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ON EGOROFF’S THEOREM FOR NON-ADDITIVE MULTI
MEASURES

TOSHIKAZU WATANABE AND ISSEI KUWANO

ABSTRACT. Egoroff’s theorem is established for set-valued measures, which
take values in the family of all non-void, closed subsets of a real normed space
using Hausdorff metric by several authors. In this paper, we prove Egoroff’s
theorem remains valid for non-additive measures, which take values in a fam-
ily of sets of topological vector spaces using two types of convergency of set
sequences.

1. INTRODUCTION

Egoroff’s theorem is one of the most fundamental theorems in classical measure
theory and does not necessary hold in non-additive measure theory without addi-
tional conditions. In [1], Wang generalized Egoroff’s theorem in case of fuzzy mea-
sures, which are autocontinuous from above. Moreover in [2], Wang and Klir gave
another generalization of this result for fuzzy measures, which are null-additive. In
[3], Li showed that Egoroff’s theorem remains true for fuzzy measures without any
other supplementary conditions for them. When a fuzzy measure is not necessar-
ily finite, Li et al. [4] have proved that Egoroff’s theorem remains valid on fuzzy
measures possessing the order continuity and pseudo-metric generating property.
In [5], Murofushi, Uchino and Asahina find the necessary and sufficient condition
called the Egoroff condition, which assures that Egoroff’s theorem remains valid for
real valued non-additive measures, see also Li [6] and Kawabe [7, 8] extend these
results for Riesz space-valued fuzzy measures. Also these results for an ordered
vector space-valued and an ordered topological vector space-valued non-additive
measures, see [9, 10]. For information on real valued non-additive measures, see
[2, 11, 12].

By several authors, Egoroff’s theorem is established for non-additive multi mea-~
sures, which take values in the family of all non-void, closed subsets of real normed
spaces. In [13], Precupanu and Gavrilut investigate Egoroff’s theorem in a fuzzy
multimeasure in the sense of Precupanu and et al. [14]. In [15], Wu and Liu in-
vestigate Egoroff’s theorem in a set-valued fuzzy measure introduced by Gavrilug
[16].

In this paper, we prove Egoroff’s theorem remains valid for non-additive multi
measures. In particular, we use a topological convergence with respect to set-valued
mappings, see [17, 18]. We consider Egoroff’s theorem in set-valued situations and
give two sufficient conditions of it. One is based on continuity from above and
below, another is base on strongly order continuous and property () in set-valued
cases. Next paper we give another sufficient condition to establishment of set-valued
Egoroff’s theorem.
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2. PRELIMINARIES

Let R be the set of all real numbers and NN the set of all natural numbers. We
denote by 7 the set of all mappings from N into N. Let X be a non-empty set
and F a o-field of X. Let Y be a topological vector space (see [19, 20]). Let ¢
be an origin of Y, and By a system of neighborhoods of # € Y. We denote Py(Y)
be a family of non-empty subsets of Y. Let Py(Y) be a family of closed, non-void
subsets of Y. In this paper we consider the following two types convergence. Let
{En} C Po(Y) be a set sequence and E € Pp(Y). We say that {E,} is
(A) type (I) convergent to E, if for any e € E there exists a sequence {e, }, which
converges to e, that is, for any U € By there exists a ng with e, —e € U
for any n > nyg, such that e, € E, for every n;

(B) type (II) convergent to E, if given j € J, for any sequence {en;} C Y,
which converges to e € Y, that is, for any U € By there exists a jo with
eén; —e €U for any j > jo, if en; € Ep;, then e € E.

If (A) holds, we will write Lim{), E, = E and if (B) holds, we will write
Lim() B, = E. If both (A) and (B) hold, we will write Limn ;00 Fp = E and
said to be Kuratowski convergence [17, 18].

3. THE CONTINUITY OF NON-ADDITIVE MULTI MEASURES

Definition 1. Let (X, F) be an arbitrary measurable space, and let y : F — Py (Y)
be a set-valued mapping. w is said to be a non-additive multi measure on X if the
following conditions (i) and (i) hold.

() u(@) = {6},

(i) for A,B € F with A C B, u(A) C u(B) (monotonicity).

Moreover, we consider the following conditions.

Definition 2. Let p: F — Py(Y) be a non-additive multi measure. y is said to
e
b (i) continuous from above type (I) if Lm®, u(An) = u(A) whenever {An} C
(ii) “;Forgfgéuguz fZOE'Z }E%wjt};pz é ): if Lim®, 1(An) = u(A) whenever {A,} C
(iii) continuous from above type (II) if Lim(M)__1(An) = u(A) whenever {An} C
(iv) go%gguguz on'EvZ E)ng:%p; (EI,) FLim  1(An) = u(A) whenever {A;} C

Example 3. Let (X,F) be a measurable space, m : F — R, a non-additive
measure on F, Y = R? and R2 is a positive cone. Consider the order interval with
respect to R2 defined by

l0,0]rs :={y € R? |y € (a+ RY) N (b— RL)},

where a,b € R2,
Deﬁne u(4) := [(0,m(A)), (m(A), m(A))] ry for any A € F. Then p is a non-
additive multi measure on F.

Definition 4. Let u: F — Pu(Y) be a non-additive multi measure. p is said to
be
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(i) strongly order continuous type (I), if it is continuous from above at measur-
able sets of measure zero, that s, for any {A,} C F and A € F satisfying
Ap \( A and p(A) = {6}, it holds that Lim®, u(A,) = {6};

(i) strongly order semi-continuous type (1), if for any {Ap} C F and A€ F
satisfying An \, A and u(A) 2 0, it holds that Lim®, _u(A,) > 6.

Definition 5. Let u: F — Pg(Y) be a non-additive multi measure. p is said to
be

(i) null-additive, if for any B € F with u(B) = {0}, it holds that
u(AU B) = u(A)

forany A€ F;
(i) null-subtractive if for any B € F with u(B) = {6}, it holds that

u(A\ B) = u(4)
forany Ae F.

Theorem 6. Let y : F — Py(Y) be a non-additive multi measure. Then the
null-additivity of u is equivalent to the null-subtractivity of it.

Proof. (1) Suppose u is null-additive. Let E € F and F € F with

u(F) = {6}.
By the monotonicity of u, u(ENF) = {#}. Note that since E = (E\ F)U(ENF)
and the null-additivity of j,
WE)=p(E\F)U(ENF))=u(E\F),

which implies that y is null-subtractive.
(2) Suppose y is null-subtractive, and F and F are defined as in (1). Then u(F \
E) = {6}. Note that since

E=EU(FNF)=(EUF)\(F\E),
and the null-subtractivity of y,

W(E)=p(BEUF)\ (F\B)) =u(EUF),
which implies that y is null-additive. O

4. EGOROFF’S THEOREM

Definition 7. Let p: F — Py(Y) be a non-additive multi measure.

(1) A double sequence {Am,n} C F is called a p-regulator if it satisfies the
following two conditions.
(D1) Am n D Am, o whenever n <n'.
(D2) p(Un=1 N1 Am,n) = {6}
(2) up satisfies the weak-Egoroff condition if for any p-requlator {Amn}, there
ezists a T € T' such that p(Uge_1Am, r(m)) 3 8 holds.
(8) u satisfies the Egoroff condition if for any p-regulator {Am n}, there exists
a1 €T such that p (UX_1Am, r(m)) = {0} holds.

It is easy to check that the following lemma holds.
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Lemma 1. Let p : F — Py(Y) be a non-additive multi measure. u satisfies
the weak-Egoroff condition (resp. Egoroff condition) if (and only if), for any
double sequence {Am,n} C F satisfying (D2) in Definition 7 and the following
(D1), it holds that there ezists a T € T such that (U A, (m)) D 0 (resp.

M (U$=1Am, T(m)) = {0})
(D1") Am,nD A

m ' whenever m > m andn < n.
Definition 8. Let (X, F, u) be the non-additive multi measure space, fy, and f € F
forn=1,2,....

(1) {fn} is said to converge to f p-almost everywhere on X, which is denoted
by fn *5 f, if there ezists A € F such that u(A) = {0} and {f,} converges
tofonX\A.

(2) {fn} is said to converge to f u-weak-almost uniformly on X, which is de-
noted by fn 3" f, if there ewists {A, | v € T} C F and there ezists
v €T such that u(Ay) > 0 and {f,} converges to f uniformly on X \ A,.

(8) We say weak-Egoroff theorem holds if for u if {f,} converges u-weak-almost
uniformly (p-w-a.u.) to f whenever it converges u-almost everywhere (u-
a.e.) to the same limit.

(4) {fn} is said to converge to f p-almost uniformly on X, which is denoted
by fo “¥ f, if there exists {Ay | 7 € v} C F and there exists v € T such
that u(Ay) = {0} and {fn} converges to f uniformly on X \ A,.

(5) We say Egoroff theorem holds if for p if {fo} converges u-almost uniformly

(u-a.u.) to f whenever it converges p-a.e. to the same limit.

Under the above settings we have the following theorems.

Theorem 9. Let p: F — Py(Y) be a non-additive multi measure. If u satisfies
the weak-Egoroff condition, then the weak-Egoroff theorem holds for .

Proof. Let {f,} be a sequence of F-measurable real valued functions on X and f
also such a function. Assume that {f,} converges u-a.e. to f. For each m,n € N,
put

o0
hmn =1z € XI1f5@) - 7@ 2 ).

j=n
It is easy to see that {A,,,} is a u-regulator. By the assumption, there exists a
7 € T such that p (UX_) Ay, r(my) D 8. Note that 7 is upward directed by point
wise partial ordering. Put B, = UgS_; Ay, (m), then u(B;) 3 0. Since {B; [T € T}
is decreasing and by the monotonicity of u, it is a similar way to prove of Egoroff’s
theorem for an additive measure, we have f, — f uniformly on each set X\ B,. O

Theorem 10. Let p : F — Py(Y) be a non-additive multi measure. Then the
Jollowing two conditions are equivalent.

(1) w satisfies the Egoroff condition.
(2) The Egoroff theorem holds for p.

Proof. 1t is enough to prove only (2)—(1): Let {Amn} be a p-regulator. By
Lemma 1, we assume that Ap,, D A, whenever m > m' and n < n/. For
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each n € N, put f, =sup;cn ((-}-)x Ai,n) where xp denotes the characteristic func-
tion of B. Then we have

Amn= {2 e X|fa@) 2 2} = Jlo e XIfs(m) > )

j=n

for all m,n € N. By (D2), we have

b (U N Ulz e Xifi(=) 2 -,f;}) = {6}.

m=1n=1j=n

This implies that {f,} converges u-a.e. to 0. By assumption, {fs} converges u-
almost uniformly to 0. Then there exists a decreasing net {B, | v € I'} C F and
there exists a v € T such that u(B,) = {6} and {fn} converges to 0 uniformly on
each set X\ B,. Then we can find a 7 € T such that NZ_; (X \ Am, r(m)) D X\ By

Thus p (Ug.—_lAm, 'r(m)) C /—"(B'y)a so we have 4 (U;f:lAm,T(m)) = {0} O
5. SUFFICIENT CONDITIONS FOR WEAK-EGOROFF’S THEOREM

Next we give several sufficient conditions for the establishment of weak-Egoroff
condition.

Theorem 11. We assume that Y is locally convex spaces. Let p: F — Pua(Y)
be a non-additive multi measure. If u satisfies continuous from above type (I),
continuous from below type (II), and null-additive, then the weak-Egoroff condition
holds for .

Proof. We divide proof in two steps.

(Step 1) For any U € By and for any k € N, there exists a Vi € By such that
25V, C U. Let {Am,n} be a p-regulator and put

D =UZ_; M2y Am,n-
Then for any m € N and (ny, ..., ip) € N™,
Al,n UD\ D,AL’,,,1 UAz’n ubD \Al,nl ub,...,
and
UT 1 Ajiny U Amgt,n UD \(UTLy Aj n UD
hold as » — oo. Since u(D) = {0} and u is continuous from above type (I),
Lim®, u(A;,» U D) = (D), that is, there exists an e} € (A1, , UD) and for V4,
there exists an n; € N such that e, € V4 for any n > ny. For ny, Ay n, UAz nUD N\
A1,n, UD asn — oo,
Limglroo“ (Al,m U A2,n U D) =p (Al,nl U D) ’

that is, there exists an €2 € (A1, n, UA2,» UD) and for V3, there exists an ng € N
such that e2 —ek € V; for any n > ng, then €, € {e;,, } +V2 C V1 +V,. Repeating
the argument, since

U Ajymy U A, UD N\ U A UD as n— oo,
Lim®, o p (U5 Aj ny U Am,n UD) = p (U5 4, U D),
that is, for any ef*~! € p (U}":‘ilAj, n; U D) with
U U

~ U
e EV1+V2+...+Vm_1C§—+§-2-+...+_27n:_1_,
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there exists e™ € ,u(Um_‘llAJ n; U Am,n U D) such that for V,,, there exists n,, with
en. —€mt € Vp,. Then we have el € {em1 }+V,, C > ey V; for any m. Since
the topology is locally convex, E e V} CU, thus we have e € U.

(Step 2) Noting that u is null addltlve, we have

M(U]—]-A 7n.7) - M(UJ‘—lAj3'n’.1' UD)'
Let 7 € T satisfy 7(j) =n; (=1, 2, ...). Since
Uit1 4, r() / Ui2144,7(5)

as m — oo and u is continuous from below type (II), we have

Lim{GD, ot (s A () = M(UR1A7,(1):
Since {Am,n} is a p-regulator, take a subsequence e, € w(UiZ1Aj,+(5) from

{e* }, which obtained in (Step 1), then €n, € U and we have

e /J'(Uj=1A',‘r(J'))'
Thus the assertion holds. g

Next we consider another sufficient condition.

Definition 12 ([22]). A non-additive multi measure u is said to have property (S),
if for any {E,} C F, with Lim®, _ 1(E,) = {6}, there exists a subsequence {Ep,}
of {En} such that (ﬂ°‘il ue B, ) 20.

i=j
Definition 13. The double sequence {rm,n} of sets in Py(Y') is called a topological
regulator if it satisfies the following two conditions.

(1) Tn D g for any m, m € N.
(2) For any m € N, it holds that N1 Tmn D 6.

Definition 14. We say that Py (Y) has property (EP) if for any topological regu-
lator {rm,n} in Pa(Y), there exists a sequence {Py} of set in Py(Y) satisfying the
Jollowing two conditions.
(1) Limg), P = {6}.
(2) For any k € N and m € N, there exists an no(m, k) € N such that
{rm,n} C Pk for any n > no(m, k).

Theorem 15. Let p: F — Py(Y) be a non-additive multi measure. We assume
that p is strongly order semi-continuous type (I) and satisfies property (S). We
assume that Py(Y) has property (EP). Then u satisfies the weak-Egoroff condition.

Proof. Let {Am, n} be a p-regulator. By Lemma 1, we are able to assume that
Am,n D Ap', n Whenever m > m and n < n'. Then for any m € N, A n N\

n—-lAm,’n and p (N3 Am, »n) = {6} hold. By the monotonicity of u, {u(Am,n)}
is a topological regulator in Py (Y). Since Py (Y) has property (EP), there ex-
ists a sequence {Pp} of set such that NX_, P, = {0} with the property that for
any m € N, there exists an np(m) € N such that 4(Am,no(m)) C Pm- So that
L1mg)_mu(Am,no(m)) = {0}. Since p has property (S), there exists a strictly in-
creasing sequence {m;} C N such that

K ( =1 Uz—j Am,,no(mz)) 30.



By the strongly order semi-continuity type (I) of u, we have
LiIn_FiIz)m“(Uzq.i_jAmi,no(mi)) 36.

Thus there exists a; € g (UR2;Am,, no(ms)) Such that there exists jo and a; € U
for any j > jo. Thus there exists a jo € N such that p(U; Am; no(ms)) 2 9
Define 7 € T such that 7(m) = ng(mj,) if 1 < m < my, and 7(m) = no(my) if
mi—1 < m < m; for some i > jo. Since {An,, n} is increasing for each n € N, it
holds that

U;?:—jo Am;, no(m;) = U$=1Am, 7(m)-
Then p satisfies the weak-Egoroff condition. O

Remark 16. If we consider Hausdorff metric as the convergence of set-valued,
then weak-Egoroff condition ( resp. weak-Egoroff theorem ) and Egoroff condition
( resp. Egoroff theorem ) are equivalent. Other conditions also would be redefined,
see [13, 23].
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