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1. INTRODUCTION

This note is based on joint work with Xi-Ming Cheng, Alexander Gavrilyuk, and
Jack Koolen. We refer the interested reader to our paper [4].

Our objects of study are graphs having precisely three distinct eigenvalues. For
graphs with few eigenvalues, the case of three eigenvalues is the first interesting case.
Indeed, let $\Gamma$ be a connected graph on $n$ vertices and let $A$ denote its adjacency
matrix. Since the trace of $A$ is zero, if $\Gamma$ has just one eigenvalue $\theta_{0}$ then it follows
that $\theta_{0}=0$ . Now, if $\Gamma$ has just two eigenvalues $\theta_{0}>\theta_{1}$ then since it is connected,
it must have spectrum $\{[\theta_{0}]^{(1)}, [\theta_{1}]^{(n-1)}\}$ . Since the trace of $A$ is zero and the trace
of $A^{2}$ is $2e$ where $e$ is the number of edges of $\Gamma$ , we have the equation

$n(n-1)\theta_{1}^{2}=2e.$

By interlacing (with an edge), we have $\theta_{1}\leq-1$ and hence, $\theta_{1}^{2}\geq 1$ . On the
other hand the maximum number of edges in an $n$ vertex graph is $(\begin{array}{l}n2\end{array})$ and hence
$2e\leq n(n-1)$ . Thus we deduce that $\Gamma$ is the complete graph.

Regular graphs with three eigenvalues have received a great deal of attention.
It is well-known that such graphs are strongly regular graphs. A systematic study
of their nonregular counterparts was initiated by Haemers at the BCC in 1995.
There he asked for examples of nonregular graphs having precisely three distinct
eigenvalues. At that time complete bipartite graphs and a switching of $T(9)$ were
the only known examples.

In 1998, papers by Muzychuk and Klin [9] and Van Dam [7] appeared answer-
ing Haemers’ questions and, in particular, providing many examples of nonregular
graphs with three distinct eigenvalues. Most of the currently known examples
are so-called biregular graphs; graphs that have precisely two distinct valencies.
Muzychuk and Klin [9] called such graphs ‘strongly biregular graphs’.

An $n$-vertex graph with a vertex of valency $n-1$ is called a cone. Given a graph
$\Gamma$ , the cone over $\Gamma$ is the graph formed by adjoining a vertex adjacent to every
vertex of $\Gamma$ . Examples of families of strongly biregular graphs are complete bipartite
graphs and cones over strongly regular graphs. Indeed, a complete bipartite graph
$K_{n,m}$ $($ for $n\geq m\geq 1)$ has spectrum $\{[\sqrt{nm\rfloor}^{(1)},$ $[0]^{(n+m-2)},$ $[-\sqrt{nm\rfloor}^{(1)}$ }. The
following result due to Muzychuk and Klin offers a method for finding strongly
biregular cones.

Proposition 1.1 (See [9]). Let $\Gamma$ be a strongly regular graph with $n$ vertices, valency
$k$ , and smallest eigenvalue $\theta_{2}$ . Then the cone over $\Gamma$ has three distinct eigenvalues

if and only if $\theta_{2}(k-\theta_{2})=-n.$

There are infinitely many strongly regular graphs satisfying the assumption of
the proposition and so there are infinitely many cones over strongly regular graphs

数理解析研究所講究録

第 1965巻 2015年 150-157 150



G. R. W. GREAVES

having three distinct eigenvalues [1, 9]. As well as giving some sporadic examples,
using symmetric and affine designs, Van Dam [7] exhibited a couple of infinite
families of strongly biregular graphs that are neither cones nor complete bipartite
graphs.

There exist some partial classifications of nonregular graphs having three distinct
eigenvalues in the following senses. Van Dam [7] classified all such graphs having
smallest eigenvalues at least $-2$ and also classified all such graphs on at most 29
vertices. Chuang and Omidi [5] classified those graphs whose spectral radius is less
than 8.

2. CONES AND BIPARTITE GRAPHS

For fixed $\theta_{0}>\theta_{1}>\theta_{2}$ , define the set $\mathcal{G}(\theta_{0}, \theta_{1}, \theta_{2})$ of connected nonregular graphs
having precisely three distinct eigenvalues $\theta_{0},$ $\theta_{1}$ , and $\theta_{2}.$

Among graphs with three eigenvalues, complete bipartite graphs are distin-
guished in the following way.

Theorem 2.1 (Proposition 2 [7]). Let $\Gamma$ be a graph in $\mathcal{G}(\theta_{0}, \theta_{1}, \theta_{2})$ where $\theta_{0}i\mathcal{S}$ not
an integer. Then $\Gamma$ is a complete bipartite graph.

It was shown by Smith [12] that, if the second largest eigenvalue of a connected
graph $\Gamma$ is at most $0$ then $\Gamma$ is a complete $r$-partite graph with parts of size $p_{1}$ , . . . , $p_{r},$

denoted $K_{p_{1},\ldots,p_{r}}$ . We will see below that complete bipartite graphs are the only
nonregular multipartite graphs with precisely three distinct eigenvalues.

Theorem 2.2. Let $\Gamma$ be a graph in $\mathcal{G}(\theta_{0}, \theta_{1}, \theta_{2})$ . If the complement of $\Gamma$ is discon-
nected, then $\Gamma$ is a cone or $\Gamma$ is complete bipartite.

Note that if a bipartite graph is not complete bipartite then its diameter must
be at least 3 and hence it cannot have fewer than 4 distinct eigenvalues. The next
result follows from this observation and from the proof of Theorem 2.2, which we
omit.

Corollary 2.3. Let $\Gamma$ be a graph in $\mathcal{G}(\theta_{0}, \theta_{1}, \theta_{2})$ . Then the following are equivalent.

(1) $\Gamma$ is bipartite;
(2) $\Gamma$ is complete bipartite;
(3) $\theta_{1}=0.$

For a graph $\Gamma$ , let $D(\Gamma)$ denote the number of distinct valencies in $\Gamma$ . For
example, if $\Gamma$ is regular then $D(\Gamma)=1$ . We also have the following corollary.

Corollary 2.4 (cf. [7]). Let $\Gamma$ be a cone in $\mathcal{G}(\theta_{0}, \theta_{1}, \theta_{2})$ . Then $D(\Gamma)\leq 3$ . Moreover,

if $D(\Gamma)=2$ then $\Gamma$ is a cone over a strongly regular graph.

Now we give two remarks.

Remark 2.5. The above corollary generalises a result of Bridges and Mena [1] who
studied cones having distinct eigenvalues $\theta_{0},$ $\theta_{1}$ , and $-\theta_{1}$ . They proved that, except
for at most three cones having three valencies, such graphs are cones over strongly
regular graphs with parameters $(v, k, \lambda, \lambda)$ . (Only two of these three exceptional
cones have been constructed, it is still an open problem to decide the existence of
the largest cone.)

151



GRAPHS WITH THREE EIGENVALUES

Remark 2.6. Our Theorem 2.2 is reminiscent of Proposition 6.1 (a) given by Muzy-
chuk and Klin [9]. Let $\Gamma\in \mathcal{G}(\theta_{0}, \theta_{1}, \theta_{2})$ and let $W(\Gamma)$ denote its Weisfeiler-Leman
closure (see [9, Section 6 We also remark that, by Theorem 2.2 and Corollary 2.4,
we see that [9, Proposition 6.1 $(a)$ ] says that if $\dim(W(\Gamma))=6$ then $\Gamma$ is biregular
with a disconnected complement. Muzychuk and Khn [9] suggest classifying all
graphs $\Gamma\in \mathcal{G}(\theta_{0}, \theta_{1}, \theta_{2})$ satisfying $\dim(W(\Gamma))=9$ , which is the next interesting
case after $\dim(W(\Gamma))=6.$

We call the 11-vertex cone over the Petersen graph, the Petersen cone (see [7,
Fig. 1]) and the graph derived from the complement of the Fano plane, the Fano
graph (see [7, Fig. 2

3. BIREGULAR GRAPHS WITH THREE EIGENVALUES

3.1. Computing feasible parameters. Let $\Gamma=(V, E)$ be an $n$-vertex connected
graph. Recall that the adjacency matrix $A$ of $\Gamma$ is an $n\cross n$ matrix whose $(i,j)th$

entry, $A_{i,j}$ , is 1 if the ith vertex of $\Gamma$ is adjacent to the jth vertex of $\Gamma$ and $0$

otherwise. By the eigenvalues of $\Gamma$ we mean the eigenvalues of $A$ . Assume that $\Gamma$

has precisely three distinct eigenvalues $\theta_{0}>\theta_{1}>\theta_{2}$ . Then $\Gamma$ has diameter two and
since such a graph cannot be complete, it follows by interlacing that $\theta_{1}\geq 0$ and
$\theta_{2}\leq-\sqrt{2}.$

We write $m_{i}$ for the multiplicity of eigenvalue $\theta_{i}$ of $\Gamma$ . If $\Gamma$ has $n$ vertices then,
since $1+m_{1}+m_{2}=n$ and $\theta_{0}+m_{1}\theta_{1}+m_{2}\theta_{2}=0$ , we have

(1) $m_{1}=- \frac{(n-1)\theta_{2}+\theta_{0}}{\theta_{1}-\theta_{2}}$ and $m_{2}= \frac{(n-1)\theta_{1}+\theta_{0}}{\theta_{1}-\theta_{2}}.$

By the Perron-Robenius Theorem (see, for example, [8]), $\theta_{0}$ has multiplicity 1
and for any eigenvector for $\theta_{0}$ all entries have the same sign. This implies that
there exists a positive eigenvector $\alpha$ for the eigenvalue $\theta_{0}$ such that

$(A-\theta_{1}I)(A-\theta_{2}I)=\alpha\alpha^{t}.$

For a vertex $x$ , denote the entry of $\alpha$ corresponding to $x$ by $\alpha_{x}$ . This implies that
if a vertex $x$ has valency $d_{x}$ , then $d_{x}=\alpha_{x}^{2}-\theta_{1}\theta_{2}$ . Let $x$ and $y$ be vertices of $\Gamma$ . We
write $\nu_{xy}$ for the number of common neighbours of $x$ and $y$ . By the above formulae
we have

$v_{xy}=(\theta_{1}+\theta_{2})A_{x,y}+\alpha_{x}\alpha_{y}.$

Let $\Gamma$ be a graph having $r$ distinct valencies $k_{1}$ , . . . , $k_{r}$ with multiplicities $n_{1}$ , .. . , $n_{r},$

i.e., $n_{i}$ $:=|\{v\in V(\Gamma)$ : $d_{v}=k_{i}$ We refer to the valencies $k_{i}$ and their multi-
plicities $n_{i}$ as the parameters (or parameter set) of $\Gamma$ . The main result of this
section gives us strong restrictions on the parameters of biregular graphs with three
eigenvalues.

Van Dam [7] showed that if a graph $\Gamma$ has precisely three distinct eigenvalues
and at most three distinct valencies then the valency partition is equitable. We
show a slightly refined version of this result where we assume that $\Gamma$ has precisely
two distinct valencies.

Theorem 3.1. Let $\Gamma$ be an $n$ -vertex non-bipartite biregular graph in $\mathcal{G}(\theta_{0}, \theta_{1}, \theta_{2})$

with valencies $k_{1}>k_{2}$ . Then the following conditions hold:
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(i) The partition $\{V_{1}, V_{2}\}$ is an equitable partition of $\Gamma$ with quotient matrix

$Q=(\begin{array}{ll}k_{11} k_{12}k_{21} k_{22}\end{array})$ , where

$k_{11}= \frac{\alpha_{1}\theta_{0}-\alpha_{2}k_{1}}{\alpha_{1}-\alpha_{2}},$ $k_{12}= \alpha_{1}\frac{k_{1}-\theta_{0}}{\alpha_{1}-\alpha_{2}},$ $k_{21}= \alpha_{2}\frac{\theta_{0}-k_{2}}{\alpha_{1}-\alpha_{2}},$ $k_{22}= \frac{\alpha_{1}k_{2}-\alpha_{2}\theta_{0}}{\alpha_{1}-\alpha_{2}}.$

(ii) All eigenvalues of $\Gamma$ are integers.
(iii) If the matrix $Q$ has eigenvalues $\theta_{0}$ and $\theta$ , then $\alpha_{1}\alpha_{2}=-\theta(\theta’+1)$ where

$\{\theta, \theta’\}=\{\theta_{1}, \theta_{2}\}$ . In particular, if $k_{11}=0$ or $k_{22}=0$ then $\alpha_{1}\alpha_{2}=$

$-\theta_{2}(\theta_{1}+1)$ .
(iv) We have

$n= \frac{(\alpha_{1}^{2}+\alpha_{1}\alpha_{2}+\alpha_{2}^{2}-\theta_{0}-\theta_{1}\theta_{2})(\theta_{0}-\theta_{1})(\theta_{0}-\theta_{2})}{(\theta_{0}+\alpha_{1}\alpha_{2}+\theta_{1}\theta_{2})\alpha_{1}\alpha_{2}}$ ;

$n_{1}= \frac{(\theta_{0}-\alpha_{2}^{2}+\theta_{1}\theta_{2})(\theta_{0}-\theta_{1})(\theta_{0}-\theta_{2})}{(\theta_{0}+\alpha_{1}\alpha_{2}+\theta_{1}\theta_{2})(\alpha_{1}-\alpha_{2})\alpha_{1}}$ ;

$n_{2}= \frac{(\alpha_{1}^{2}-\theta_{0}-\theta_{1}\theta_{2})(\theta_{0}-\theta_{1})(\theta_{0}-\theta_{2})}{(\theta_{0}+\alpha_{1}\alpha_{2}+\theta_{1}\theta_{2})(\alpha_{1}-\alpha_{2})\alpha_{2}}.$

(v) The following conditions are equivalent:
($a$) $k_{21}=n_{1}$

($b$) $k_{12}=n_{2}$ ;
(c) $n_{1}=1$ ;
(d) $\Gamma$ is a cone over a $\mathcal{S}$trongly regular graph.

(vi) If $n$ is a prime at least 3, then $\Gamma i_{\mathcal{S}}$ a cone over a strongly regular graph.
(vii) $\alpha_{1}-1\leq(\alpha_{1}-\alpha_{2})\alpha_{2}\leq\min\{-(\theta_{1}+1)(\theta_{2}+1), -\theta_{1}\theta_{2}\}$ , unless $\Gamma i\mathcal{S}$ a cone

over a strongly regular graph.

Using Theorem 3.1 we have compiled a table of the feasible parameters for bireg-
ular graphs with precisely three distinct eigenvalues, see the appendix of [4].

Remark 3.2. Let $\Gamma$ be a biregular graph in $\mathcal{G}(\theta_{0}, \theta_{1}, \theta_{2})$ with the spectrum of $\Gamma$ fixed.
Using Theorem 3.1 one can see that $\Gamma$ can have at most two possible parameter sets.
The problem of determining if the parameters of $\Gamma$ are determined by its spectrum
comes down to Diophantine analysis. So far we do not have any examples of a pair
of parameter sets corresponding to graphs with the same spectrum.

We can show that if both a graph and its complement have three eigenvalues
then it must be biregular.

Theorem 3.3. Let $\Gamma$ be an $n$ -vertex graph in $\mathcal{G}(\theta_{0}, \theta_{1}, \theta_{2})$ such that its complement
$\overline{\Gamma}$ is in $\mathcal{G}(\theta_{0}’, \theta_{1}’, \theta_{2}’)$ . Then $\Gamma$ is biregular with valencies $k_{1}$ and $k_{2}$ satishing

$k_{1}, k_{2}= \frac{n+\theta_{1}+\theta_{2}\pm\sqrt{(n+\theta_{1}+\theta_{2}+2\theta_{1}\theta_{2})^{2}-4\theta_{2}^{2}(\theta_{1}+1)^{2}}}{2}.$

Moreover,

$n= \frac{(\theta_{0}-\theta_{1})^{2}}{\theta_{0}-\theta_{1}+\theta_{1}\theta_{2}+\theta_{2}}$ ; $\theta_{0}=\frac{n}{2}+\theta_{1}\pm\sqrt{n(n+4\theta_{2}(\theta_{1}+1))}/2$ ;

$\theta_{0}’=n-1-\theta_{0}+\theta_{1}-\theta_{2},$ $\theta_{1}’=-1-\theta_{2}$ , and $\theta_{2}’=-1-\theta_{1}.$

But so far we do not have any examples of graphs that satisfy this theorem.
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3.2. Bounding the second largest eigenvalue. Neumaier [10] showed that for
a fixed $m$ , all but finitely many primitive strongly regular graphs with smallest
eigenvalue at least $-m$ fall into two infinite families.

Theorem 3.4 (See [10]). Let $m\geq 1$ be a fixed integer. Then there exists a constant
$C(m)$ such that any connected and coconnected strongly regular graph $\Gamma$ with small-
est eigenvalue $-m$ having more than $C(m)$ vertices has the following parameters
(given in the form $srg(n,$ $k,$ $\lambda,$

$\mu$

(1) $srg(n, sm, s-1+(m-1)^{2}, m^{2})$ where $s\in \mathbb{N}$ and $n=(s+1)(s(m-1)+m)/m$;
$or$

(2) $srg((s+1)^{2}, sm, s-1+(m-2)(m-1), m(m-1))$ where $\mathcal{S}\in \mathbb{N}.$

In the next result we show that for fixed $\theta\neq 0$ there are only finitely many
cones over strongly regular graphs with exactly three distinct eigenvalues and one
of them equal to $\theta.$

Lemma 3.5. Let $\theta\neq 0$ be a fixed algebraic integer and let $\Gamma\in \mathcal{G}(\theta_{0}, \theta_{1}, \theta_{2})$ be a
cone over a strongly regular graph with $\theta\in\{\theta_{0}, \theta_{1}, \theta_{2}\}$ . Then $\Gamma$ is one of a finite
number of graphs.

Our main result of this section is that there are only finitely many biregular
connected graphs with three distinct eigenvalues and bounded second largest eigen-
value.

Theorem 3.6. Let $\Gamma$ be an $n$ -vertex biregular graph in $\mathcal{G}(\theta_{0}, \theta_{1}, \theta_{2})$ and let $t$ be a
positive integer. Then there exists a constant $C(t)$ such that if $0<\theta_{1}\leq t$ , then
$n\leq C(t)$ .

Note that the above result is not true for connected graphs with exactly 4 distinct
eigenvalues and exactly two distinct valencies. Indeed, the friendship graphs, i.e.,
cones over a disjoint union of copies of $K_{2}$ , can have unbounded number of vertices
and all but two of the eigenvalues are equal to $\pm 1.$

3.3. Second largest eigenvalue 1. In this section we will classify the connected
biregular graphs with three distinct eigenvalues and second largest eigenvalue 1.
First we classify the cones of strongly regular graphs with second largest eigenvalue
1. Seidel [11] $(see$ also $[2, Thm 3.12.4 (i)]$ ) classified the strongly regular graphs
with smallest eigenvalue $-2.$

Theorem 3.7 ([11]). Let $\Gamma$ be a connected strongly regular graph with smallest
eigenvalue $-2$ , Then $\Gamma$ is either a triangular graph $T(m)$ for $m\geq 5$ ; an $(m\cross\dot{m})$ -

grid for $m\geq 3$ ; the Petersen graph; the Shrikhande graph,$\cdot$ the Clebsch graph; the
Schl\^afli graph; or one of the three Chang graphs.

Lemma 3.8. Let $\Gamma$ be a cone over a strongly regular graph in $\mathcal{G}(\theta_{0},1, \theta_{2})$ . Then $\Gamma$

is the Petersen cone.

Proof. The strongly regular graphs with second largest eigenvalue 1 are exactly the
complements of the graphs in Theorem 3.7. Checking whether each graph satisfies
the condition of Proposition 1.1 gives the lemma. $\square$

More generally we have the following.

Proposition 3.9. Let $\Gamma$ be a biregular graph in $\mathcal{G}(\theta_{0},1, -t)$ . Then $t=2$ , and $\Gamma$ is
the Petersen cone or Fano graph.
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3.4. Graphs in $\mathcal{G}(\theta_{0}, \theta_{1}, \theta_{2})$ with $\theta_{1}+\theta_{2}=-1$ . In this section we examine graphs
in $\mathcal{G}(\theta_{0}, \theta_{1}, \theta_{2})$ where $\theta_{1}+\theta_{2}=-1$ . We find that such graphs have properties which
make it convenient to use the so-called ‘star complement method’ to attempt to
construct them. Compare Eq. (2) to the equation in Theorem 3.12. We denote by
$j$ the ‘all ones’ (column) vector and we define the matrix $J$ $:=jj^{T}.$

Now we give a structural result for graphs with a certain spectrum.

Lemma 3.10. Let $\Gamma$ be a connected graph with spectrum $\{[\theta_{0}]^{1}, [\theta]^{n}, [-\theta-1]^{n-1}\},$

so that its adjacency matrix $A$ under the valency partition has block form:

$A=(\begin{array}{ll}A_{1} B^{T}B A_{2}\end{array})$ with quotient matrix $(\begin{array}{ll}k_{11} k_{12}k_{21} k_{22}\end{array}),$

where $A_{1}$ and $A_{2}$ are both $n\cross n$ matrices, i. e., $n=n_{1}=n_{2}$ , where $n_{i}$ is the number

of vertices with valency $k_{i}.$

Then the matrices $A_{1}$ and $J-I-A_{2}$ are cospectral.

We can also show the converse.

Lemma 3.11. Let $\Gamma$ be a graph in $\mathcal{G}(\theta_{0}, \theta_{1}, \theta_{2})$ , so that its adjacency matrix $A$

under the valency partition has block form:

$A=(\begin{array}{ll}A_{1} B^{T}B A_{2}\end{array})$ with quotient matrix $(\begin{array}{ll}k_{11} k_{12}k_{21} k_{22}\end{array}),$

where $A_{1}$ and $J-I-A_{2}$ are cospectral. Assume $n=n_{1}=n_{2}$ , where $n_{i}$ is the
number of vertices with valency $k_{i}.$

Then $k_{12}=k_{21}$ and $\Gamma$ has spectrum $\{[\theta_{0}]^{1}, [\theta]^{n}, [-\theta-1]^{n-1}\}$ , where $\theta\in\{\theta_{1}, \theta_{2}\}$

is an eigenvalue of the quotient matrix of the valency partition of $\Gamma$ . Moreover,
$BA_{1}=(J-I-A_{2})B$ , and

(2) $B^{T}B=(\theta I-A_{1})(\theta I-(J-I-A_{1}))$ , and B$B^{T}=(\theta I-A_{2})(\theta I-(J-I-A_{2}))$ .

In Table 1 in [4] we observe that, apart from the Petersen cone, all feasible
parameter sets for graphs in $\mathcal{G}(\theta_{0}, \theta_{1}, \theta_{2})$ with $\theta_{1}+\theta_{2}=-1$ have $n_{1}=n_{2}$ . It is an
interesting problem to decide whether this property follows from the spectrum in
general except from the Petersen cone.

Let $\theta$ be an eigenvalue of an $n$-vertex graph $\Gamma$ and suppose that $\theta$ has multiplicity
$m$ . Define a star set for $\theta$ to be a subset $X\subset V(\Gamma)$ such that $|X|=m$ and $\theta$ is
not an eigenvalue of $\Gamma-X$ . Now we can state the Reconstruction Theorem (See [6,
Theorems 7.4.1 and 7.4.4]).

Theorem 3.12. Let $X$ be a subset of vertices of a graph $\Gamma$ and suppose that $\Gamma$ has
adjacency matrix

$(\begin{array}{ll}A_{X} B^{T}B C\end{array}),$

where $A_{X}$ is the adjacency matrix of the subgraph induced by X. Then $X$ is a star
set for $\theta$ if and only if $\theta$ is not an eigenvalue of $C$ and $\theta I-A_{X}=B^{T}(\theta I-C)^{-1}B.$

The graph A induced by $\Gamma-X$ (having adjacency matrix $C$ in Theorem 3.12)
is called the star complement of $\theta$ . Star sets and star complements exist for
any eigenvalue and any graph and moreover, for $\theta\not\in\{0$ , 1 $\}$ , it can be shown that
$\Lambda$-neighbourhoods of the vertices of $X$ are non-empty and distinct [6, Chapter 7].
For vectors in $v,$ $w\in \mathbb{Z}^{n-m}$ , define the bilinear map $\langle v,$ $w\rangle$ $:=v^{T}(\theta I-C)^{-1}w$ . Let
$V$ be the set of vectors $v\in\{0, 1\}^{n-m}$ satisfying $\langle v,$ $v\rangle=\theta$ . Form a graph having $V$
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as its vertex set where two vectors $v$ and $w$ are adjacent if $\langle v,$ $w\rangle\in\{0, -1\}$ . This
graph is known as the compatibility graph for A. Cliques in the compatibility
graph then give the columns of the matrix $B$ as in Theorem 3.12.

We use this technique to obtain the following theorem.

Theorem 3.13. There exist at least 21 graphs having parameters
$n=30;n_{1}=15;n_{2}=15;k_{1}=14;k_{2}=8$ ; spectrum $\{[12]^{1}, [2]^{}, [-3]^{}\}.$

We remark that, by combining the above theorem with Van Dam’s classification
[7, Section 7], we now have a complete understanding of graphs with three distinct
eigenvalues on at most 30 vertices.

A graph in $\mathcal{G}(20,2, -3)$ having 3 distinct valencies was constructed in [3]. We
show that (see Theorem 3.14) there exists precisely one more graph having the
same parameters.

Theorem 3.14. The graphs $\Gamma_{1}$ and $\Gamma_{2}$ are the only graphs having parameters
$n=36;k_{1}=24;k_{2}=14;k_{3}=8$ ; spectrum $\{[20]^{1}, [2]^{}, [-3]^{}\}.$

Using similar techniques, we also obtain the following nonexistence result.

Theorem 3.15. There do not exist any graphs having parameters
$n=44;n_{1}=22;n_{2}=22;k_{1}=22;k_{2}=7$; spectrum $\{[19]^{1}, [2]^{22}, [-3]^{}\}.$

4. $0PEN$ PROBLEMS

Finally we give some open problems.

(1) Find more examples. Currently we have infinitely many graphs $\Gamma\in \mathcal{G}(\theta_{0}, \theta_{1}, \theta_{2})$

with $D(\Gamma)=2$ , finitely many with $D(\Gamma)=3$ , and no examples with
$D(\Gamma)\geq 4.$

(2) Does there exist $\Gamma$ such that $\Gamma\in \mathcal{G}(\theta_{0}, \theta_{1}, \theta_{2})$ and $\overline{\Gamma}\in \mathcal{G}(\theta_{0}’, \theta_{1}’, \theta_{2}’)$ ?
(3) Except for the Petersen cone, if $\Gamma\in \mathcal{G}(\theta_{0}, \theta, -\theta+1)$ is biregular, does it

imply that the valency-partition of $\Gamma$ divides that vertices equally into two
sets?

(4) InVestigate the graphs $\Gamma\in \mathcal{G}(\theta_{0}, \theta_{1}, \theta_{2})$ with $\dim(W(\Gamma))=9$ (See Re-
mark 2.6).
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