamma)$ .

3. Importance of the set $D$ – The set $D$ was originally appeared in the
KKM theorem, and Fan-KKM lemma. KKM maps of the form $F$ : $Darrow$

$E$ on abstract convex spaces $(E, D;\Gamma)$ had appeared in earlier works of
Dugundji Granas and Granas-Lassonde; for example, see [5,6,13] and many
others. See also my paper [23] where examples of $D\neq E$ were given. In fact,
well-known theorems due to Sperner, Alexandroff-Pasynkoff, and Shapley
adopt non-trivial $D$ , and we can make another examples by applying various
types of the Stone-Weierstrass approximation theorem.

Comment 2: On KKM maps I do not understand the concept of a map $G$

being $KKM$ with respect to $F$. Indeed, in the diagram:

$\langle D\rangle \Rightarrow\Gamma E$

$\downarrow\downarrow F$

$D \Rightarrow G Z$

why do we need to factorize through $E$ , when the space $(Z, D;\Psi=F\circ\Gamma)$

is also an abstract convex space in the sense of your definition. Aren’t we
making things more complicated? Is there a compelling reason, beyond
generality?

The same remark holds true for the situation
$D\Rightarrow GEarrow^{s}Z$

if we let
$\Gamma$

$\tilde{G}=s\circ G$ and $\Psi=s\circ\Gamma$ : $\langle D\rangle\Rightarrow Earrow^{s}Z$ , then:
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$\bullet$ the triple $(Z, D;\Psi)$ is also an abstract convex space;
$\bullet$ the $\Psi$-convex hull of $D’\subset D=s$ ( $\Gamma$-convex hull of $D’\subset D$).

In summary: do the introduction of these concepts involving auxiliary
mappings really needed? In the absence of real motivation beyond generality,
I claim that the answer is No! And that in fact, all goes back to the simplest
case.

Author’s $Respon\mathcal{S}e:1$ . The concept of KKM maps $G$ w.r.t. $F$ – Your
$(Z, D;Fo\Gamma)$ was already noted in one of our recent papers [34]. See also
Section 3. However, this concept is necessary to define the multimap classes
$\mathfrak{K}\mathfrak{C},$ $\mathfrak{K}D$ . Note that there appeared some reasonable amount of works on
such classes. See [31] and references therein.

2. On the same remark w.r. $t.$ $s$ – Such $s$ is motivated from the well-
known 1983 paper of Lassonde [13], where many useful related results can
be seen.

6. Remarks on abstract convex spaces by Kulpa and Szymansky

The following is recently given by Kulpa and Szymansky [12].

Abstract: We discuss S. Park’s abstract convex spaces and their relevance
to convexities and $L^{*}$-operators. We construct an example of a space sat-
isfying the partial KKM principle that is not a KKM space, thus solving
a problem by Park. We show that if a compact Hausdorff space admits a
2-continuous $L^{*}$-operator, then the space must be locally connected contin-
uum and it has the fixed point property provided the covering dimension is
1. We also show that the unit circle admits no 2-continuous $L^{*}$-operators.

In the following, we give some responses to comments raised by Kulpa
and Szymanski [12].

Comment 1: Convexities and Abstract Convex Spaces – Following van
de Vel’s monograph, a convexity on a set $X$ is a collection $\mathcal{G}$ of subsets of
$X$ satisfying certain conditions.

For any set $X$ , let $\langle X\rangle$ and $\exp(X)$ denote, respectively, the set of all
finite non-empty subsets of $X$ , and the set of all non-empty subsets of $X.$

Following Park, (see, e.g., [28] for the concept itself as well as for references
to other related works), an abstract convex space $(E, D;\Gamma)$ consists of non-
empty sets $E,$ $D$ , and a multimap $\Gamma$ : $\langle D\ranglearrow\exp(E)$ . Even though the
definition of abstract convex spaces does not call for any particular connec-
tion between the set $D$ and the underlying space $E$ , all the examples of
abstract convex spaces considered in the literature (cf. [24] or [27]) have
$D$ to be a subset of $E$ . In this setting, Park’s approach stays within the
framework of the classical one represented by van de Vel.

To wit, let us notice that if $(E, D;\Gamma)$ is an abstract convex space and
$D\subset E$ , then, without loss of generality, one can extend $\Gamma$ onto $\langle E\rangle$ by
setting $\Gamma(A)=E$ for each $A\in\langle E\rangle\backslash \langle D\rangle$ . The abstract convex spaces where
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$D=E$ will be denoted by $(E;\Gamma)$ . A subset $X$ of $E$ is called a $\Gamma$-convex
subset of $(E;\Gamma)$ if for any $N\in\langle X\rangle,$ $\Gamma(N)\subset X.$

Proposition 1. (a) Let $(E;\Gamma)$ be an abstract convex space. Then the family
$\mathcal{G}_{\Gamma}=$ { $X\subset E:X$ is a $\Gamma$ -convex subset of $(E;\Gamma)$ } is a convexity on $E.$

(b) Let $(E;\mathcal{G})$ be a convexity space. If $\Gamma$ : $\langle E\ranglearrow E$ is given by $\Gamma(A)=$

conv $A$ , then the abstract convex space $(E;\Gamma)$ satisfies $\mathcal{G}r=\mathcal{G}.$

Thus any convexity space can be considered as an abstract convex space
and vice versa. Consequently, classifying (known and previously considered)
convexity spaces as abstract convex spaces (cf. [14,19-21,24,27-29,36]) ren-
ders it obsolete, unless one wants to distinguish a special multifunction $\Gamma.$

The conclusion of Proposition 1, part (b), was mentioned by Park (to the
best of our knowledge only in [20], Example 1).

Author’s Response: Note that van de Vel’s convexity in 1993 is more re-
strictive than those of Sortan in 1984 [37]. We already showed that there
are plenty of examples satisfying $D\not\subset E$ . Moreover we showed Proposition
1 early in 2006 [16]. On the final part of Comment 1 of [12], van de Vel’s
convexity $(X, \mathcal{G})$ can be an abstract convex space in the later sense when $X$

$bas$ a topology. Note that we can not construct any KKM theory on van de
Vel’s convexity, but our $(E, D;\Gamma)$ with a topology on $E$ has so many new
results.

Comment 2: $L^{*}$-operators in 2008 (cf. [11]) – An $L^{*}$ -operator on $X$ is
any map $\Lambda$ : $\langle X\ranglearrow X$ that satisfies the following condition:

$(^{*})$ If $A\in\langle X\rangle$ and $\{U_{x} : x\in A\}$ is a cover of $X$ by non-empty open sets,
then there exists $B\subset A$ such that $\Lambda(B)\cap\cap\{U_{x}:x\in B\}\neq\emptyset.$

A topological space $X$ together with an $L^{*}$-operator $\Lambda$ is referred to as an
$L^{*}$-space and it is denoted by $(X; \Lambda)$ . Thus. . . the convex hull operator
on a linear topological space is an $L^{*}$-operator on that space. Examples
of $L^{*}$-operators, and thus of $L^{*}$-spaces, abound. In fact, one can define an
$L^{*}$-operator on arbitrary topological space $X$ . Simply set $\Lambda(A)$ to be an any
dense subset of $X.$

Let $(E, D;\Gamma)$ be an abstract convex space. Following Park, . . . the
contrapositive version (with slight modifications) of the statement asserting

that $(E, D;\Gamma)$ satisfies the partial KKM principle, where the closed sets $G(x)$

have been replaced by their complements $S(x)$ , has the following form:

$(^{**})$ If $S$ : $Darrow E$ is an open-valued multimap and $E= \bigcup_{x\in A}S(x)$ for
some $A\in\langle D\rangle$ , then there exists a $B\in\langle A\rangle$ such that $\Gamma(B)\cap\cap\{S(x)$ : $x\in$

$B\}\neq\emptyset.$

In Park’s terminology, an abstract convex space $(E, D;\Gamma)$ satisfying $(^{**}$ )
is referred to as possessing the Fan type matching property (see [21]).

Theorem 4. Let $(E;\Gamma)$ be an abstract convex space, where $E$ is a topological
space. $(E;\Gamma)$ satisfies the partial $KKM$ principle if and only if $\Gamma$ is an $L^{*}-$

operator on $E.$
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Author’s Response: This part of [12] is already clarified in [29] as follows:
For an abstract convex space $(E, D;\Gamma)$ , let us consider the following state

ments:

(A) The KKM principle. For any closed-valued [resp., open valued $KKM$

map $G$ : $Darrow 2^{E}$ , the family $\{G(z)\}_{z\in D}$ has the finite intersection property.

(B) The Fan matching property. Let $S:Darrow 2^{E}$ be a map satisfying
(B.1) $S(z)$ is open [resp., closed$\rfloor$ for each $z\in D,\cdot$ and
(B.2) $E= \bigcup_{z\in M}S(z)$ for some $M\in\langle D\rangle.$

Then there exists an $N\in\langle M\rangle$ such that

$\Gamma_{N}\cap\bigcap_{z\in N}S(z)\neq\emptyset.$

(C) The Fan-Browder fixed point property. Let $S$ : $Earrow 2^{D},$ $T$ :
$Earrow 2^{E}$ be $map_{\mathcal{S}}$ satisfying

(C.1) $S^{-}(z):=\{x\in E|z\in S(x)\}$ is open [resp., closed] for each $z\in D$ ;
(C.2) for each $x\in E,$ $co_{\Gamma}S(x)\subset T(x)$ ; and
(C.3) $E= \bigcup_{z\in M}S^{-}(z)$ for some $M\in\langle D\rangle.$

Then $T$ has a fixed point $x_{0}\in X$ ; that is, $x_{0}\in T(x_{0})$ .

Theorem 1. (Characterizations of the KKM spaces) For an abstract convex
space $(E, D;\Gamma)$ , the statements (A), (B), and (C) are equivalent.

Our Theorem 1 is more general than [11, Theorem 4]. For more details,
see [21], where some incorrectly stated statements such as (VI), Theorem 4,
(XVI), and (XVII). These can be corrected easily.

Comment 3: The KKM principle is the statement that the property $(^{**}$ )
also holds for any open-valued KKM map. An abstract convex space is called
a KKM space if it satisfies the KKM principle. It’s been an open problem
whether there is a space satisfying the partial KKM principle that is not a
KKM space (see, e.g., [24,26]). Example 1 in [12] provides an affirmative
answer to this problem.

Author’s Response: At first seen [12], the present author thought Example
1 in [12] is incorrect because of the following:

Theorem 4.2. [18] Let $(E, D;\Gamma)$ be an abstract convex space, $Z$ a topolog-
ical space, and $F:Earrow Z$ . Suppose that for any $A\in\langle D\rangle$ with $|A|=n+1,$
the set $F(\Gamma_{A})$ in its induced topology is a normal space. If $F\in \mathfrak{K}\mathfrak{C}(E, Z)$ ,
then $F\in \mathfrak{K}D(E, Z)$ . The converse also holds.

However, Szymanski’s examples in [12] shows that the above statement
is wrong. Moreover, he also found that its proof is incorrect. The present
author appreciates his efforts for this and apologizes to all the readers on
this matter.
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