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ABSTRACT. Egoroff’s theorem is established for set-valued measures, which
take values in the family of all non-void, closed subsets of a real normed space
using Hausdorff metric by several authors. In this paper, we prove Egoroff’s
theorem remains valid for non-additive measures, which take values in a fam-
ily of sets of topological vector spaces using two types of convergency of set
sequences.

1. INTRODUCTION

Egoroff’s theorem is one of the most fundamental theorems in classical measure
theory and does not necessary hold in non-additive measure theory without addi-
tional conditions. In [1], Wang generalized Egoroff’s theorem in case of fuzzy mea
sures, which are autocontinuous from above. Moreover in [2], Wang and Klir gave
another generalization of this result for fuzzy measures, which are null-additive. In
[3], Li showed that Egoroff’s theorem remains true for fuzzy measures without any
other supplementary $\infty$nditions for them. When a fuzzy measure is not necessar-
ily finite, Li et al. [4] have proved that Egoroff’s theorem remains valid on fuzzy
measures possessing the order continuity and pseudo-metric generating property.
$IJ1[5]$ , Murofushi, Uchino and Asahina find the necessary and sufficient $\infty$ndition
called the Egoroff condition, which assures that Egoroff’s theorem remains valid for
real valued non-additive measures, see also Li [6] and Kawabe [7, 8] extend these
results for Riesz space-valued fuzzy measures. Also these results for an ordered
vector space-valued and an ordered topological vector space-valued non-additive
measures, see [9, 10]. For information on real valued non-additive measures, see
[2, 11, 12].

By several authors, Egoroff’s theorem is established for non-additive multi mea-
sures, which take values in the family of all non-void, closed subsets of real normed
spaces. In [13], Precupanu and Gavrilul investigate Egoroff’s theorem in a fuzzy
multimeasure in the sense of Precupanu and et al. [14]. In [15], Wu and Liu in-
vestigate Egoroff’s theorem in a set-valued fuzzy measure introduced by Gavrilut
[16].

In this paper, we prove Egoroff’s theorem remains valid for non-additive multi
measures. In particular, we use a topological convergence with respect to set-valued
mappings, see [17, 18]. We consider Egoroff’s theorem in set-valued situations and
give two sufficient conditions of it. One is based on continuity from above and
below, another is base on strongly order continuous and property (S) in set-valued
cases. Next paper we give another sufficient condition to establishment of set-valued
Egoroff’s theorem.
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2. PRELIMINARIES

Let $R$ be the set of all real numbers and $N$ the set of all natural numbers. We
denote by $\mathcal{T}$ the set of all mappings from $N$ into $N$. Let $X$ be a non-empty set
and $\mathcal{F}$ a a-field of $X$ . Let $Y$ be a topological vector space (see [19, 20 Let $\theta$

be an origin of $Y$ , and $\mathcal{B}_{\theta}$ a system of neighborhoods of $\theta\in Y$ . We denote $\mathcal{P}_{0}(Y)$

be a family of non-empty subsets of Y. Let $\mathcal{P}_{d}(Y)$ be a family of closed, non-void
subsets of Y. In this paper we consider the following two types convergence. Let
$\{E_{n}\}\subset \mathcal{P}_{0}(Y)$ be a set sequence and $E\in \mathcal{P}_{0}(Y)$ . We say that $\{E_{n}\}$ is

(A) type (I) convergent to $E$ , if for any $e\in E$ there exists a sequence $\{e_{n}\}$ , which
converges to $e$ , that is, for any $U\in \mathcal{B}_{0}$ there exists a $n_{0}$ with $e_{n}-e\in U$

for any $n\geq n_{0}$ , such that $e_{n}\in E_{n}$ for every $n$;
(B) type (II) convergent to $E$ , if given $j\in J$ , for any sequence $\{e_{n_{j}}\}\subset Y,$

which converges to $e\in Y$ , that is, for any $U\in \mathcal{B}_{0}$ there exists a $j_{0}$ with
$e_{n_{j}}-e\in U$ for any $j\geq j_{0}$ , if $e_{n_{j}}\in E_{n}j$ , then $e\in E.$

If (A) holds, we will write $Lim_{narrow\infty}^{(I)}E_{n}=E$ and if (B) holds, we will write
$Lim_{narrow\infty}^{(II)}E_{n}=E$ . If both (A) and (B) hold, we will write $Lim_{narrow\infty}E_{n}=E$ and
said to be Kuratowski convergence [17, 18].

3. THE CONTINUITY OF NON-ADDITIVE MULTI MEASURES

Definition 1. Let $(X, be an$ arbitrary measurable $space, and let \mu: arrow \mathcal{P}_{cl}(Y)$

be a set-valued mapping. $\mu$ is said to be a non-allitive multi measure on $X$ if the
following conditions (i) and (\"u) hold.

(i) $\mu(\emptyset)=\{\theta\},$

(ii) for $A,$ $B\in\overline{f-}$ with $A\subset B,$ $\mu(A)\subset\mu(B)$ (monotonicity).

Moreover, we consider the following conditions.

Definition 2. Let $\mu$ : $\mathcal{F}arrow \mathcal{P}_{cl}(Y)$ be a non-additive multi measure. $\mu$ is said to
$be$

(i) continuous from above type (I) if $Lim_{narrow\infty}^{(I)}\mu(A_{n})=\mu(A)$ whenever $\{A_{n}\}\subseteq$

$\mathcal{F}$ and $A\in\overline{J-}$ satish $A_{n}\searrow A,\cdot$

(ii) continuovs fivm below type (I) if $Lim_{narrow\infty}^{(I)}\mu(A_{n})=\mu(A)$ whenever $\{A_{n}\}\subseteq$

$\overline{ノ-}$ and $A\in$ satisfy $A_{n}\nearrow A_{f}.$

($\fbox{Error::0x0000}$) continuous from above type ($\Pi$) if $Lim_{narrow\infty}^{(II)}\mu(A_{n})=\mu(A)$ whenever $\{A_{n}\}\subseteq$

$\mathcal{F}$ and $A\in\overline{ノ-}$ satisfy $A_{n}\searrow A$;
(iv) continuous from below type (II) if $Lim_{narrow\infty}^{(II)}\mu(A_{n})=\mu(A)$ whenever $\{A_{n}\}\subseteq$

$\mathcal{F}$ and $A\in \mathcal{F}$ satisfy $A_{n}\nearrow A.$

Example 3. Let (X, ノ be a measurable space, $rn$ : $\mathcal{F}arrow R+a$ non-additive
measure on $\mathcal{F},$ $Y=R^{2}$ and $R_{+}^{2}$ is a positive cone. Consider the order interval with
respect to $R_{+}^{2}$ defined by

$[a, b]_{R_{+}^{2}} :=\{y\in R^{2}|y\in(a+R_{+}^{2})\cap(b-R_{+}^{2}$

where $a,$
$b\in R^{2}.$

Define $\mu(A):=[(0, m(A))$ , $(m(A),$ $m(A))]_{R_{+}^{2}}$ for any $A\in \mathcal{F}$. Then $\mu$ is a non-
additive multi measure on $!^{-}.$

Definition 4. Let $\mu$ : $\mathcal{F}arrow \mathcal{P}_{d}(Y)$ be a non-additive multi measure. $\mu$ is said to
$be$
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(i) strongly order continuous type (I), if it is continuous from above at measur-
able sets of measure zero, that is, for any $\{A_{n}\}\subset$ ノ- and $A\in \mathcal{F}$ satisfying
$A_{n}\searrow A$ and $\mu(A)=\{\theta\}$ , it holds that $Lim_{narrow\infty}^{(I)}\mu(A_{n})=\{\theta\}_{f}.$

(\"u) strongly order semi-continuous type (I), if for any $\{A_{n}\}\subset \mathcal{F}$ and $A\in\overline{j-}$

satisfying $A_{n}\searrow A$ and $\mu(A)\ni\theta$ , it holds that $Lim_{narrow\infty}^{(I)}\mu(A_{n})\ni\theta.$

Definition 5. Let $\mu$ : $\mathcal{F}arrow \mathcal{P}_{d}(Y)$ be a non-additive multi measure. $\mu$ is said to
$be$

(i) null-additive, if for any $B\in \mathcal{F}$ with $\mu(B)=\{\theta\}$ , it holds that

$\mu(A\cup B)=\mu(A)$

for any $A\in \mathcal{F}$;
(\"u) null-subtractive if for any $B\in \mathcal{F}$ with $\mu(B)=\{\theta\}$ , it holds that

$\mu(A\backslash B)=\mu(A)$

for any $A\in \mathcal{F}.$

Theorem 6. Let $\mu$ : $\mathcal{F}arrow \mathcal{P}_{cl}(Y)$ be a non-additive multi measure. Then the
nvll-additivity of $\mu$ is equivalent to the nvll-subtractivity of it.

Proof (1) Suppose $\mu$ is null-additive. Let $E\in \mathcal{F}$ and $F\in \mathcal{F}$ with

$\mu(F)=\{\theta\}.$

By the monotonicity of $\mu,$ $\mu(E\cap F)=\{\theta\}$ . Note that since $E=(E\backslash F)\cup(E\cap F)$

and the null-additivity of $\mu,$

$\mu(E)=\mu((E\backslash F)\cup(E\cap F))=\mu(E\backslash F)$ ,

which implies that $\mu$ is null-subtractive.
(2) Suppose $\mu$ is null-subtractive, and $E$ and $F$ are defined as in (1). Then $\mu(F\backslash$

$E)=\{\theta\}$ . Note that since

$E=E\cup(F\cap F^{C})=(E\cup F)\backslash (F\backslash E)$ ,

and the null-subtractivity of $\mu,$

$\mu(E)=\mu((EUF)\backslash (F\backslash E))=\mu(E\cup F)$ ,

which implies that $\mu$ is null-additive. $\square$

4. EGOROFF’S THEOREM

Definition 7. Let $\mu$ : $\mathcal{F}arrow \mathcal{P}_{cl}(Y)$ be a non-additive multi measure.
(1) A double sequence $\{A_{rn,n}\}\subset \mathcal{F}$ is called a $\mu$-regulator if it satisfies the

following two conditions.
(D1) $A_{m,n}\supset A_{m,n’}$ whenever $n\leq n’.$

(D2) $\mu(\bigcup_{m=ln=1}^{\infty n\infty}A_{m,n})=\{\theta\}.$

(2) $\mu$ satisfies the weak-Egoroff condition if for any $\mu$-regulator $\{A_{m,n}\}$ , there
exists a $\tau\in T$ such that $\mu(\bigcup_{m=1}^{\infty}A_{rn,\tau(rn)})\ni\theta$ holds.

(3) $\mu$ satisfies the Egoroff condition if for any $\mu$-regulator $\{A_{m,n}\}$ , there exists
a $\tau\in T$ such that $\mu(U_{m=1}^{\infty}A_{m,\tau(\gamma n)})=\{\theta\}$ holds.

It is easy to check that the following lemma holds.
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Lemma 1. Let $\mu$ : $\mathcal{F}arrow \mathcal{P}_{cl}(Y)$ be a non-additive multi measure. $\mu$ satisfies
the weak-Egoroff condition (resp. Egoroff condition) if (and only if), for any
double sequence $\{A_{\tau n,n}\}\subset$ satisfying (D2) in Definition 7 and the following
(D1) , it holds that there exists a $\tau\in T$ such that $\mu(U_{m=1}^{\infty}A_{m,\tau(m)})\ni\theta$ (resp.
$\mu(\bigcup_{m=1}^{\infty}A_{m,\tau(m)})=\{\theta\})$ .

(D1) $A_{m,n}\supset A_{m’,n’}$ whenever $rn\geq m’$ and $n\leq n’.$

Definition 8. Let $(X, \mathcal{F},\mu)$ be the non-altitive multi measure space, $f_{n}$ and $f\in$

for $n=1$ , 2, $\cdots$

(1) $\{f_{n}\}$ is said to converge to $f$ $\mu$-almost everywhere on $X$ , which is denoted
by $f_{n}^{a}Sf$ , if there exists $A\in \mathcal{F}$ such that $\mu(A)=\{\theta\}$ and $\{f_{n}\}$ converges
to $f$ on $X\backslash A.$

(2) $\{f_{n}\}$ is said to converge to $f$ $\mu$-weak-almost uniformly on $X$ , which is de-

noted by $f_{n}^{w-}4^{u}f$ , if there exists $\{A_{\gamma}|\gamma\in\Gamma\}\subset$ and there exists
$\gamma\in\Gamma$ such that $\mu(A_{\gamma})\ni\theta$ and $\{f_{n}\}$ converges to $f$ uniformly on $X\backslash A_{\gamma}.$

(3) We say weak-Egoroff theorem holds iffor $\mu$ if $\{f_{n}\}$ converges $\mu$-weak-dmost
uniformly $(\mu-w-a.u.)$ to $f$ whenever it converges $\mu$-almost everywhere $(\mu-$

$a.e.)$ to the same limit.
(4) $\{f_{n}\}$ is said to converge to $f$ $\mu$-almost uniformly on $X$, which is denoted

by $f_{n}^{a}4f$ , if there exists $\{A_{\gamma}|j\in\gamma\}\subset \mathcal{F}$ and there exists $\gamma\in\Gamma$ such
that $\mu(A_{\gamma})=\{\theta\}$ and $\{f_{n}\}$ converges to $f$ uniformly on $X\backslash A_{\gamma}.$

(5) We say Egoroff theorem hol& $if$ for $\mu$ if $\{f_{n}\}$ converges $\mu$-almost uniformly
$(\mu-a.u.)$ to $f$ whenever it converges $\mu-a.e$ . to the same limit.

Under the above settings we have the following theorems.

Theorem 9. Let $\mu$ : $\mathcal{F}arrow \mathcal{P}_{cl}(Y)$ be a non-additive multi measure. If $\mu$ satisfies
the weak-Egoroff condition, then the weak-Egoroff theorem holds for $\mu.$

Proof Let $\{f_{n}\}$ be a sequence of $\overline{\sqrt{}-}$-measurable real valued functions on $X$ and $f$

also such a function. Assume that $\{f_{n}\}$ converges $\mu-a.e$ . to $f$ . For each $rn,n\in N,$

put

$A_{rn,n}= \bigcup_{j=n}^{\infty}\{x\in X||f_{j}(x)-f(x)|\geq\frac{1}{m}\}.$

It is easy to see that $\{A_{m,n}\}$ is a $\mu$-regulator. By the assumption, there exists a
$\tau\in \mathcal{T}$ such that $\mu(\bigcup_{m=1}^{\infty}A_{rn,\tau(\pi\iota)})\ni\theta$ . Note that $\mathcal{T}$ is upward directed by point
wise partial ordering. Put $B_{\tau}= \bigcup_{rn=1}^{\infty}A_{rn,\tau(7n)}$ , then $\mu(B_{\tau})\ni\theta$ . Since $\{B_{\tau}|\tau\in \mathcal{T}\}$

is decreasing and by the monotonicity of $\mu$ , it is a similar way to prove of Egoroff’s
theorem for an additive measure, we have $f_{n}arrow f$ uniformly on each set $X\backslash B_{\tau}.$

$\square$

Theorem 10. Let $\mu$ : $\mathcal{F}arrow \mathcal{P}_{cl}(Y)$ be a non-additive multi measure. Then the
following two conditions are equivalent.

(1) $\mu$ satisfies the Egoroff condition.
(2) The Egoroff theorem holds for $\mu.$

Proof. It is enough to prove only (2) $arrow(1)$ : Let $\{A_{m,n}\}$ be a $\mu$-regulator. By
Lemma 1, we assume that $A_{rn,n}\supset A_{rn’,n’}$ whenever $m\geq m’$ and $n\leq n’$ . For
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each $n\in N$ , put $f_{n}= \sup_{i\in N}((\frac{1}{i})\chi_{A_{:,n}})$ where $\chi_{B}$ denotes the characteristic func-

tion of $B$ . Then we have

$A_{m,n}= \{x\in X|f_{n}(x)\geq\frac{1}{m}\}=\bigcup_{j=n}^{\infty}\{x\in X|f_{j}(x)\geq\frac{1}{m}\}$

for all $m,n\in N$ . By (D2), we have

$\mu(\bigcup_{m=1}^{\infty}\bigcap_{n=1}^{\infty}\bigcup_{j=n}^{\infty}\{x\in X|f_{j}(x)\geq\frac{1}{m}\})=\{\theta\}.$

This implies that $\{f_{n}\}$ converges $\mu-a.e$ . to O. By assumption, $\{f_{n}\}$ converges $\mu-$

almost uniformly to O. Then there exists a decreasing net $\{B_{\gamma}|\gamma\in\Gamma\}\subset \mathcal{F}$ and
there exists a $\gamma\in\Gamma$ such that $\mu(B_{\gamma})=\{\theta\}$ and $\{f_{n}\}$ converges to $0$ uniformly on
each set $X\backslash B_{\gamma}$ . Then we can find a $\tau\in T$ such that $n_{m=1}^{\infty}(X\backslash A_{m,\tau(m)})\supset X\backslash B_{\gamma}.$

Thus $\mu(\bigcup_{m=1}^{\infty}A_{m,\tau(m)})\subset\mu(B_{\gamma})$ , so we have $\mu(\bigcup_{m=1}^{\infty}A_{m,\tau(rn)})=\{\theta\}.$
$\square$

5. SUFFICIENT CONDITIONS FOR WEAK EGOROFF’S THEOREM

Next we give several sufficient conditions for the establishment of weak-Egoroff
condition.

Theorem 11. We $ossur\tau\iota e$ that $Y$ is locally convex spaces. Let $\mu$ : $\mathcal{F}arrow \mathcal{P}_{cl}(Y)$

be a non-additive mvlti measure. If $\mu$ satisfies continuous from above type (I),

continuovs from below type (II), and null-additive, then the weak-Egoroff condition
holds for $\mu.$

Proof. We divide proof in two steps.
(Step 1) For any $U\in \mathcal{B}_{0}$ and for any $k\in N$ , there exists a $V_{k}\in \mathcal{B}_{0}$ such that

$2^{k}V_{k}\subset U$ . Let $\{A_{m,n}\}$ be a $\mu$-regulator and put

$D= \bigcup_{rn=1}^{\infty}\bigcap_{n=1}^{\infty}A_{rn,n}.$

Then for any $m\in N$ and $(n_{1}, \ldots, n_{m})\in N^{\mathfrak{m}},$

$A_{1,n}\cup D\searrow D,A_{1,n_{1}}\cup A_{2,n}\cup D\searrow A_{1,n_{1}}\cup D, \cdots$ ,

and
$\bigcup_{j=1}^{m}A_{j,n_{j}}\cup A_{m+1,n}\cup D\searrow\cup^{m}A_{j,n}UDj=1j$

hold as $narrow\infty$ . Since $\mu(D)=\{\theta\}$ and $\mu$ is continuous from above type (I),
$Lim_{narrow\infty}^{(I)}\mu(A_{1,n}\cup D)=\mu(D)$ , that is, there exists an $e_{n}^{1}\in\mu(A_{1,n}\cup D)$ and for $V_{1},$

there exists an $n_{1}\in N$ such that $e_{n}^{1}\in V_{1}$ for any $n\geq n_{1}$ . For $n_{1},$ $A_{1,n_{1}}\cup A_{2,n}\cup D\searrow$

$A_{1,n_{1}}\cup D$ as $narrow\infty,$

$Lim_{narrow\infty}^{(I)}\mu(A_{1,n_{1}}\cup A_{2,n}UD)=\mu(A_{1,n_{1}}\cup D)$ ,

that is, there exists an $e_{n}^{2}\in\mu(A_{1,n_{1}}\cup A_{2,n}\cup D)$ and for $V_{2}$ , there exists an $n_{2}\in N$

such that $e_{n}^{2}-e_{n_{1}}^{1}\in V_{2}$ for any $n\geq n_{2}$ , then $e_{n_{2}}^{2}\in\{e_{n_{1}}^{1}\}+V_{2}\subset V_{1}+V_{2}$ . Repeating
the argument, since

$\bigcup_{j=1}^{m-1}A_{j,n_{j}}\cup A_{rn,n}\cup D\searrow\bigcup_{j=1}^{m-1}A_{j,n_{j}}\cup D$ as $narrow\infty,$

$Lim_{narrow\infty}^{(I)}\mu(\bigcup_{j=1}^{rn-1}A_{j,n_{j}}\cup A_{m,n}\cup D)=\mu(\cup^{m-1}j=1A_{j,n}J\cup D)$ ,

that is, for any $e_{n_{m-1}}^{m-1} \in\mu(\bigcup_{j=1}^{m-1}A_{j,n_{j}}\cup D)$ with

$e_{n_{n-1}}^{m-1} \in V_{1}+V_{2}+\cdots+V_{m-1}\subset\frac{U}{2}+\frac{U}{2^{2}}+\cdots+\frac{U}{2^{m-1}},$
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there exists $e_{n}^{rn} \in\mu(\bigcup_{j=1}^{m-1}A_{j,n_{j}}\cup A_{m,n}\cup D)$ such that for $V_{m}$ there exists $n_{rn}$ with
$e_{n_{m}}^{rn}-e_{n_{m-1}}^{7n-1}\in V_{rn}$ . Then we have $e_{n_{m}}^{m} \in\{e_{n_{n-1}}^{m-1}\}+V_{rn}\subset\sum_{j=1}^{m}V_{j}$ for any $m$ . Since
the topology is locally convex, $\sum_{j=1}^{m}V_{j}\subset U$ , thus we have $e_{n_{m}}^{m}\in U.$

(Step 2) Noting that $\mu$ is null additive, we have

$\mu(\bigcup_{j=1}^{m}A_{j,n_{j}})=\mu(\bigcup_{j=1}^{rn}A_{j,n_{j}}\cup D)$ .

Let $\tau\in \mathcal{T}$ satisfy $\tau(j)=n_{j}(j=1,2,$ . . Since$\cdot$

$U_{j=1}^{7n}A_{j,\tau(j)}\nearrow\bigcup_{j=1}^{\infty}A_{j,\tau(j)}$

as $marrow\infty$ and $\mu$ is continuous from below type (II), we have

$Lim_{marrow\infty}^{(II)}\mu(\bigcup_{j=1}^{m}A_{j,\tau(j)})=\mu(\bigcup_{j=1}^{\infty}A_{j,\tau(j)})$ .

Since $\{A_{m,n}\}$ is a $\mu$-regulator, take a subsequence $e_{n_{m}:}^{m_{l}} \in\mu(\bigcup_{j=1}^{7n_{i}}A_{j,\tau(j)})$ from
$\{e_{n_{m}}^{m}\}$ , which obtained in (Step 1), then $e^{m_{i}}$ $\in U$ and we have

$n_{m_{i}}$

$\theta\in\mu(\bigcup_{j=1}^{\infty}A_{j,\tau(j)})$ .
Thus the assertion holds. $\square$

Next we consider another sufficient condition.

Definition 12 ([22]). A non-additive multi measure $\mu$ is said to have property (S) ,

if for any $\{E_{n}\}\subset \mathcal{F}$, with $Lim_{narrow\infty}^{(I)}\mu(E_{n})=\{\theta\}$ , there exists a subsequence $\{E_{n_{l}}\}$

of $\{E_{n}\}$ such that $\mu(\bigcap_{j=1}^{\infty}\bigcup_{i=j}^{\infty}E_{n_{i}})\ni\theta.$

Definition 13. The double sequence $\{r_{m,n}\}$ of sets in $\mathcal{P}_{cl}(Y)$ is called a topological
regulator \’if it satisfies the following two conditions.

(1) $r_{m,n}\supset r_{m,n+1}$ for any $m,$ $n\in N.$

(2) For any $m\in N$ , it holds that $\bigcap_{n=1}^{\infty}r_{rn,n}\ni\theta.$

Definition 14. We say that $\mathcal{P}_{cl}(Y)$ has property $(EP)$ if for any topological regu-
lator $\{r_{m,n}\}$ in $\mathcal{P}_{d}(Y)$ , there exists a sequence $\{P_{k}\}$ of set in $\mathcal{P}_{cl}(Y)$ satisfying the
following two conditions.

(1) $Lim_{karrow\infty}^{(I)}P_{k}=\{\theta\}.$

(2) For any $k\in N$ and $rn\in N$ , there exists an $n_{0}(m, k)\in N$ such that
$\{r_{m,n}\}\subset P_{k}$ for any $n\geq n_{0}(m, k)$ .

Theorem 15. Let $\mu$ : $arrow \mathcal{P}_{d}(Y)$ be a non-additive multi measure. We assume
that $\mu$ is strongly order semi-continuous type (I) and satisfies property (S) . We
assume that $\mathcal{P}_{d}(Y)$ has property $(EP)$ . Then $\mu$ satisfies the weak-Egoroff condition.

Proof. Let $\{A_{m,n}\}$ be a $\mu$-regulator. By Lemma 1, we are able to assume that
$A_{rn,n}\supset A_{m’,n’}$ whenever $V\geq$ and $n\leq n’$ . Then for any $m\in N,$ $A_{m,n}\searrow$

$\bigcap_{n=1}^{\infty}A_{rn,n}$ and $\mu(\bigcap_{n=1}^{\infty}A_{rn,n})=\{\theta\}$ hold. By the monotonicity of $\mu,$ $\{\mu(A_{rn,n})\}$

is a topological regulator in $\mathcal{P}_{c}\iota(Y)$ . Since $\mathcal{P}_{cl}(Y)$ has property $(EP)$ , there ex-
ists a sequence $\{P_{rn}\}$ of set such that $\bigcap_{\mathfrak{m}=1}^{\infty}P_{rn}=\{\theta\}$ with the property that for
any $m\in N$ , there exists an $n_{0}(m)\in N$ such that $\mu(A_{m,n_{0}(pn)})\subset P_{m}$ . So that
$Lim_{rnarrow\infty}^{(I)}\mu(A_{m,no(m)})=\{\theta\}$ . Since $\mu$ has property (S) , there exists a strictly in-
creasing sequence $\{m_{i}\}\subset N$ such that

$\mu(\bigcap_{j=1}^{\infty}\bigcup_{i=j}^{\infty}A_{m_{i},n_{O}(m_{i})})\ni\theta.$

209



By the strongly order semi-continuity type (I) of $\mu$ , we have

$Lim_{jarrow\infty}^{(I)}\mu(\bigcup_{i=j}^{\infty}A_{\gamma n_{*},n_{0}(n:)}\gamma)\ni\theta.$

Thus there exists $a_{j} \in\mu(\bigcup_{i=j}^{\infty}A_{m_{*},n_{O}(rn:)})$ such that there exists $j_{0}$ and $a_{j}\in U$

for any $j\geq j_{0}$ . Thus there exists a $j_{0}\in N$ such that $\mu(\bigcup_{i=j_{0}}^{\infty}A_{m:,no(m:)})\ni\theta.$

Define $\tau\in \mathcal{T}$ such that $\tau(m)=n_{0}(m_{j_{0}})$ if $1\leq m\leq m_{jo}$ and $\tau(m)=n_{0}(m_{i})$ if
$m_{i-1}<m\leq m_{i}$ for some $i>j_{0}$ . Since $\{A_{rn,n}\}$ is increasing for each $n\in N$ , it
holds that

$\bigcup_{i=j_{0}}^{\infty}A_{m_{l},no(m_{l})}=\bigcup_{rn=1}^{\infty}A_{m,\tau(m)}.$

Then $\mu$ satisfies the weak-Egoroff condition. $\square$

Remark 16. If we consider Havsdorff metric as the convergence of set-valued,
then weak-Egoroff condition (resp. weak-Egoroff theorem) and Egoroff condition
(resp. Egoroff theorem) are equivalent. Other conditions also would be redefined,
see [13, 23].
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