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1 Nonsymmetric Askey-Wilson polynomials
Throughout this paper we assume g is not a root of unity. For a € C,
(@;@)n = (1~ a)(L —ag) --- (1 — ag" ™),
where n=0,1,2,.... For aj,as,...,a, € C,
(a1,02,- -, 0r;@)n = (a1;q)n(a2; Qn - - (@r; Qn.
Throughout this section, let a,b,c,d € C* be such that
ab, ac, ad, be, bd, cd, abed ¢{g™|m=0,12,.. .} (1)
We now recall the Askey-Wilson polynomials [1]. For n = 0,1,2,... define a polynomial

™ abedg™ 1, az,a27q);
(ab’ ac, ad’ q; Q)‘L
q, ‘I) .

The last equality follows from the definition of basic hypergeometric series [3, p. 4]. Observe that (g=";¢); =0
if i > n. We call p, the n-th Askey- Wilson polynomials. Consider the monic Askey-Wilson polynomials

. e —
pn(z+ 271 a,b,c,d | q) == Z (g
i=0

— ods (q‘n, abedg™ !, az, az7!

ab, ac, ad

_ . __ (ab,ac,ad; q)n q~ ", abcdg™ !, az, az”!
Pn = P,[z0,b,¢c,d | q] := mw:s ab, ac, ad g 4q)-

Let £ denote the space of the Laurent polynomials with a variable z. By a symmetric polynomial f in £
we mean f[z] = f[z7!]. Note that P, is symmetric. The nonsymmetric Askey-Wilson polynomials [4] are
defined by
En=Py—Qy (n=1,2..), 3)
“ab(l—¢™)(1 — cdg™Y)
" - n = 17 21 ce~)s 4
(T = abq™) (1= abodg™ 1) (n=0, ) @)
where Qn = a~'b71271(1 — az)(1 — b2)P,_1[2; 9a, gb,c,d | q].
The double affine Hecke algebra (DAHA) of type (CY,C1), denoted by $ [4,6], is defined by the generators
Z,Z71, Ty, Ty and relations _
(Ty + ab)(Ty + 1) = 0, (To + g ed)(To + 1) =0,
(TLZ + a)(T1Z +b) =0, (@ToZ7 + ) (qToZ ™ +d) = 0.

E,=P, -
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The algebra $ has a faithful representation on £, which is called the basic representation [4, §3]:

(21l = =12
(@) = G Qo) g, (2@ 20 g,
(Tupe) s LD 22D gy =2 gy

Let Y = T1Ty. By [4, Theorem 4.1], each of E4, is the eigenfunction for Y;

YE_,=q¢"E_, ('I’L =12,.. ) (5)
YE, = " labedE,  (n=0,1,2,...). (6)

2 (@-polynomial distance-regular graphs

In this section we review some preliminaries regarding @-polynomial distance-regular graphs. Let X denote
a nonempty finite set. Let I’ denote a simple connected graph with vertex X. For z € X define I';(z) := {y €
X | 8(z,y) = i}, where 0 is the shortest path-length distance function. Let D := max{d(z,y) | =,y € X},
called diameter. Assume that ' has D > 3. We say that ' is distance-regular whenever for 0 < 7 < D
and vertices z,y € X with 8(z,y) = i, the numbers a; = |T;(z) NT1(y)|,bi = [Tigr(z) NT1(y)], e =
IT;~1(z) NT1(y)| are independent of z and y. The constants a;, b;, ¢; are called the intersection numbers of I.
Let Matx (C) be the C-algebra consisting of square matrices indexed by X. Define the matrix A; € Matx (C)
by (Ai)zy = 1if &(z,y) = ¢ and 0 otherwise. It is called the i-th distance matriz of I'. In particular, A = A;
is called the adjacency matriz. Let M be the subalgebra of Matx(C) generated by A, called the adjacency
algebra, so every element in M forms a polynomial in A. For 0 < i < D there is a polynomial f; € C[z] such
that deg(f;) =i and f;(A) = A; (P-polynomial property).

We recall the notion of Q-polynomial property. By [2, p. 127], the {A;}2, forms a basis for M. Since A
generates M, A has D + 1 mutually distinct (real) eigenvalues, denoted by 69,61, ...,0p. Let E; € Matx(C)
denote the orthogonal projection onto the eigenspace of 6; (0 < 7 < D). Remark that Ey, E1,...,Ep are
the primitive idempotents of M. T is said to be Q-polynomial with respect to Ey, EF1, ..., Ep if there exists
f# € Clz] such that deg(f;) = ¢ and f}(E1) = E;, where the multiplication of M is under the entrywise
product. For the rest of this paper, we assume that I is a Q-polynomial distance-regular graph.

By a clique of T' we mean a nonempty subset C C X such that any two distinct vertices in C are adjacent
each other. We say that C is Delsarte whenever |C| = 1 — k/6 i, where k is a valency of T’ and 8y, is the
minimum eigenvalue of A. We assume that ' contains a Delsarte clique C. Fix a vertex ¢ € C. Consider
I =Tiz) (0<i<D)and C; :={v e X | d,C) =i} (0<i< D—-1). For 0 <i < D~ 1, define the
subset C¥ C X to be C] := C;NT; and C} := C;NTy41. Note that {CE}2! is a partition of X. Define W
to be the subspace of CX spanned by the characteristic vectors {C¥}24 1. It turns out that the {CF}24?
forms a basis for W. Observe that Z, Cew.

Lemma 2.1. [5, Lemma 5.23] For0<i< D -1,
i i

i i—1
Cr=>4;2->.C;, Cf=> 0= A
=0 j=0

5=0 =0

We recall the Terwilliger algebra (or the subconstituent algebra) of T' (see [8]). Define A* = A*(x) =
| X|diag(E12) € Matx(C), called the dual adjacency matriz of I' with respect to z. The Terwilliger algebra
T = T(z) with respect to z is the subalgebra of Matx(C) generated by A, A*. We define A = Z*(C) =
%diag(Elé) € Matx(C), called the dual adjacency matriz of T' with respect to C. The Terwilliger algebra

T = T(C) with respect to C is the subalgebra of Matx(C) generated by A, A* [7]. Using this two algebras,



we define the generalized Terwilliger algebra T = T(z,C) that is generated by 7, T [5]. Note that W has a
module structure for both T and T', and so it is a T-module [5, Proposition 5.25]. The T-submodule (resp.
T—submodule) of W generated by & (resp C) will be called the primary T-module (resp. primary T-module),
denoted by Mz (resp. MC). The {4; £}2 , (resp. {CZ}P 5!) is a basis for M# (resp. MC).

Let {8;}2, (resp. {0;}2,) denote the eigenvalue sequence of A (resp. A*). T is said to have g-Racah
type whenever for 0 <i < D ;

6; =60 + h(1 — ¢")(1 — 5" 1)g ", M
0F =05 +h*(1—¢")(1 - s*¢"*)g ™" ®)
Then there are the corresponding scalars s,s*,r1,72 with 17 = ss*¢P*! and some constraints; see [9].

For the rest of this paper we assume that " has g-Racah type. In what follows, whenever we encounter

square roots, these are interpreted as follows. We fix square roots s!/2, s*1/2, ri/ 2 r;/ 2 such that rl/ 2 1/ -
s1/2571/2(D+1)/2,

3 Polynomials F, and F,

3.1

Recall the polynomials {f;}2 , from the first paragraph in §2. This polynomial sequence satisfies the following
3-term recursion:

zfi=bi1fici+aifi +cipifins (0<i< D), (9)

where f_; = 0 and fpy1 = 0. It is readily to see that f;(A)Z = A;Z. We normalize the polynomials
f:(0 < i < D) as follows.
Fi = fl/kz, (10)

where k; = boby ---bj—1/c1ca - - - ¢;. Then (9) becomes
zF; = c;F;—q1 + a; F; + biFH—l (0 <z< D)

By [10, Theorem 23.2], it follows that for 0 < i < D

PNt [t A B ot - P o
=2 e @) (o= 05) (11)

where ¢; = hh*q' ™2 (1 — ¢")(1 — ¢*"P=1) (1 — r1¢%) (1 — r2q?).
Until further notice, we put the scalars a,b,c,d € C* such that

" . 1/2 . 5* 1/2 . §*raqP+2 1/2 i s*r1qD+2 1/2 (2
— s*qD ) - TlT'qu ) - 7"1 » e 7'2 .

For 0 < ¢ < D, consider the Askey-Wilson polynomial p;(y +y~1) = p:(y + y~1;a,b,¢,d | g). The following
lemma, explains how the polynomial F; is related to the Askey-Wilson polynomial p;.

Lemma 3.1. Let = be of the form
h(sq)/*(y +y™") + (60 — h — hsq), (13)
where y is indeterminate. Then

Fiz)=pi(y+y™"), i=0,1,2,...D. (14)
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Proof. We compute both sides of the equation (14). First we compute the right-hand side in (14). Apply

(12) to (2) and use the equation r;73 = ss*¢P*! to get

Z (4759);(*a™30);(s2 20 2y 9) (5™ 2 2y 13 q);
(r14:9)3(r24;9);(07759);(2; 9)n
We now compute the left—ha.nd side in (14). Put (13) for z in (11) and simplify it. Then the result follows. W

3.2

Recall the partition {C;}25! of X from above Lemma 2.1. For 0 < i < D — 1 and z € C;, define &; :=
IT1(2)NCi-1l, @; = [T1(2)NCil, b; := [T1(2)NCit1l; see [5, §4]. With these parameters, define f; € C(z](0 <
i<D-1)by fo=1and

ofi=bi1fi1+@fi+Gnfin  (0<i<D-1), (15)
where f_l =0 and fD = 0. By construction, we have
f(A)C = .. (16)
In a similar manner to (10), we define the sequence of polynomials f’o, f’l, . ﬁD—l by
Fi:= fi/k, (17)

where ’ii;i = ’5()?)'1 o '35_1/5152 s a Then (15) becomes
:L‘Fi = Eiﬁi-—l +a,ﬁ’, +Ziﬁi+1 (0 S 1 S D — 1)
By [10, Theorem 23.2] and using [5, Theorem 4.21], it follows that for 0 <i <D —1

~ i (0 -6y)6r -6 ~ ~ ~
Fi(z) =Z( )6 ¢1<p21) %( 1)(ﬂv—90)(18—49’1)"'(90—6’;'-1),

where §; = hR*q'~%(1 — ¢*)(1 — ¢*~ )(1 —71g°)(1 — Faqt).
Define the scalars a,b,¢,d € C*
a=a, b= by, t=c, d=d. (18)
With these parameters, for n = 0,1,2,...,D — 1 define a polynomial p, = p,[y; a,b,cd | q] by

_ -, abedg™?, dy, Gy
Bni=ads [ eI A
ab, ac, ad

)

", abedg®, ay, ay™!
= 4¢3 (q avcad @, Y ‘ q, q) :pn[yy aaanC,d | q]

abg, ac, ad
Note that the monic of p is

D _ (EZ’EE’ ng, q)n ~ _ (abq’ ac, ad; q)n

P, =ﬁn ;E,E,E,g = ~ n = n ;a)b:cvd
n Bl ' an(@edgm i) @ (abedg™i ) lwiaba,e.dd

The following lemma explains how the F; is related to the Di, that is the analogue of Lemma 3.1.
Lemma 3.2. Let x be of the form
h(sq)*(y +y7!) + (8o — h — hsq),”
where y is indeterminate. Then
F@)=py+y™Y), i=0,1,2..D-1
Proof. Similar to Lemma, 3.1. | |
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4 The universal DAHA of type (CY, C})

For notational convenience, define I := {0,1,2,3}. The universal DAHA of type (CY,C1) (11, Definition 3.1]
is the C-algebra H defined by generators {t l}nell and relations

@) taty ' =t =1 (n el (ii) tn +t," is central (n € I); (iii) totitots = ¢71/2

In [5, §11] we discussed that W has an H -module structure in detail. In this paper, for our purpose we will
twist W via a certain (C—algebra automorphlsm of H Recall the H -module W from [5, §11]. Consider a
C-algebra automorphism o : H — H that sends

to — 1y, t1 > g, t = tg ‘tsto, t3 > titat]
Observe that 02 = id. There exists an Hq-module structure on W, called W twisted via o, that behaves
as follows: for all h € Hy,w € W, the vector h.w computed in W twisted via o coincides with the vector

h?.w computed in the original H -module W. For the rest of this paper, we regard an H -module W as the
H -module W twisted via o. Define the following elements in H

Y = toty, X = tsto, X = tyta = ¢~ V251457,
A=Y +Y 1 B=X+X"1, B=X+X"1.
We describe the Hq—module W in detail. Recall the parameters rq, 7, s, s*, D from the last paragraph in §2.

Definition 4.1. [5, Definition 11.1]
(a) For 1 <4< D —1, the (2 x 2)-matrix to(z) is

D/2 i—D . i1 D/2( i—D . il
2% (1~q 1-sgq 1 (¢ TP -1){(1-5"g"" ")
( l_s*q)2(1+1 ) + qD72 1——s"‘q2‘+1
1—g)(1—s* gD Fit1 g —1)(1—g" gPFiH1 1
qP72 (1= q2+1) qD72(1__3tq2i+l) + m
and
1 1
tO(O) = [ qD/2 :| ) tO(D) = l: qD/2 .
(b) For 0 <¢ < D —1, the (2 x 2)-matrix tl(i) is
[ 1 (=gt () ? Qg -ragt)
(s*rir2)1/2 1-s*q2%t+2 T1iT2 T 1—s*g?tF2
. it . it « \1/2 i+l i+1
1 (r1=s"q"")(ra—s"¢* ") s _ (A=mg T ) (1-regtTh)
i (5Frira)i7? 1 s goite o Epepeizs i
(c) 0 <4< D —1, the (2 x 2)-matrix t,(3) is
L 1 — Q=g (1-rag*t?h) s* g T (1-rig"t ) (1—ragt?) ]
q ¥ 1(r1r) 172 T-s*q?it2 (rir2)172 1-g*g®*+2
— 1 (ri=s*g"t1)(ra—s"g't?) Y (ri=s*q"t1)(ra—s*g't? +s*
| 5 g1 (r112)172 T o% g2iF2 (rir2)172 1-s* g2t

(d) For 1 <4< D —1, the (2 x 2)-matrix ¢3(7) is

1 (@'=1)(-s*gPtth) | 4 1 g°/2(1—g""P)(1-s*g"*?)
qi(s*q)i72 qD/2(1_s*q2£+1) m qi(s*q)1/2 1—s*q%t1

) i1 i_ « Ditl qP/?(1—g'=D)(1—sgi+1
¢'(s*9)? (Lopi=ta)) ¢'(s” q)l/z( Ao Qe 1)

t5(0) = [ (s*q D+1)1/2 ] t3(D) = [ W } '
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Define the block diagonal matrices Tp,(n € I):

To = blockdiag[ ) to(1), ..., t0(D — 1),to(D)];

= blockdiag[tl(O) t1(1),...,t1(D - 1)];

Ty = blockdiag[tz(O),tz(l), . ta(D — 1)];

T3 = blockdiag [tg(O),tg(l), . ta(D — 1),t3(D)].
Then W has a module structure for ﬂ such that for n € I the matrix ‘J'n‘represents the generator t,, with
respect to the ordered basis {C; C+}A [5, §11].
Remark 4.2. In 5, Definition 11.2] we defined the scalars {k},e1. On W, the scalars {ky, }ne1 are defined
by

1\2 172\ /2 e\ /2 x D4+1\1/2
ko=<q—D) , kl‘—‘(—s:—) , k2=<r—1) , ks = (s*qP*?)

Remark 4.3. The above module structure for H, ¢ on W was determined by the parameters gq, s, s*,71,72, D.
Denote W = W, .. .. .. p. Using the relation (12) we can replace the parameters s, s*, 71,79, D by a,b, ¢, d.
Then the module structure for A, on W is described with the parameters g, a, b, ¢, d. We denote by W 4. c.4-
Since the diameter D disappears in Wy 4 5.c,4, We can extend this finite dimensional module to an infinite
dimensional module in an algebraic aspect; see Appendix.

The following theorem shows how I?I,, is related to I'. Recall the elements A, A*, A* in T from §2 and the
elements A, B,B in Hq. Recall that W is a T-module as well as an ﬁq—module twisted via o.

Theorem 4.4. [5, Theorem 12.1] On W,
(1) A acts as h(sq)'/2A + (8o — h — hsg);
(i) A* acts as h*(s*q)Y/?B + (65 — h* — h*s*q);
(iii) A* acts as h*(3*q)Y/?B + (65 — h* — h*3*q).

5 Nonsymmetric Laurent polynomials sii
In this section we construct the nonsymmetric Laurent polynomials af using the I:Iq-module W. We begin
with the following lemma.

Lemma 5.1. Let

glyl =m(1—by™),

where

bz( s* )1/2 m 1-—s*q
r172¢P ’ (1 —s*q/r1)(1 — s*q/r2)
Then on W, we have
glYle=C
Lemma 5.1 tells that the element g[Y] maps Z to C on W. Our next goal is to find the element in H that
maps & to C for 0 < i < D — 1. Recall Lemma 2.1 that

i i-1 i—1
Cr=) 48-) C= Zfa (A - f(A4)0, (19)
j=0 j=0 j=0 j=0



where the last equality is obtained by the comment below (9) and by (16). By (10) and (17), the right-hand
side in (19) becomes
i i-1
> kiF(A)z =Y ki F(A)C. (20)
Jj=0 j=0
By applying Theorem 4.4 (i) to (20), we find

¢ = Y KF (h(sq)1/2A + (B0 —h— hsq))fc
j=0
i—-1 . .
-S & F (h(sq)l/zA + (00— h— hsq))c
3=0
1 —1 " .
(by Lemma 3.1, Lemma 3.2) = Y k;p;j(A)i— > k;p;(A)C
Jj=0 7=0
i i—1 -
(by Lemma 5.1) = | > k;p;(A) —g[Y]D_k;p;(A) | & (21)
7=0 7=0
Note that A =Y + Y L. Similarly we find
Cf = (g[Y] > kpia) -y kjpj(A)> & (22)
3=0 7=0

Motivated by (21), (22) we make a following definition.
Definition 5.2. For i =0,1,2,..., D — 1 define the polynomials ¢X in Cly,y™'] by

[ n—1

e = Z kipj(y +y~1) — (m — bmy™1) Z kipi(y+y™h),
=0 =0 -

ef = (m—bmy™)Y kipilw+v ) - kpily+yh),

j=0 j=0

where
k; = boby -+ b1 /cica -+ ¢, k; =boby---bj_1/18 -,
b-( s )1/2 - (1—3*112)
~ \rireg? ’ (1 -s*q/r)(1 = s*q/r2)’

On W we observe that ¢; [Y].2 = C;” and €} [Y].# = C;". Using the relations (12) and (18) we can replace
the parameters 71,72, 8, 8*, D by the parameters a, b, ¢, d.

Lemma 5.3. Referring to Definition 5.2, for0 <1< D -1

: (abed; q)2 S (abedg; q)z;
o ___—4 . -1y _ _ -1 _ ) ¥ ﬁ -1 2
& jgo a?(q,bc,bd, cd; q); Pily+y™7) = (m —bmy )]Z::O a?(g,beq, bdg, cd; q); iy, (23)

(abedg; q)2; : (abed; q)2;

: P; N Yy p -1y, 24
a’(q,bcq,bdq,cd;q)jpj(y+y ) jgoai(q,bc,bd,cd;q)j iy (24)

ef =(m—bmy™))
=

where
1 — abed

T {I=bo)(1—-bd)’

m
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We give some comments on {s:t b~ 1 The €; has the highest degree i and the lowest degree —i. By
Lemma 5.3 the €] has of the form
(abed; q)2; i (abed; q)a; - ab(1 — ¢*)(1 — cdg*™?)
a*(g, bc, bd, od; q); a*(g, be, bd, cd; g); 1 — abedg?-!

The & has the highest degree  and the lowest degree —i — 1. By Lemma 5.3 the ¢} has of the form

(abed; q)2: (1 —abedg®) 1) i+ (=1) (abed; g)2i+2 ab(l — ¢t (1 —edg®) ;4
a*(g, be, bd, cd; g); \ (1 — beg*)(1 — bdg?) Y a*1(q,bc,bd, cd;q)i1 1 — abedg?+! '

Therefore the set {¢X}2! is linearly independent in Cly, y~1].

Remark 5.4. Let V denote a subspace of Cly,y~!] spanned by {¢f}2!. Note that G s is a basis
for V. Observe that the space V is isomorphic to the space W via an isomorphism that sends 6 to C’i
respectively. View an H,-module W as W,a,b,c,d from Remark 4.3. By these comments we can endow a
module structure for H to V, that is, the matrix representing ¢,, with respect to {s::t}z —o coincides with
the matrix representing ¢,, with respect to {C':k}z_o1 fornel

6 How e;—L are related to E4;

For the rest of this paper, we set the parameters a, b, c,d € C* that satisfy (1), not involved to the parameters
r1,72,8,8*, D any longer. Referring to Lemma 5.3, for i = 0,1, 2, ... define the (infinite) sequence of Laurent
polynomlals & in Cly,y™!] by

-1

%
- Z (abed; )25 _ N —1 Z (abcdg; q)2; 5. -1
T = (9, bc,bd, cd; g); Filyy™) = (m =bmy™) —~ a’(q,beq, bdg, cd; 9); Bl+ys) @)

Y

P (abcdgiq)2; & N (abed; g)2; _ -1
j=0 J 7=0 J

Observe that £ =¢; and 8"’ = ¢} for 0 < i < D—1. By the comment below Lemma 5.3, we find that the
set {€F}in0 is a basis for C[y, 1] Moreover, by Remark 4.3 and 5.4, we can find a module structure for
H, on Cly,y™"]; see the Appendix. Identify £ with Cly,y~!] via a map z 5 y, 2! ¥y 1. OnL,fori>1
the action of to on the set {€F ,, &7} is ‘ ’

+ o (L= abg)(1 - abedg) 1/2) g+ 172(1=¢*)(1 —cdg"™)
fo-biy = ( (ab)1/2(1 — abcdg?i-1) +(ab) €imy+ (ab) 1 — abcdg?i—1 &

_ i — i—1 1/2(1 _ i _ i—1
o)l )y (LB ) e

foy = (ab)1/2(1 — abedg?i-1) 1 — abcdg?i-1

and t0.€5 = (ab)Y/ 285 . We compare this action with the action of T} on {E_;, E;} in the basic representation
of 5.

Theorem 6.1. On £, for i > 1 the matriz representing Ti with respect to
{E -1 Ez}

coincides with the matriz representing —(ab) ™'/ 2ty with respect to

+ (Q—¢)(1—cdgt)
{8‘ D1 — abedg?i-1 &y
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The matriz is ' _ ) ) ) )
_ l+ab—abcdgi~l—abgt  (1~g¢')(1-abg*)(1—cdg*~?)(1—abedg’ ™)

1—abcg?i—1 (1—abcdg?i-T1)2
—ab _ abg' 1 (cd+g—cdg’ —abedq?)
a 1—abcdg?i—1

On the H,-module £, the action of X on the set {51, € Yis1 is
X.&F | = ¢ ¥ (abed)"V/2ES
XE = qi_%(abcd)l/ZEi'.
We compare these actions with (5), (6).
Theorem 6.2. On L, for i > 1 the matriz representing Y with respéct to
{E_:, Ei}

coincides with the matriz representing q=1/2(abed) /2X with respect to

o (a1 —cdg™)
=11~ abedg?i-1 ¢

The matriz is o
diag(q"’, q"'la,bcd) .

7 Appendix

Recall the fIq—module W.a,b,c,d from Remark 4.3. In this Appendix we display this module structure
explicitly, and extend this finite dimensional module to an infinite dimensional module, which was discussed
below the line (26). First, consider the free parameters a,b, c,d € C* that satisfy the condition (1).

Definition 7.1. (a) For 1 <i < D —1, the (2 x 2)-matrix 70(¢) is

(1—abg*)(1—abedg~1) +ab __(1—abg*)(1—abcdg*~1)
1—abedg?i-1 1—abcdg?i—1

ab 1—qi!!1—cdqi_1! _ab!l—-qinl—cdq"_lz
T—abedg®i— T abedg®— +ab

(ab)_1/2
and
70(0) = [ (ab)/* ]
(b) For 0 <¢ < D — 1, the (2 x 2)-matrix 71 (i) is
11—bcqi gl—bdqi! + b _Q!l—adqifgl—acqi!
1—abedg?*— a ‘a 1—abcdg?*
(1—adg*)(1-acq’)
(1 - t;——qabcdq ?Cq )

(ab_1)1/2

(1—beg*)(1—bdg*)
1—abcdg?*
(¢) 0 <i< D —1, the (2 x 2)-matrix 72(3) is
1 (1_ (1—adg*)(1—acg?) bedgt (1—adg?)(1—acq?)
ag? 1—abcdg?? 1—abcdg
_ gl—bcqiggl—bdqi! i (l—bcqinl—bdqiz b
bt 1—abcdg?? a’qu 1—abcdg?* + a

Qo

(cd)_l/2

bq
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(d) For 1 <i< D —1, the (2 x 2)-matrix 73(%) is
1y !l—gi!!l—cdg‘_‘! 1 (- abg')(1—abedgi™1)
q 1—abcdg?i— abgt 1—abcdg# -1
_abedg'~ 11-¢")(1—cdg'™h) z 1 { (1—abg*)(1=cdg'~1)
1—abcdg?i-1 1—abedg?t— +ab

(qu—l)—l/'Z

and

75(0) = [ (cdg™)? .
We consider the block diagonal matrices Tyr(n € I):

To = blockdiag|7(0), 7o(1), .., 7o(D — 1), [ (ab)* ], T: = blockdiag|[r1(0), 71(1), ..., (D = 1)},
Ty = blockdiag[Tg(O),'rg(l), ooy ma(D = 1), [ (cdg™t)~ /2 ]], T, = blockdiag [72(0),T2(1), oy ma(D - 1)].
Then the H,-module W, 4 .c.q from Rémark 4.3 is described as follows; the matrix T, represents the

generator t, with respect to {CF}2 1.

In remark 5.4 we saw that the V has a module structure for H with respect to a basis {ei b- o We
extend an H -module V to £ as follows. Consider the infinite matrix

blockdiag [Tn(O), (1), Ta(2), -+ ] (nel). (27)

Then £ has a module structure for ﬁq such that (27) represents the generator t, with respect to {€;, €} }io.
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