ON COMPACTNESS IN L^1

HIROMICHI MIYAKE (三宅 啓道)

1. INTRODUCTION

Let $(\Omega, \mathcal{A}, \mu)$ be a positive measure space with σ -algebra \mathcal{A} and measure μ and let \mathcal{F} be the family of measurable subsets of Ω with finite measure. Let L^1 and L^{∞} be the space of integrable functions defined on Ω and the space of essentially-bounded measurable functions defined on Ω , respectively. We denote by L_{loc}^{∞} the vector subspace of L^{∞} consisting of essentially-bounded measurable functions f defined on Ω for which $\mu\{w \in \Omega : f(w) \neq 0\} < \infty$. In [5], we discussed a method of constructing a separated locally convex topology $\tilde{\tau}$ on L^1 generated by the semi-norms $f \mapsto \int_E |f| d\mu$ $(E \in \mathcal{F})$ with the assumption that μ is σ -finite. The topological dual of $(L^1, \tilde{\tau})$ is algebraically isomorphic to L_{loc}^{∞} . A notion of local uniform integrability for subsets of L^1 was also discussed to obtain a necessary and sufficient condition for a bounded subset of L^1 relative to L^1 -norm to be relatively weakly compact in $(L^1, \tilde{\tau})$: Whenever C is a bounded subset of L^1 relative to L^1 -norm, C is locally uniformly integrable if and only if C is relatively weakly compact in $(L^1, \tilde{\tau})$. We applied it to show the existence of the mean values for commutative semigroups of Dunford-Schwartz operators on L^1 . This result gives an identification of the limit function in almost everywhere convergence of the Cesàro means $n^{-1} \sum_{k=0}^{n-1} T^k f$ of an $f \in L^1$; see [6] for details.

In this paper, we summarize the arguments presented in [7] and [8] about a characterization of compactness for the weak topology of L^1 associated with τ , and then apply similar arguments to discuss some necessary and sufficient conditions of compactness for the topology on L^1 generated by the metric $(f,g) \mapsto \int_{\Omega} |f-g| d\mu$ and the weak topology $\sigma(L^1, L^{\infty})$ on L^1 generated by L^{∞} , respectively. As their applications, (weak) almost periodicity of linear and non-linear operators in L^1 is also discussed.

2. Preliminaries

Throughout the paper, let \mathbb{N}_+ and \mathbb{R} denote the set of non-negative integers and the set of real numbers, respectively. Let $\langle E, F \rangle$ be a duality between vector spaces E and F over \mathbb{R} . If A is a subset of E, then $A^\circ = \{y \in F : \langle x, y \rangle \leq 1 \ (x \in A)\}$ is a subset of F, called the polar of A. For each $y \in F$, we define a linear form f_y on E by $f_y(x) = \langle x, y \rangle \ (x \in E)$. Then, $\sigma(E, F)$ denotes the weak topology on E generated by the family $\{f_y : y \in F\}$ and $\tau(E, F)$ denotes the Mackey topology on E with respect to $\langle E, F \rangle$, that is, the topology of uniform convergence on the circled, convex, $\sigma(F, E)$ -compact subsets of F. Let (E, \mathfrak{T}) is a locally convex space. Then, the topological dual of E is denoted by E'. The bilinear form $(x, f) \mapsto f(x)$ on $E \times E'$ defines a duality $\langle E, E' \rangle$ and the weak topology on E generated by E'is called the weak topology of E (associated with \mathfrak{T} if this distinction is necessary). If E is a Banach space, then the subset $\{x \in E : ||x|| \leq r\}$ of E is called the closed ball with center at 0 and radius r, denoted by B(r). In particular, B(1) is called the closed unit ball in E.

Throughout the paper, let $(\Omega, \mathcal{A}, \mu)$ denote a positive measure space with σ -algebra \mathcal{A} and measure μ , and let \mathcal{F} denote the family of measurable subsets of Ω with finite measure. Then, \mathcal{F} is ordered by set inclusion in the sense that E is less than F, or $E \leq F$ if and only if $E \subset F(E, F \in \mathcal{F})$, so that each finite subset of \mathcal{F} has the least upper bound. Let $E \in \mathcal{A}$. If \mathcal{A}_E denotes the σ -algebra of all intersections of members of \mathcal{A} with E and μ_E denotes the restriction of μ to \mathcal{A}_E , then the triple $(E, \mathcal{A}_E, \mu_E)$ is a positive measure space. For $1 \leq p < \infty$, let $\mathcal{L}^{p}(E)$ be the vector space of measurable functions fdefined on E for which $||f||_{E,p} = (\int_E |f|^p d\mu)^{\frac{1}{p}} < \infty$ and let $\mathcal{L}^{\infty}(E)$ be the vector space of measurable functions f defined on E for which $\|f\|_{E,\infty} = \inf_N \sup_{w \in E \setminus N} |f(w)| < \infty$, where N ranges over the null subsets of E. If \mathcal{N}_E denotes the set of null functions defined on E and [f] denotes the equivalence class of an $f \in \mathcal{L}^p(E) \mod \mathcal{N}_E$ $(1 \le p \le \infty)$, then $[f] \mapsto ||f||_{E,p}$ is a norm on the quotient space $\mathcal{L}^p(E)/\mathcal{N}_E$, which thus becomes a Banach space, denoted by $L^{p}(E)$. In particular, if μ is the counting measure on \mathbb{N} , then we write l^1 in place of $L^1(\mathbb{N})$. For each $f \in L^{p}(\Omega)$, $||f||_{\Omega,p}$ is called the L^{p} -norm of f, simply denoted by $||f||_p$. A measurable function f defined on Ω is called essentiallybounded if $||f||_{\infty} < \infty$. Every element of $L^{p}(E)$ is considered as a measurable function f defined on E with $||f||_{E,p} < \infty$, if no confusion will occur. For each $E \in \mathcal{A}$, the bilinear form $(f,h) \mapsto \int_E fh \, d\mu$ on $L^1(E) \times L^{\infty}(E)$ places $L^1(E)$ and $L^{\infty}(E)$ in duality. For $E, F \in \mathcal{F}$ with $E \leq F$, let i_{EF} denote the mapping of $L^1(F)$ onto $L^1(E)$ that assigns to each $f \in L^1(F)$ the restriction $f|_E$ of f to E. Then, the canonical imbedding of $L^{\infty}(E)$ into $L^{\infty}(F)$ is the adjoint operator of i_{EF} , denoted by j_{FE} .

Let $\mathcal{L}_{loc}^{1}(\Omega)$ be the vector space of measurable functions f defined on Ω for which $||f||_{E,1} < \infty$ for each $E \in \mathcal{F}$ and let \mathcal{N}_{loc} be the vector subspace of $\mathcal{L}_{loc}^{1}(\Omega)$ consisting of measurable functions f defined on Ω for which $||f||_{E,1} = 0$ for each $E \in \mathcal{F}$. If [f] denotes the equivalence class of an $f \in \mathcal{L}_{loc}^{1}(\Omega) \mod \mathcal{N}_{loc}$, then [f] = [g] $(f, g \in \mathcal{L}_{loc}^{1}(\Omega))$ means that for each $E \in \mathcal{F}$, f(x) = g(x) almost everywhere on E. In particular, if μ is σ -finite, then \mathcal{N}_{loc} equals the set \mathcal{N}_{Ω} of null functions defined on Ω and hence for $f, g \in \mathcal{L}^{1}_{loc}(\Omega)$, [f] = [g] if and only if f(x) = g(x) almost everywhere on Ω . For each $E \in \mathcal{F}$, $[f] \mapsto ||f||_{E,1}$ is a semi-norm on the quotient space $\mathcal{L}^{1}_{loc}(\Omega)/\mathcal{N}_{loc}$, which becomes a locally convex space, denoted by $L^{1}_{loc}(\Omega)$, under the separated locally convex topology τ generated by the semi-norms $[f] \mapsto ||f||_{E,1}$ ($E \in \mathcal{F}$). Every element of $L^{1}_{loc}(\Omega)$ is considered as a measurable function f defined on Ω for which $||f||_{E,1} < \infty$ for each $E \in \mathcal{F}$, if no confusion will occur. If μ is finite, then $L^{1}_{loc}(\Omega)$ equals $L^{1}(\Omega)$ and hence τ is just the topology on $L^{1}(\Omega)$ generated by the metric $(f, g) \mapsto ||f - g||_{1}$.

In the sequel, we shall assume that the measure space $(\Omega, \mathcal{A}, \mu)$ is σ -finite. The product space \mathcal{L} is the Cartesian product $L = \prod_{E \in \mathcal{F}} L^1(E)$ of the family $\{(L^1(E), \|\cdot\|_{E,1}) : E \in \mathcal{F}\}$ with its product topology. Then, $L^1_{loc}(\Omega)$ is identified as a closed (and hence complete) subspace of \mathcal{L} by the isomorphism $f \mapsto (f|_E)_{E \in \mathcal{F}}$ of $L^1_{loc}(\Omega)$ into \mathcal{L} , where $f|_E$ is the restriction of f to E. Let $D = \bigoplus_{E \in \mathcal{F}} L^{\infty}(E)$ be the direct sum of the family $\{L^{\infty}(E) : E \in \mathcal{F}\}$. The vector spaces L and D are placed in duality by the bilinear form $(f,g) \mapsto \sum_E \langle f_E, g_E \rangle$ on $L \times D$, where $f = (f_E) \in L, g = (g_E) \in D$ and the sum is taken over at most a finite number of non-zero terms of g. Then, the topological dual of \mathcal{L} is D and the topological dual of $L^1_{loc}(\Omega)$ is the quotient space $L^{\infty}_{loc}(\Omega)$ of $L^{\infty}(\Omega)$ consisting of measurable, essentially-bounded functions f defined on Ω for which $\mu\{w \in \Omega : f(w) \neq 0\} < \infty$.

Proposition 1. $L^1_{loc}(\Omega)$ is a complete locally convex space. The topological dual of $L^1_{loc}(\Omega)$ is algebraically isomorphic to $L^{\infty}_{loc}(\Omega)$.

We note that $L^1_{loc}(\Omega)$ is identified as the reduced projective limit $\lim_{E_F} L^1(F)$ of the family $\{(L^1(E), \|\cdot\|_{E,1}) : E \in \mathcal{F}\}$ with respect to the mappings i_{EF} $(E, F \in \mathcal{F} \text{ and } E \leq F)$. If $\mathcal{D} = \bigoplus_{E \in \mathcal{F}} L^{\infty}(E)$ denotes the locally convex direct sum of the family $\{(L^{\infty}(E), \tau(L^{\infty}(E), L^1(E))) : E \in \mathcal{F}\}$, then the quotient space $\mathcal{D}/(L^1_{loc}(\Omega))^\circ$ is the inductive limit $\lim_{E \to F} j_{FE} L^{\infty}(E)$ of the family $\{(L^{\infty}(E), \tau(L^{\infty}(E), L^1(E))) : E \in \mathcal{F}\}$ with respect to the mappings j_{FE} $(E, F \in \mathcal{F} \text{ and } E \leq F)$.

A subset A of $L^1_{loc}(\Omega)$ is said to be locally uniformly integrable if for each $E \in \mathcal{F}$, the set $\{f|_E : f \in A\}$ of the restrictions $f|_E$ of the functions f in A to E is uniformly integrable in $L^1(E)$, that is, for each $E \in \mathcal{F}$ and $\epsilon > 0$, there exists a $\delta > 0$ such that for each $F \in \mathcal{A}$ with $F \subset E$ and $\mu(F) < \delta$, $\sup_{f \in A} \int_F |f| d\mu < \epsilon$. It follows from the theorem of Tychonoff that if A is a locally uniformly integrable, bounded subset of $L^1_{loc}(\Omega)$, then A is relatively weakly compact, since $L^1_{loc}(\Omega)$ is a complete subspace of \mathcal{L} . The converse holds.

Proposition 2. A subset C of $L^1_{loc}(\Omega)$ is relatively weakly compact if and only if C is bounded and locally uniformly integrable.

Remark 1. The arguments discussed so far is applicable for σ -compact topological spaces X. In this case, we choose as \mathcal{A} the σ -algebra of

Borel sets of X and as μ a Borel measure on X such that $\mu(K) < \infty$ for each compact subset K of X. For example, let $X = \mathbb{R}$, let μ be Lebesgue measure on \mathbb{R} , let \mathcal{K} be the family of compact subsets of \mathbb{R} and let $L^1_{loc}(\mathbb{R})$ be the space of Borel measurable functions f defined on \mathbb{R} for which $||f||_{K,1} = \int_K |f| d\mu < \infty$ ($K \in \mathcal{K}$), endowed with the separated locally convex topology generated by the semi-norms $f \mapsto ||f||_{K,1}$ ($K \in \mathcal{K}$). Then, $L^1_{loc}(\mathbb{R})$ contains the space $C(\mathbb{R})$ of continuous (not necessarily bounded) functions defined on \mathbb{R} . If a subset \mathcal{C} of $C(\mathbb{R})$ is uniformly bounded on the compact subsets of \mathbb{R} , that is, $\sup_{f \in \mathcal{C}} \sup_{x \in \mathcal{K}} |f(x)| < \infty$ ($K \in \mathcal{K}$), then \mathcal{C} is relatively weakly compact in $L^1_{loc}(\mathbb{R})$.

We recall that whenever E is a metrizable locally convex space, then a subset C of E is weakly compact if and only if C is sequentially weakly compact.

Proposition 3. A subset C of $L^1_{loc}(\Omega)$ is weakly compact if and only if C is sequentially weakly compact.

3. On weak compactness in a separated locally convex topology on $L^1\,$

In this section, $L^1(\Omega)$ shall be considered as a locally convex space under the separated locally convex topology $\tilde{\tau}$ generated by the seminorms $f \mapsto ||f||_{E,1}$ $(E \in \mathcal{F})$, if $L^1(\Omega)$ is not specified explicitly as a Banach space with the norm $f \mapsto ||f||_1$, and we show a necessary and sufficient condition for a subset of $L^1(\Omega)$ to be relatively weakly compact. It is clear that $\tilde{\tau}$ is the relative topology of τ on $L^1_{loc}(\Omega)$ to $L^1(\Omega)$, since $L^1(\Omega)$ is a subspace of $L^1_{loc}(\Omega)$. The topological dual of $L^1(\Omega)$ is algebraically isomorphic to $L^\infty_{loc}(\Omega)$. The result concerning completeness of $L^1(\Omega)$ follows immediately from the separation theorem.

Proposition 4. The completion of $(L^1(\Omega), \tilde{\tau})$ is $L^1_{loc}(\Omega)$.

We showed a sufficient condition for a subset of $L^1(\Omega)$ to be relatively weakly compact to obtain the existence of the mean values for commutative semigroups of Dunford-Schwartz operators on L^1 ; see [6].

Proposition 5. Let C be a bounded subset of $L^1(\Omega)$ relative to L^1 norm, that is, $\sup_{f \in C} ||f||_1 < \infty$. Then, C is relatively weakly compact in $(L^1(\Omega), \tilde{\tau})$ if and only if C is locally uniformly integrable.

Example 1. Let $\Omega = \mathbb{R}$, let \mathcal{A} be the σ -algebra of Lebesgue measurable subsets of \mathbb{R} , let μ be Lebesgue measure on \mathbb{R} , let \mathcal{F} be the family of Lebesgue measurable subsets of \mathbb{R} with finite measure. Let $L^1(\mathbb{R})$ be endowed with the separated locally convex topology $\tilde{\tau}$ generated by the semi-norms $f \mapsto ||f||_{E,1}$ $(E \in \mathcal{F})$ and let $f \in L^1(\mathbb{R})$. For each $y \in \mathbb{R}$, f_y is the translate of f, that is, $f_y(x) = f(x-y)$ $(x \in \mathbb{R})$. Then, $\{f_y : y \in \mathbb{R}\}$ is relatively weakly compact in $(L^1(\mathbb{R}), \tilde{\tau})$. For example, for $f(x) = e^{-|x|}$ $(x \in \mathbb{R})$, $\{f_y : y \in \mathbb{R}\}$ is not relatively weakly compact in $(L^1(\mathbb{R}), \|\cdot\|_1)$, but relatively weak compact in $(L^1(\mathbb{R}), \tilde{\tau})$; see also Remark 3.

Example 2. The closed unit ball in l^1 is weakly compact in the topology of pointwise convergence, due to Fatou's lemma.

Example 3. Let $\Omega, \mathcal{A}, \mu, \mathcal{F}$ and $\tilde{\tau}$ be as in Example 1. Let $f_n \ (n \in \mathbb{N})$ be a characteristic function on [n, 2n). Then, $\{f_n\}$ is not bounded relative to L^1 -norm, but it converges to a null function in the topology $\tilde{\tau}$ on $L^1(\mathbb{R})$. Thus, it is relatively compact and hence relatively weakly compact in $(L^1(\mathbb{R}), \tilde{\tau})$.

A subset C of $L^1(\Omega)$ is said to be *locally bounded* if C is a bounded subset of $L^1(\Omega)$, that is, for each $E \in \mathcal{F}$, $\sup_{f \in C} ||f||_{E,1} < \infty$.

We show a necessary and sufficient condition for a subset of $L^1(\Omega)$ to be relatively weakly compact in $(L^1(\Omega), \tilde{\tau})$.

Theorem 1. A subset C of $L^1(\Omega)$ is relatively weakly compact in $(L^1(\Omega), \tilde{\tau})$ if and only if C is locally uniformly integrable, locally bounded and for each sequence $\{f_n\}$ in C,

$$\sup_{E\in\mathcal{F}}\liminf_{n\to\infty}\left|\int_E f_n\,d\mu\right|<\infty.$$

4. On weak compactness in L^1

In the sequel, $L^1(\Omega)$ shall be considered as a Banach space under the norm $f \mapsto ||f||_1$. From Theorem 1, it is natural to ask a question of under which conditions every locally uniformly integrable, locally bounded subset of $L^1(\Omega)$ is relatively weakly compact in $(L^1(\Omega), ||\cdot||_1)$.

The following theorem is due to Grothendieck.

Theorem 2. A subset C of a Banach space E is relatively weakly compact if and only if for each $\epsilon > 0$, there exists a weakly compact subset D of E such that $C \subset D + B(\epsilon)$.

Motivated by his result, we introduce a notion of the type of uniform integrability to obtain a necessary and sufficient condition for a subset of $L^1(\Omega)$ to be relatively weakly compact. We call a subset C of $L^1(\Omega)$ uniformly integrable at infinity if for each $\epsilon > 0$, there exists an $E \in \mathcal{F}$ such that

$$\sup_{f\in C}\int_{\Omega\setminus E} |f|\,d\mu<\epsilon\quad \left(\text{or } \limsup_{E\in\mathcal{F}}\sup_{f\in C}\int_{\Omega\setminus E} |f|\,d\mu=0\right).$$

Theorem 3. Let C be a subset of $L^1(\Omega)$. Then, the following are equivalent:

(1) C is relatively weakly compact;

- (2) for each $\epsilon > 0$, there exists an $E \in \mathcal{F}$ such that $C_E = \{f|_E : f \in C\}$ is uniformly integrable, bounded in $L^1(E)$ and $C \subset C_E + B(\epsilon)$;
- (3) C is locally bounded, locally uniformly integrable and uniformly integrable at infinity;
- (4) C is bounded, uniformly integrable and uniformly integrable at infinity;
- (5) $|C| = \{|f| : f \in C\}$ is relatively weakly compact, where $|f|(x) = |f(x)| \ (x \in \Omega);$
- (6) C is bounded and for each decreasing sequence $\{E_n\}$ in \mathcal{A} with empty intersection, $\int_{E_n} f d\mu$ converges to 0 uniformly in $f \in C$;
- (7) C is bounded and there exists an $f \in L^1(\Omega)$ such that for each $\epsilon > 0$, there exists a $\delta > 0$ such that for each $E \in \mathcal{A}$ with $\int_E |f| d\mu < \delta$, $\sup_{g \in C} |\int_E g d\mu| < \epsilon$.

Remark 2. The equivalence $(1) \Leftrightarrow (6)$ is due to Dunford and Pettis, according to [3] and $(1) \Leftrightarrow (7)$ is obtained as in Bartle, Dunford and Schwartz [1]. The latter implies that Theorem 3, Theorem 4 and Corollary 1 hold without the assumption that μ is σ -finite, since every function in a weakly compact subset of $L^1(\Omega)$ vanishes on the complement of a σ -finite set.

Remark 3. Let Ω, \mathcal{A} and μ be as in Example 1. Then, the subset of $L^1(\mathbb{R})$ consisting of the translates of $f(x) = e^{-|x|}$ ($x \in \mathbb{R}$) is not uniformly integrable at infinity and hence is not weakly compact in $L^1(\mathbb{R})$.

Corollary 1. Every order interval in $L^1(\Omega)$ is weakly compact, where an order interval is a subset of the form $\{h \in L^1(\Omega) : f(x) \le h(x) \le g(x) \text{ almost everywhere on } \Omega\}$ $(f, g \in L^1(\Omega)).$

The following theorem is due to Theorem 3 and the convergence theorem of Vitali.

Theorem 4. Let C be a weakly compact subset of $L^1(\Omega)$, let $\{f_n\}$ be a sequence in C and let $f \in C$. If $f_n(x)$ converges to f(x) almost everywhere on Ω , then $||f_n - f||_1 \to 0$ as $n \to \infty$.

Corollary 2. Every weakly convergent sequence in l^1 is strongly convergent.

5. On strong compactness in L^1

Note that in the sequel, $L^1(\Omega)$ shall be considered as a Banach space under the norm $f \mapsto ||f||_1$. As in the arguments in the previous sections, $L^{\infty}(\Omega)$ is considered as a locally convex space under the separated locally convex topology $\hat{\tau}$ generated by the semi-norms $f \mapsto ||f||_{E,1}$ $(E \in \mathcal{F})$. It is clear that $\hat{\tau}$ is the relative topology of τ on $L^1_{loc}(\Omega)$ to $L^{\infty}(\Omega)$, since $L^{\infty}(\Omega)$ is a subspace of $L^1_{loc}(\Omega)$. The topological dual of $(L^{\infty}(\Omega), \hat{\tau})$ is algebraically isomorphic to $L^{\infty}_{loc}(\Omega)$. The result concerning completeness of $(L^{\infty}(\Omega), \hat{\tau})$ also follows immediately from the separation theorem.

Proposition 6. The completion of $(L^{\infty}(\Omega), \hat{\tau})$ is $L^{1}_{loc}(\Omega)$.

The weak topology $\sigma(L^{\infty}(\Omega), L^{1}(\Omega))$, simply denoted by $\sigma(L^{\infty}, L^{1})$, is finer than the weak topology of $L^{\infty}(\Omega)$ associated with $\hat{\tau}$, from which we directly deduce the following result concerning sequential compactness in $\sigma(L^{\infty}, L^{1})$ on $L^{\infty}(\Omega)$.

Proposition 7. The closed unit ball in $L^{\infty}(\Omega)$ is sequentially compact relative to the weak topology $\sigma(L^{\infty}, L^1)$.

Remark 4. If E is a reflexive or smooth Banach space, then every closed unit ball in E' is sequentially compact relative to the weak topology $\sigma(E', E)$; see [2] for more details.

A subset C of a Banach space E is said to be *limited* if for each sequence $\{x'_n\}$ in E' converging to 0 in the weak topology $\sigma(E', E)$, $\lim_{n\to\infty} |\langle x, x'_n \rangle|$ converges to 0 uniformly in $x \in C$.

Using similar arguments to [9], we obtain a characterization of strong compactness in Banach spaces E for which the closed unit ball in E' is sequentially compact relative to the weak topology $\sigma(E', E)$.

Proposition 8. Let E be a Banach space. Whenever the closed unit ball in E' is sequentially compact relative to the weak topology $\sigma(E', E)$, a subset C of E is relatively compact if and only if C is bounded and limited.

Remark 5. According to [2], Proposition 8 is due to Gelfand.

Corollary 3. Whenever E is a reflexive or smooth Banach space, a subset C of E is relatively compact if and only if C is bounded and limited.

The following theorem is due to Proposition 7 and Proposition 8.

Theorem 5. A subset C of $L^1(\Omega)$ is relatively compact if and only if C is bounded and limited.

Remark 6. It is clear that Theorem 5 holds without the assumption that μ is σ -finite.

6. MISCELLANEOUS APPLICATIONS

In this section, we apply the results about weak and strong compactness in $L^1(\Omega)$ to obtain some characterizations of (weak) almost periodicity for linear and non-linear operators in $L^1(\Omega)$.

Let T be a linear contraction on $L^1(\Omega)$, that is, T is a linear operator on $L^1(\Omega)$ such that $||Tf||_1 \leq ||f||_1$ $(f \in L^1(\Omega))$. In addition, if $||Tf||_{\infty} \leq ||f||_{\infty}$ $(f \in L^1(\Omega) \cap L^{\infty}(\Omega))$, then T is said to be a Dunford-Schwartz operator on $L^1(\Omega)$. If for each $f \in L^1(\Omega)$, the orbit $\{T^n f : n = 0, 1, 2, \dots\}$ of f under T is relatively (weakly) compact, then T is said to be (weakly) almost periodic.

Proposition 9. Let T be a Dunford-Schwartz operator on $L^1(\Omega)$. Then, T is weakly almost periodic if and only if for each $f \in L^1(\Omega)$, the orbit of f under T is uniformly integrable at infinity.

Proposition 10. Let T be a linear contraction on $L^1(\Omega)$. Then, T is almost periodic if and only if for each $f \in L^1(\Omega)$, the orbit of f under T is limited.

Let C be a closed convex subset of $L^1(\Omega)$ and let T be a nonexpansive operator on C, that is, T is a mapping of C into itself such that $||Tf - Tg||_1 \leq ||f - g||_1$ $(f, g \in C)$. Then, T is said to be almost periodic if for each $f \in C$, the orbit $\{T^n f : n = 0, 1, 2, \dots\}$ of f under T is relatively compact. It is known that if a nonexpansive operator T on C is almost periodic, then T has the mean values on C; see also [4] for more details.

Proposition 11. Let C be a closed convex subset of $L^1(\Omega)$ and let T be a nonexpansive operator on C. Whenever T has a fixed point in C, T is almost periodic if and only if for each $f \in C$, the orbit of f under T is limited.

References

- R. G. Bartle, N. Dunford and J. T. Schwartz, Weak compactness and vector measures, Canad. J. Math., 7 (1955), 289-305.
- [2] J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, New York, 1984.
- [3] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, New York, 1958.
- [4] H. Miyake and W. Takahashi, Vector-valued weakly almost periodic functions and mean ergodic theorems in Banach spaces, J. Nonlinear Convex Anal., 9 (2008), 255-272.
- [5] H. Miyake, On the existence of the mean values for commutative semigroups of Dunford-Schwartz operators on L¹, Annual Meeting of the Mathematical Society of Japan, Kyoto, Japan, Mar. 20-23, 2013.
- [6] H. Miyake, On the existence of the mean values for certain order-preserving operators in L¹, in Nonlinear Analysis and Convex Analysis (T. Tanaka ed.), RIMS Kôkyûroku 1923, 2014, pp. 90–98.
- [7] H. Miyake, On compactness in L¹ and its application, RIMS Workshop: Nonlinear Analysis and Convex Analysis, Kyoto, Japan, Aug. 19-21, 2014.
- [8] H. Miyake, On compactness in L¹, Annual Meeting of the Mathematical Society of Japan, Hiroshima, Japan, Sep. 25–28, 2014.
- [9] R. S. Phillips, On linear transformations, Trans. Amer. Math. Soc., 48 (1940), 516-541.
- [10] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1987.
- [11] H. H. Schaefer, Topological Vector Spaces, Springer-Verlag, New York, 1971.