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1. INTRODUCTION

Let $(\Omega, \mathcal{A}, \mu)$ be a positive measure space with a-algebra $\mathcal{A}$ and mea-
sure $\mu$ and let $\mathcal{F}$ be the family of measurable subsets of $\Omega$ with finite
measure. Let $L^{1}$ and $L^{\infty}$ be the space of integrable functions defined
on $\Omega$ and the space of essentially-bounded measurable functions de-
fined on $\Omega$ , respectively. We denote by $L_{loc}^{\infty}$ the vector subspace of $L^{\infty}$

consisting of essentially-bounded mc,asurable functions $f$ defined on $tl$

for which $\mu\{w\in\Omega : f(w)\neq 0\}<\infty$ . In [5], we discussed a method of
constructing a separated locally convex topology $\tilde{\tau}$ on $L^{1}$ generated by
the semi-norms $f \mapsto\int_{E}|f|d\mu(E\in \mathcal{F})$ with the assumption that $\mu$ is
a-finite. The topological dual of $(L^{1},\tilde{\tau})$ is algebraically isomorphic to
$L_{loc}^{\infty}$ . A notion of local uniform integrability for subsets of $L^{1}$ was also
discussed to obtain a necessary and sufficient condition for a bounded
subset of $L^{1}$ relative to $L^{1}$-norm to be relatively weakly compact in
$(L^{1},\tilde{\tau})$ : Whenever $C$ is a bounded subset of $L^{1}$ relative to $L^{1}$-norm,
$C$ is locally uniformly integrable if and only if $C$ is relatively weakly
compact in $(L^{1},$ $\tau$ We applied it to show the existence of the mean
values for commutative semigroups of Dunford-Schwartz operators on
$L^{1}$ . This result gives an identification of the limit function in almost ev-
erywhere convergence of the Ces\‘aro means $n^{-1} \sum_{k=0}^{n-1}T^{k}f$ of an $f\in L^{1}$ ;
see [6] for details.

In this paper, we summarize the arguments presented in [7] and [8]
about a characterization of compactness for thc weak topology of $L^{1}$

associated with $\tau_{\}}$ and then apply similar arguments to discuss some
necessary and sufficient conditions of compactness for the topology on
$L^{1}$ generated by the metric $(f, g) \mapsto\int_{\Omega}|f-g|d\mu$ and the weak topology
$\sigma(L^{1}, L^{\infty})$ on $L^{1}$ generated by $L^{\infty}$ , respectively. As their applications,
(weak) almost periodicity of linear and non-linear operators in $L^{1}$ is
also discussed.

2. PRELIMINARIES

Throughout the paper, let $\mathbb{N}_{+}$ and $\mathbb{R}$ denote the set of non-negative
integers and the set of real numbers, respectively. Let $\langle E,$ $F\rangle$ be a
duality between vector spaces $E$ and $F$ over $\mathbb{R}$ . If $A$ is a subset of
$E$ , then $A^{o}=\{y\in F : \langle x, y\rangle\leq 1(x\in A)\}$ is a subset of $F$ , called
the polar of $A$ . For each $y\in F$ , we define a linear form $f_{y}$ on $E$ by
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$f_{y}(x)=\langle x,$ $y\rangle(x\in E)$ . Then, $\sigma(E, F)$ denotes the weak topology

on $E$ generated by the family $\{f_{y} : y\in F\}$ and $\tau(E, F)$ denotes the

Mackey topology on $E$ with respect to $\langle E,$ $F\rangle$ , that is, the topology of

uniform convergence on the circled, convex, $\sigma(F, E)$-compact subsets

of $F$ . Let $(E, \mathfrak{T})$ is a locally convex space. Then, the topological dual

of $E$ is denoted by $E’$ . The bilinear form $(x, f)\mapsto f(x)$ o11 $E\cross E’$

defines a duality $\langle E,$ $E’\rangle$ and the weak topology on $E$ generated by $E’$

is called the weak topology of $E$ (associated with $\mathfrak{T}$ if this distinction is

necessary). If $E$ is a Banach space, then the subset $\{x\in E:\Vert x\Vert\leq r\}$

of $E$ is called the closed ball with center at $0$ and radius $r$ , denoted by

$B(r)$ . In particular, $B(1)$ is called the closed unit ball in $E.$

Throughout the paper, let $(\Omega, \mathcal{A}, \mu)$ denote a positive measure space

with $\sigma$-algebra $\mathcal{A}$ and measure $\mu$ , and let $\mathcal{F}$ denote the family of mea-
surable subsets of $\Omega$ with finite measure. Then, $\mathcal{F}$ is ordered by set

inclusion in the sense that $E$ is less than $F$ , or $E\leq F$ if and only

if $E\subset F(E, F\in \mathcal{F})$ , so that each finite subset of $\mathcal{F}$ has the least

upper bound. Let $E\in \mathcal{A}$ . If $\mathcal{A}_{E}$ denotes the a-algebra of all inter-

sections of members of $\mathcal{A}$ with $E$ and $\mu_{E}$ denotes the restriction of $\mu$

to $\mathcal{A}_{E}$ , then the triple $(E, \mathcal{A}_{E}, \mu_{E})$ is a positive measure space. For
$1\leq p<\infty$ , let $\mathcal{L}^{p}(E)$ be the vector space of measurable functions $f$

defined on $E$ for which $\Vert f\Vert_{E,p}=(\int_{E}|f|^{p}d\mu)^{\frac{1}{p}}<\infty$ and let $\mathcal{L}^{\infty}(E)$

be the vector space of measurable functions $f$ defined on $E$ for which
$\Vert f\Vert_{E,\infty}=\inf_{N}\sup_{w\in E\backslash N}|f(w)|<\infty$ , where $N$ ranges over the null

subsets of $E$ . If $\mathcal{N}_{E}$ denotes the set of null functions defined on $E$ and
$[f]$ denotes the equivalence class of an $f\in \mathcal{L}^{p}(E)$ mod $\mathcal{N}_{E}(1\leq p\leq\infty)$ ,

then $[f]\mapsto\Vert f\Vert_{E,p}$ is a norm on the quotient space $\mathcal{L}^{p}(E)/\mathcal{N}_{E}$ , which

thus becomes a Banach space, denoted by If (E) . In particular, if $\mu$

is the counting measure on $\mathbb{N}$ , then we write $l^{1}$ in place of $L^{1}(\mathbb{N})$ . For

each $f\in L^{p}(\Omega)$ , $\Vert f\Vert_{\Omega,p}$ is called the $L^{p}$-norm of $f$ , simply denoted
by $\Vert f\Vert_{p}$ . A measurable function $f$ defined on $\Omega$ is called essentially-

bounded if $\Vert f\Vert_{\infty}<\infty$ . Every element of $L^{p}(E)$ is considered as a
measurable fi nction $f$ defined on $E$ with $\Vert f\Vert_{E,p}<\infty$ , if no confusion

will occur. For each $E\in \mathcal{A}$ , the bilinear form $(f, h) \mapsto\int_{E}fhd\mu$ on
$L^{1}(E)\cross L^{\infty}(E)$ places $L^{1}(E)$ and $L^{\infty}(E)$ in duality. For $E,$ $F\in \mathcal{F}$

with $E\leq F$ , let $i_{EF}$ denote the mapping of $L^{1}(F)$ onto $L^{1}(E)$ that

assigns to each $f\in L^{1}(F)$ the restriction $f|_{E}$ of $f$ to $E$ . Then, the

canonical imbedding of $L^{\infty}(E)$ into $L^{\infty}(F)$ is the adjoint operator of
$i_{EF}$ , denoted by $j_{FE}.$

Let $\mathcal{L}_{loc}^{1}(\Omega)$ be the vector space of measurable functions $f$ defined
on $\Omega$ for which $\Vert f\Vert_{E,1}<\infty$ for each $E\in \mathcal{F}$ and let $\mathcal{N}_{loc}$ be the vector
subspace of $\mathcal{L}_{loc}^{1}(\Omega)$ consisting of measurable functions $f$ defined on $\Omega$

for which $\Vert f\Vert_{E,1}=0$ for each $E\in \mathcal{F}$ . If $[f]$ denotes the equivalence

class of an $f\in \mathcal{L}_{loc}^{1}(\Omega)$ mod $\mathcal{N}_{loc}$ , then $[f]=[g](f, g\in \mathcal{L}_{loc}^{1}(\Omega))$

means that for each $E\in \mathcal{F},$ $f(x)=g(x)$ almost everywhere on $E$ . In

particular, if $\mu$ is a-finite, then $\mathcal{N}_{loc}$ equals the set $\mathcal{N}_{\Omega}$ of null functions
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defined on $\Omega$ and hence for $f,$ $g\in \mathcal{L}_{loc}^{1}(\Omega)$ , $[f]=[g]$ if and only if
$f(x)=g(x)$ almost everywhere on $\Omega$ . For each $E\in \mathcal{F},$ $[f]\mapsto\Vert f\Vert_{E,1}$

is a semi-norm on the quotient space $\mathcal{L}_{loc}^{1}(\Omega)/\mathcal{N}_{loc}$ , which becomes a
locally convex space, denoted by $L_{loc}^{1}(\Omega)$ , under the separated locally
convex topology $\tau$ generated by the semi-norms $[f]\mapsto\Vert f\Vert_{E,1}(E\in$

$\mathcal{F})$ . Every element of $L_{loc}^{1}(\Omega)$ is considered as a measurable function $f$

defined on $\Omega$ for which $\Vert f\Vert_{E,1}<\infty$ for each $E\in \mathcal{F}$ , if no confusion
will occur. If $\mu$ is finite, then $L_{loc}^{1}(\Omega)$ equals $L^{1}(\Omega)$ and hence $\tau$ is just
the topology on $L^{1}(\Omega)$ generated by the metric $(f, g)\mapsto\Vert f-g\Vert_{1}.$

In the sequel we shall assume that the measure $\mathcal{S}pace(\Omega, \mathcal{A}, \mu)$ is $\sigma-$

finite. The product space $\mathcal{L}$ is the Cartesian product $L= \prod_{E\in \mathcal{F}}L^{1}(E)$

of the family $\{(L^{1}(E), \Vert \Vert_{E,1}) : E\in \mathcal{F}\}$ with its product topology.
Then, $L_{loc}^{1}(\Omega)$ is identified as a closed (and hence complete) subspace
of $\mathcal{L}$ by the isomorphism $f\mapsto(f|_{E})_{E\in \mathcal{F}}$ of $L_{loc}^{1}(\Omega)$ into $\mathcal{L}$ , where $f|_{E}$

is the restriction of $f$ to $E$ . Let $D=\oplus_{E\in \mathcal{F}}L^{\infty}(E)$ be the direct sum
of the family $\{L^{\infty}(E) : E\in \mathcal{F}\}$ . The vector spaces $L$ and $D$ are
placed in duality by the bilinear form $(f_{9}) \mapsto\sum_{E}\langle f_{E},$ $g_{E}\rangle$ on $L\cross D,$

where $f=(f_{E})\in L,$ $g=(9E)\in D$ and the sum is taken over at
most a finite number of non-zero terms of $g$ . Then, the topological
dual of $\mathcal{L}$ is $D$ and the topological dual of $L_{loc}^{1}(\Omega)$ is the quotient space
$D/(L_{loc}^{1}(\Omega))^{o}$ , which is algebraically isomorphic to the vector subspace
$L_{loc}^{\infty}(\Omega)$ of $L^{\infty}(\Omega)$ consisting of measurable, essentially-bounded func-
tions $f$ defined on $\Omega$ for which $\mu\{w\in\Omega : f(w)\neq 0\}<\infty.$

Proposition 1. $L_{loc}^{1}(\Omega)$ is a complete locally convex space. The topo-
logical dual of $L_{loc}^{1}(\Omega)$ is algebraically isomorphic to $L_{loc}^{\infty}(\Omega)$ .

We note that $L_{loc}^{1}(\Omega)$ is identified as the reduced projective limit
$1\dot{4}^{\mathscr{Q}}i_{EF}L^{1}(F)$ of the family $\{(L^{1}(E), \Vert \Vert_{E,1}) : E\in \mathcal{F}\}$ with respect
to the mappings $i_{EF}$ $(E, F\in \mathcal{F} and E\leq F)$ . If $\mathcal{D}=\oplus_{E\in \mathcal{F}}L^{\infty}(E)$

denotes the locally convex direct sum of the family $\{(L^{\infty}(E),$ $\tau(L^{\infty}(E)$ ,
$L^{1}(E)))$ : $E\in \mathcal{F}\}$ , then the quotient space $\mathcal{D}/(L_{loc}^{1}(\Omega))^{o}$ is the induc-
tive limit $\underline{\lim_{t}}j_{FE}L^{\infty}(E)$ of the family $\{(L^{\infty}(E), \tau(L^{\infty}(E), L^{1}(E)))$ :
$E\in \mathcal{F}\}$ with respect to the mappings $j_{FF}$ $(E, F\in \mathcal{F} and E\leq F)$ .

A subset $A$ of $L_{loc}^{1}(\Omega)$ is said to be locally uniformly integrable if
for each $E\in \mathcal{F}$ , the set $\{f|_{E} : f\in A\}$ of the restrictions $f|_{E}$ of the
functions $f$ in $A$ to $E$ is uniformly integrable in $L^{1}(E)$ , that is, for
each $E\in \mathcal{F}$ and $\epsilon>0$ , there exists a $\delta>0$ such that for each $F\in \mathcal{A}$

with $F\subset E$ and $\mu(F)<\delta,$ $\sup_{f\in A}\int_{F}|f|d\mu<\epsilon$ . It follows from
the theorem of Tychonoff that if $A$ is a locally uniformly integrable,
bounded subset of $L_{loc}^{1}(\Omega)$ , then $A$ is relatively weakly compact, since
$L_{loc}^{1}(\Omega)$ is a complete subspace of $\mathcal{L}$ . The converse holds.

Proposition 2. A subset $C$ of $L_{loc}^{1}(\Omega)$ is relatively weakly compact if
and only if $C$ is bounded and locally uniformly integrable.

Remark 1. The arguments discussed so far is applicable for $\sigma$-compact
topological spaces $X$ . In this case, we choose as $\mathcal{A}$ the a-algebra of
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Borel sets of $X$ and as $\mu$ a Borel measure on $X$ such that $\mu(K)<\infty$

for each compact subset $K$ of $X$ . For example, let $X=\mathbb{R}$ , let $\mu$ be

Lebesgue measure on $\mathbb{R}$ , let $\mathcal{K}$ be the family of compact subsets of $\mathbb{R}$

and let $L_{loc}^{1}(\mathbb{R})$ be the space of Borel measurable functions $f$ defined
on $\mathbb{R}$ for which $\Vert f\Vert_{K,1}=\int_{K}|f|d\mu<\infty(K\in \mathcal{K})$ , endowed with
the separated locally convex topology generated by the semi-norms
$f\mapsto\Vert f\Vert_{K,1}(K\in \mathcal{K})$ . Then, $L$ ( $\mathbb{R}$ ) contains the space $C(\mathbb{R})$ of con-
tinuous (not necessarily bounded) functions defined on $\mathbb{R}$ . If a subset
$C$ of $C(\mathbb{R})$ is uniformly bounded on the compact subsets of $\mathbb{R}$ , that
is, $\sup_{f\in C}\sup_{x\in K}|f(x)|<\infty(K\in \mathcal{K})$ , then $C$ is relatively weakly

compact in $L_{loc}^{1}(\mathbb{R})$ .

We recall that whenever $E$ is a metrizable locally convex space, then

a subset $C$ of $E$ is weakly compact if and only if $C$ is sequentially
weakly compact.

Proposition 3. A subset $C$ of $L_{loc}^{1}(\Omega)$ is weakly compact if and only

if $Ci\mathcal{S}$ sequentially weakly compact.

3. ON WEAK COMPACTNESS IN A SEPARATED LOCALLY CONVEX

TOPOLOGY ON $L^{1}$

In this section, $L^{1}(\Omega)$ shall be considered as a locally convex space
under the separated locally convex topology $\tilde{\tau}$ generated by the semi-
norms $f\mapsto\Vert f\Vert_{E,1}(E\in \mathcal{F})$ , if $L^{1}(\Omega)$ is not specified explicitly as a
Banach space with the norm $f\mapsto\Vert f\Vert_{1}$ , and we show a necessary and
sufficient condition for a subset of $L^{1}(\Omega)$ to be relatively weakly com-
pact. It is clear that $\tilde{\tau}$ is the relative topology of $\tau$ on $L_{loc}^{1}(\Omega)$ to $L^{1}(\Omega)$ ,
since $L^{1}(\Omega)$ is a subspace of $L_{loc}^{1}(\Omega)$ . The topological dual of $L^{1}(\Omega)$ is
algebraically isomorphic to $L_{loc}^{\infty}(\Omega)$ . The result concerning complete-
ness of $L^{1}(\Omega)$ follows immediately from the separation theorem.

Proposition 4. The completion of $(L^{1}(\Omega),\tilde{\tau})$ is $L_{loc}^{1}(\Omega)$ .

We showed a sufficient condition for a subset of $L^{1}(\Omega)$ to be rela-
tively weakly compact to obtain the existence of the mean values for
commutative semigroups of Dunford-Schwartz operators on $L^{1}$ ; see [6].

Proposition 5. Let $C$ be a bounded subset of $L^{1}(\Omega)$ relative to $L^{1}-$

norm, that $i\mathcal{S},$ $\sup_{f\in C}\Vert f\Vert_{1}<\infty$ . Then, $C$ is relatively weakly compact

in $(L^{1}(\Omega),\tilde{\tau})$ if and only if $C$ is locally $unif_{07}mly$ integrable.

Example 1. Let $\Omega=\mathbb{R}$ , let $\mathcal{A}$ be the a-algebra of Lebesgue measurable
subsets of $\mathbb{R}$ , let $\mu$ be Lebesgue measure on $\mathbb{R}$ , let $\mathcal{F}$ be the family

of Lebesgue measurable subsets of $\mathbb{R}$ with finite measure. Let $L^{1}(\mathbb{R})$

be endowed with the separated locally convex topology $\tilde{\tau}$ generated by

the semi-norms $f\mapsto\Vert f\Vert_{E,1}(E\in \mathcal{F})$ and let $f\in L^{1}(\mathbb{R})$ . For each
$y\in \mathbb{R},$ $f_{y}$ is the translate of $f$ , that is, $f_{y}(x)=f(x-y)(x\in \mathbb{R})$ . Then,
$\{f_{y} : y\in \mathbb{R}\}$ is relatively weakly compact in $(L^{1}(\mathbb{R}),\tilde{\tau})$ . For example,
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for $f(x)=e^{-|x|}(x\in \mathbb{R})$ , $\{f_{y}:y\in \mathbb{R}\}$ is not relatively weakly compact
in $(L^{1}(\mathbb{R}), \Vert \Vert_{1})$ , but relatively weak compact in $(L^{1}(\mathbb{R}),\tilde{\tau})$ ; see also
Remark 3.

Example 2. The closed unit ball in $l^{1}$ is weakly compact in the topology
of pointwise convergence, due to Fatou’s lemma.

Example 3. Let $\Omega,$ $\mathcal{A},$

$\mu,$
$\mathcal{F}$ and $\tilde{\tau}$ be as in Example 1. Let $f_{n}(n\in \mathbb{N})$

be a characteristic function on $[n, 2n$). Then, $\{f_{n}\}$ is not bounded
relative to $L^{1}$-norm, but it converges to a null function in the topology
$\tilde{\tau}$ on $L^{1}(\mathbb{R})$ . Thus, it is relatively compact and hence relatively weakly
compact in $(L^{1}(\mathbb{R}),\tilde{\tau})$ .

A subset $C$ of $L^{1}(\Omega)$ is said to be locally bounded if $C$ is a bounded
subset of $L^{1}(\Omega)$ , that is, for each $E\in \mathcal{F},$ $\sup_{f\in C}\Vert f\Vert_{E,1}<\infty.$

We show a necessary and sufficient condition for a subset of $L^{1}(\Omega)$

to be relatively weakly compact in $(L^{1}(\Omega),\tilde{\tau})$ .

Theorem 1. A subset $C$ of $L^{1}(\Omega)$ is relatively weakly compact in
$(L^{1}(\Omega),\tilde{\tau})$ if and only if $C$ is locally uniformly integrable, locally bounded
and for each sequence $\{f_{n}\}$ in $C,$

$\sup_{E\in \mathcal{F}}\lim_{narrow}\inf_{\infty}|\int_{E}f_{n}d\mu|<\infty.$

4. ON WEAK COMPACTNESS IN $L^{1}$

In the sequel, $L^{1}(\Omega)$ shall be considered as a Banach space under
the norm $f\mapsto\Vert f\Vert_{1}$ . From Theorem 1, it is natural to ask a question
of under which conditions every locally uniformly integrable, locally
bounded subset of $L^{1}(\Omega)$ is relatively weakly compact in $(L^{1}(\Omega), \Vert\cdot\Vert_{1})$ .

The following theorem is due to Grothendieck.

Theorem 2. A subset $C$ of a Banach $\mathcal{S}paceE$ is relatively weakly
compact if and only if for each $\epsilon>0$ , there exists a weakly compact
subset $D$ of $E$ such that $C\subset D+B(\epsilon)$ .

Motivated by his result, we introduce a notion of the type of uniform
integrability to obtain a necessary and sufficient condition for a subset
of $L^{1}(\Omega)$ to be relatively weakly compact. We call a subset $C$ of $L^{1}(\Omega)$

uniform,ly integrable at infinity if for each $\epsilon>0$ , there exists an $E\in \mathcal{F}$

such that

$\sup_{f\in C}\int_{\Omega\backslash E}|f|d\mu<\epsilon (or\lim_{E\in \mathcal{F}}\sup_{f\in C}\int_{\Omega\backslash E}|f|d\mu=0)$

Theorem 3. Let $C$ be a subset of $L^{1}(\Omega)$ . Then, the following are
equivalent:

(1) $C$ is relatively weakly compact,$\cdot$
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(2) for each $\epsilon>0$ , there exists an $E\in \mathcal{F}$ such that $C_{E}=\{f|_{E}$ :

$f\in C\}$ is un\’iformly integrable, bounded in $L^{1}\langle E$ ) and $C\subset$

$C_{E}+B(\epsilon)_{f}.$

(3) $C$ is locally bounded, locally uniformly integrable and uniformly
integrable at infinity,$\cdot$

(4) $C$ is bounded, uniformly integrable and uniformly integrable at

infinityj
(5) $|C|=\{|f| : f\in C\}$ is relatively weakly compact, where $|f|(x)=$

$|f(x)|(x\in\Omega$

(6) $C$ is bounded and for each decreasing sequence $\{E_{n}\}$ in $\mathcal{A}$ with

empty intersection, $\int_{E_{n}}fd\mu$ converges to $0unifor7nly$ in $f\in C$ ;

(7) $C$ is bounded and there exists an $f\in L^{1}(\Omega)$ such that for each
$\epsilon>0$ , there $exi_{\mathcal{S}}t_{\mathcal{S}}$ a $\delta>0$ such that for each $E\in \mathcal{A}$ with
$\int_{E}|f|d\mu<\delta, \sup_{g\in C}|\int_{E}gd\mu|<\epsilon.$

Remark 2. The equivalence (1) $\Leftrightarrow(6)$ is due to Dunford and Pettis,

according to [3] and (1) $\Leftrightarrow(7)$ is obtained as in Bartle, Dunford and
Schwartz [1]. The latter implies that Theorem 3, Theorem 4 and Corol-
lary 1 hold without the assumption that $\mu$ is a-finite, since every func-
tion in a weakly compact subset of $L^{1}(\Omega)$ vanishes on the complement
of a a-finite set.

Remark 3. Let $\Omega,$
$\mathcal{A}$ and $\mu$ be as in Example 1. Then, the subset

of $L^{1}(\mathbb{R})$ consisting of the translates of $f(x)=e^{-|x|}(x\in \mathbb{R})$ is not
uniformly integrable at infinity and hence is not weakly co1npact $i_{I1}$

$L^{1}(\mathbb{R})$ .

Corollary 1. Every order interval in $L^{1}(\Omega)$ is weakly compact, where
an order interval is a subset of the form $\{h\in L^{1}(\Omega)$ : $f(x)\leq h(x)\leq$

$g(x)almo\mathcal{S}b$ everywhere on $\Omega$ } $(f, g\in L^{1}(\Omega))$ .

The following theorem is due to Theorem 3 and the convergence
theorem of Vitali.

Theorem 4. Let $C$ be a weakly compact subset of $L^{1}(\Omega)$ , let $\{f_{n}\}$ be
asequence in $C$ and let $f\in C.$ If $f_{n}(x)$ converges to $f(x)$ almost
everywhere on $\Omega$ , then $\Vert f_{n}-f\Vert_{1}arrow 0$ as $narrow\infty.$

Corollary 2. Every weakly convergent sequence in $l^{1}$ is strongly con-
vergent.

5. ON STRONG COMPACTNESS IN $L^{1}$

Note that in the sequel, $L^{1}(\Omega)$ shall be considered as a Banach space
under the norm $f\mapsto\Vert f\Vert_{1}$ . As in the arguments in the previous sec-
tions, $L^{\infty}(\Omega)$ is considered as a locally convex space under the separated
locally convex topology $\hat{\tau}$ generated by the semi-norms $f\mapsto\Vert f\Vert_{E,1}$

$(E\in \mathcal{F})$ . It is clear that $\hat{\tau}$ is the relative topology of $\tau$ on $L_{loc}^{1}(\Omega)$

to $L^{\infty}(\Omega)$ , since $L^{\infty}(\Omega)$ is a subspace of $L_{loc}^{1}(\Omega)$ . The topological dual
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of $(L^{\infty}(\Omega),\hat{\tau})$ is algebraically isomorphic to $L_{loc}^{\infty}(\Omega)$ . The result con-
cerning completeness of $(L^{\infty}(\Omega),\hat{\tau})$ also follows immediately from the
separation theorem.

Proposition 6. The completion of $(L^{\infty}(\Omega),\hat{\tau})$ is $L_{loc}^{1}(\Omega)$ .

The weak topology $\sigma(L^{\infty}(\Omega), L^{1}(\Omega))$ , simply denoted by $\sigma(L^{\infty}, L^{1})$ ,
is finer than the weak topology of $L^{\infty}(\Omega)$ associated with $\hat{\tau}$ , from which
we directly deduce the following result concerning sequential compact-
ness in $\sigma(L^{\infty}, L^{1})$ on $L^{\infty}(\Omega)$ .

Proposition 7. The closed unit ball in $L^{\infty}(\Omega)$ is $\mathcal{S}$equentially compact
relative to the weak topology $\sigma(L^{\infty}, L^{1})$ .

Remark 4. If $E$ is a reflexive or smooth Banach space, then every closed
unit ball in $E’$ is sequentially compact relative to the weak topology
$\sigma(E’, E)$ ;se [2] for more details.

A subs$(.tC$ of a Banach space $E$ is said to be limited if for each
sequence $\{x_{n}\}$

’

in $E’$ converging to $0$ in the weak topology $\sigma(E’, E)$ ,
$\lim_{narrow\infty}|\langle x,$ $x_{n}’\rangle|$ converges to $0$ uniformly in $x\in C.$

Using sirnilar arguments to [9], wc obtain a characterization of strong
compactness in Banach spaces $E$ for which the closed unit ball in $E’$ is
sequentially compact relative to the weak topology $\sigma(E’, E)$ .

Proposition 8. Let $E$ be a Banach space. Whenever the closed unit
ball in $E’$ is sequentially compact relative to the weak topology $\sigma(E’, E)_{f}$

a subset $C$ of $E$ is relatively compact if and only if $C$ is bounded and
limited.

Remark 5. According to [2], Proposition 8 is due to Gelfand.

Corollary 3. Whenever $E$ is a reflexive or smooth Banach $\mathcal{S}pace,$ $a$

subset $C$ of $E$ is relatively compact if and only if $C$ is bounded and
limited.

The following theorem is due to Proposition 7 and Proposition 8.

Theorem 5. $A\mathcal{S}ubsetC$ of $L^{1}(\Omega)$ is relatively compact if and only if
$C$ is bounded and limited.

Remark 6. It is clear that Theorem 5 holds without the assumption
that $\mu$ is $\sigma$-finite.

6. MISCELLANEOIJS APPLICATIONS

In this section, we apply the results about weak and strong com-
pactness in $L^{1}(\Omega)$ to obtain some characterizations of (weak) almost
periodicity for linear and non-linear operators in $L^{1}(\Omega)$ .

Let $T$ be a linear contraction on $L^{1}(\Omega)$ , that is, $T$ is a linear op-
erator on $L^{1}(\Omega)$ such that $\Vert Tf\Vert_{1}\leq\Vert f\Vert_{1}(f\in L^{1}(\Omega))$ . In addition,
if $\Vert Tf\Vert_{\infty}\leq||f\Vert_{\infty}(f\in L^{i}(\Omega)\cap L^{\infty}(\Omega))$ , then $T$ is said to be a
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Dunford-Schwartz operator on $L^{1}(\Omega)$ . If for each $f\in L^{1}(\Omega)$ , the orbit
$\{T^{n}f : n=0, 1, 2, \}$ of $f$ under $T$ is relatively (weakly) compact,

then $T$ is said to be (weakly) almost periodic.

Proposition 9. $LetT$ be a Dunford-Schwartz operator on $L^{1}(\Omega)$ . Then,
$T$ is weakly almost periodic if and only if for each $f\in L^{1}(\Omega)$ , the orbit

of $f$ under $T$ is uniformly integrable at infinity.

Proposition 10. Let $T$ be a linear contraction on $L^{1}(\Omega)$ . $Then_{2}T$ is

almost periodic if and only if for each $f\in L^{1}(\Omega)$ , the orbit of $f$ under
$T$ is limited.

Let $C$ be a closed convex subset of $L^{1}(\Omega)$ and let $T$ be a nonexpansive
operator on $C$ , that is, $T$ is a mapping of $C$ into itself such that $\Vert Tf-$

$Tg\Vert_{1}\leq\Vert f-g\Vert_{1}(f, g\in C)$ . Then, $T$ is said to be almost periodic
if for each $f\in C$ , the orbit $\{T^{n}f : n=0, 1, 2, \}$ of $f$

.
under $T$ is

relatively compact. It is known that if a nonexpansive operator $T$ on
$C$ is almost periodic, then $T$ has the mean values on $C$ ; see also [4] for
more details.

Proposition 11. Let $C$ be a $clo\mathcal{S}ed$ convex subset of $L^{1}(\Omega)$ and let $T$

be a nonexpansive operator on C. Whenever $T$ has a fixed point in $C,$

$T$ is almost periodic if and only if for each $f\in C$ , the orbit of $f$ under
$T$ is limited.
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