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ON THE DECOMPOSITION OF THE HOCHSCHILD COHOMOLOGY
GROUP OF A MONOMIAL ALGEBRA SATISFYING A SEPARABILITY
CONDITION
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ABSTRACT. In this note, we consider the finite connected quiver Q having two subquivers
QM and 9@ with Q = QWU Q@ = (Qél) U ng)’ le) U ng)), Suppose that Q1 is not
a subquiver of QU) where {i,5} = {1,2}. For a monomial algebra A = kQ/I obtained by
the quiver Q, when the set AP(n) (n > 0) of overlaps constructed inductively by linking
generators of I satisfies a certain separability condition, we propose the method so that
we construct a minimal projective resolution of A as a right A®-module and calculate the
Hochschild cohomology group of A.

1. INTRODUCTION

First of all, we recall the definition of Hochschild cohomology (see [S]). For a finite-
dimensional algebra A over a field k, the Hochschild cohomology groups HH"(A) of A is
defined by

HH"(A) := Ext}.(A, A) (n > 0),
where A®:=A° ®; A is the enveloping algebra of A. Note that there is a natural one to
one correspondence between the family of A-A-bimodules and that of right A®-modules.
Moreover, the Hochschild cohomology rings HH*(A) of A is the graded algebra defined by

HH*(A) := Ext}.(4, A) = @D Extiy.(4, A)
i>0
with the Yoneda product.
The low-dimensional Hochschild cohomology groups are described as follows:

e HH(A) = Z(A) is the center of A.

e HH'(A) is the space of derivations modulo the inner derivations. A derivation is a
k-linear map f : A — Asuch that f(ab) = af(b)+ f(a)bforalla,b € A. A derivation
f: A — Ais an inner derivation if there is some z € A such that f(a) = az — za
for all a € A.

e HH?(A) measures the infinitesimal deformations of the algebra A.

One important property of Hochschild cohomology is its invariance under Morita equiva-
lence, stable equivalence of Morita type and derived equivalence.

In general, it is not easy to calculate the Hochschild cohomology of a finite-dimensional
algebra. In order to calculate the Hochschild cohomology groups of a quiver algebra, can
we use calculations of the Hochschild cohomology groups of quiver algebras obtained by
subquivers of the original quiver? Hence, we consider Hochschild cohomology of an algebra
obtained by “linking”two algebras as the analogy of the following two studies. In [H], for
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a finite-dimensional algebra A and M € mod A, Happel studied the one-point extensions

A M
B =AM] = 0k
the Hochschild cohomology of A and B. In [BO], for a finite-dimensional algebra over a field
k, Bergh and Oppermann studied the Hochschild cohomology of twisted tensor products
and applied this to the class of finite-dimensional algebras known as quantum complete
intersections.

Let k be an algebraically closed field and Q a finite connected quiver. Then kQ denotes the
path algebra of Q over k in this paper. Let I be an admissible ideal of Q. If I is generated
by a finite number of paths in @, then I is called a monomial ideal and A := kQ/I a
monomial algebra. For a finite-dimensional monomial algebra A = kQ/I, using a certain
set AP(n) of overlaps constructed inductively by linking generators of I, Bardzell gave a
minimal projective A°-resolution (F,, #,) of A in [B] (so called Bardzell’s resolution). By
using Bardzell’s resolution, the Hochschild cohomology of monomial algebras are studied in
the following papers [GS], [GSS], [FS], etc.

In this note, for a finite-dimensional monomial algebra A, we propose a method so that
we easily calculate the Hochschild cohomology groups of A under some conditions. Let Q
be a finite connected quiver and Q® (i = 1,2) a subquiver of Q such that @ = QWUQ® =
(95" U O, " U Q). Let I® = (X) (resp. I® = (Y)) be a monomial ideal of kQ®
(resp. kQ®@) for X (resp. Y) a set of paths of kQ® (resp. kQ®) and I = (X,Y) a
monomial ideal of £kQ. We assume that I and I®) (i = 1,2) are admissible ideals. Then
we define A = kQ/I, Ay = kQW/IM and Ay = kQ®/I?®. Hence A and A(;y are finite-
dimensional monomial algebras for ¢ = 1,2. For the monomial algebra A, under a separability
condition (i.e. le) N ng) = &), we investigate the minimal projective A®-module resolution
of A given by Bardzell ([B]). Moreover, under an additional condition, we show that, for
n > 2, the Hochschild cohomology group HH"(A) of A is isomorphic to the direct sum of
the Hochschild cohomology groups HH"(A(1)) and HH"(A3)).

Throughout this note, for all arrows a of Q, we denote the origin of a by o(a) and the
terminus of a by t(a). Also, for simplicity, we denote ®; by ®. For the general notation,
we refer to [ASS].

of A and show that there exists the long exact sequence connecting

2. THE SET AP(n) OF OVERLAPS AND BARDZELL’S RESOLUTION

In this section, following [B] and [GS], we will summarize the definition of the set AP(n)
(n > 0) of overlaps.

Definition 2.1. A path ¢ € kQ overlaps a path p € kQ with overlap pu if there exist u,
v such that pu = vg and 1 < I(u) < I(g), where [(z) denotes the length of a path z € kQ.
Note that we allow I(z) = 0 here.

q

P
A path ¢ properly overlaps a path p with overlap pu if ¢ overlaps p and { (v) > 1.

Let A = kQ/I be a finite-dimensional monomial algebra where I = (p) has a minimal set
of generators p of paths of length at least 2.
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Definition 2.2. For n =0, 1,2, we set
o AP(0) := Qp =(the set of all vertices of Q);
o AP(1) := Ql =(the set of all arrows of Q);
o AP(2) :=
For n > 3, we deﬁne the set AP(n) of all overlaps R" formed in the following way: We say
that R? € AP(2) maximally overlaps R*' € AP(n — 1) with overlap R* = R 'u if
(1) R*! = R™2?p for some path p and R*"2 € AP(n — 2);
(2) R? overlap p with overlap pu;
(3) there is no element of AP(2) which overlaps p with overlap being a proper prefix of pu.

The construction of the paths in AP(n) may be illustrated with the following picture of
R™

R2

Remark 2.1. ([B]) Note that for n > 2, AP(n) = AP(n)°P.

In short, overlaps are constructed by linking generators of an admissible monomial ideal
I. A sequence of those generators of I is called the associated sequence of paths ([GHZ]).

Example 2.1. Let Q be a quiver

az

bound by I = (a,aza3, azaza;,aza1az). We set the algebra A = kQ/I. Then we set

o AP(0) := Qo = {vp,v1,v2}, AP(1) := Q; = {a1,0a2,0a3},

® AP(2) = {alagaa,agagal,a3a1a2}. -
For n > 3, considering all overlaps linking by generators of I inductively, we have the
following;:

o AP(3) = {a1a2a3a,, a2a3a1a2, a3a10203},

[ ] AP(4) = {alagaaalag, a20a301020a3, a3a1a2a3a1}, ceey

o AP(n) = {0102030; - . ., 02430103 . - ., 33010203 . ..}.

'nIl 'n:l n‘+f1

For example, the associated sequence of paths corresponding to ayazaza1, a2azaqa1, aza1az2a3 €
AP(4) are (a,az, aza3, aza1), (@203, a3a1,0102), (a301, @102, a2a3), respectively.

A

’qu—-——-—-—————'l)l

Example 2.2. Let Q be a quiver
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bound by I' = (a1a,, azas). We set the algebra A’ = kQ/I.
[ AP(O) = QO = {’Uo,’Ul,’Uz}, AP( ) = 1 = {al,az,ag},
o AP(2) := {a1as, azas}.

Considering all overlaps linking by generators of I inductively,
[ ] AP(3) {a1a2a3}
o AP(n) =@ for all n > 4.

For a monomial algebra A = kQ/I, by using the set AP(n), Bardzell determined a
minimal projective A°-resolution (P,, @) of A in [B].

Definition 2.3. Let (P, ¢,) be the minimal projective A°- resolution of A in [B]. Then,
for n > 0, we set

I Ao(E) @ t(RMA.
RrEAP(n)
From [B], if R>**! € AP(2n+ 1), then there uniquely exist R?", R™ € AP(2n) and some
paths a;, by such that R?>"1 = R%a; = by R}".

Rt
R a;
bk R
For even degree elements R*™ € AP(2n), there exist 7 > 1, R”*! € AP(2n — 1) and
paths p;, g for [ =1,2,...,r such that R = p;R¥" 1y = ... = prR21g,
RZn
21 B! aQ
Pr R1 ar

Remark 2.2. Note that o(R}") ® a; € Ao(RZ") ® t(R2")A and b, ® t(RI") € Ao(RIM®
t(R2™)A. Also, note that p, ® ¢, € Ao(R1) @ t(R2 1)A

Definition 2.4. The map ¢onty : Ponyi — Py, is given as follows. If R+ = R%"a;
=bxRi" € AP(2n + 1), then
o(R*™1) @ t(R*™1) — o(R¥™) ® a; — by, ® t(RZ™).

The map @an, : Pan — Pon1 is given as follows. If R*" = pR¥" ¢, = ... = p,R¥ g,
then

o(R") @ t(R*™) — > pi@q.
I=1
The following result is the main theorem in [B].

Bardzell’s Theorem ([B, Theorem 4.1]) Let Q be a finite quiver, and suppose that A =
kQ/I is a monomial algebra with an admissible ideal J. Then the sequence

¢ﬂ+1 P

"_)Pn+1 ——)Pl Po—)A—)O



48

is a minimal projective resolution of A as a right A°-module, where 7 is the multiplication
map.

3. THE DECOMPOSITION OF HOCHSCHILD COHOMOLOGY GROUPS

Before stating main teorem, we recall our setting.
e Q= Q(l) ) Q(2)7
e I = (X) be a monomial ideal generated by X a set of paths of kQW),
e I® = (Y) a monomial ideal generated by Y a set of paths of kQ®,
e I = (X,Y) a monomial ideal of kQ,
e A=kQ/I, Ay = kQW/IMW | Ay = kQ® /I?: finite-dimensional algebras,
o AP(2) = XUY, APM(2) = X, APD(2) := Y.
Then, as in the definition of AP(n) of overlaps, we define AP®)(n), AP®(n). Moreover,
we define projective A®-modules as follows:

PO = J] Ao(R")@tRMA,

RreAP()(n)

PO = J] Mo(R")&HRMA,
Rre AP (n)

P.= J[ Ao(R")®t(R"A.
RreAP(n)

To prove our main result, we need the following lemma. As mentioned in Introduction,
we consider the separability condition APM (1) N APP(1) = @.

Lemma 3.1. ([IFS, Lemma 3.1)) Let i € {1,2}. If we assume APM(1)N AP?(1) = 2,
then we have the following:

(a) Foralln>1, AP(n) = AP®(n) U APA(n),
(b) For alln > 1, APM(n)N APP(n) = 2.

(c) Letn > 1 and p™ € AP(n). Then R" is a path of kQW if and only if R* € AP®(n).

By Bardzell’s Theorem and Lemma 3.1, we have the following proposition.
Proposition 3.2. ([IFS, Proposition 3.2]) If the condition le) N Q?) = @& holds, then, in
the following minimal projective resolution of A:

s PRSP o B2 R A0,

for any n > 1, P, is isomorphic to PV oP? as right A°-modules and ¢n1 = ¢$1.1—3-1 ® ¢$;2l1;

where qb,(ﬂrl : Pﬁl - PY (i = 1,2) is the restriction of ¢n41-

Remark 3.1. For i = 1,2, by € Ago(R¥), a; € t(R™)Aw, m € Awo(Ri™) and
q € t(RF™)A(; actually hold. So, for n > 1, ¢Sll sends [[gnt1cap®(nin) Ago(R™H®
t(R"'H)A(,;) to HR"eAP(f)(n) A(i)O(R") ®t(R™) A (not just to ]_IR"GAP(n) Ao(R™) @ t(R™)A).
Therefore, ([Igneape(ny Awo(R") Qt(R™)Ag); ¢1(:-)+1)n21 is exactly a part of degree n > 1 for
the minimal projective resolution of Ay (i = 1,2).
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The following theorem is our main result.

Theorem 3.3. ([IFS, Theorem 3.3)) If the condition Q" N QP = @ holds and, for each
i=1,2, o(R")At(R") = o(R™)A»t(R™) holds for any n > 1 and any R* € AP®(n), then
we have the direct sum decomposition of Hochschild cohomology groups

HH"(A) = HH"(A(1)) ® HH"(A(y)
for any n > 2.
Proof. By Proposition 3.2, we obtain the following right Ae-projective resolution of A:

s P8 p p s Bp B p Ap ToA

where for any n > 1, P, = P\Y @ P{? and Pnt1 = ¢£;1721 ® ¢£31.
Applying Hompe(-, A) to this resolution, we have the following sequence:

¢n+1 P

O'ﬁpoﬂipl 2 —)P n+l >

where B, = Hompe(P,, A), 55; = Hompe(¢y,, A). By the assumption, if p* € AP®(n), then
p™ is a path of kQ® for each i (i = 1 ,2). So we have, for any n > 1,
P, = Homy.(P,, A)
= Homy.(PY @ PP, A)
=Homa(( [[ Ao @t@e)Mo( [[ AoG™) @t@)A),A)
preAP() (n) pr€ AP (n)
=Homa(( [ Ao(p™) ®t(p™)A), A)
pre AP (n)
@Hompe(( J[ Ao(") @ t(p")A),A)

pr€AP®)(n)

=( T oematee( II o@atem)

preAP()(n) preAP() (n)

=( T o@awtee( T o@)Aete™)

preAP() (n) pnE€AP() (n)
= Homj,. (( H Agyo(p™) ® H(p")Aw), Awy)

(1)
p"€ AP (n)

oHomae, ( JI  Awol™) ®tp")Aw), Aw)-

@\
pPEAP(2)(n)

Also, by Remark 3.1, we have, for any n > 1,

42:1 = Hompe (¢n+1,A) = Hompe (‘1551111 ® ¢'Ez24)rl’ A)
= Homye (¢}, A) © Homy. (%), A)

(601, Aw) @ Homye, (62, Awy) = 6, @ 69,

= HOInAe &)

1)
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Hence the complex giving the Hochschild cohomology groups HH"(A) (n > 2)
BNy ) ier 3y R

is decomposed into the following direct sum of complexes:

—— — —

—= = D@ D@ == o~ D) gg® — =~
Pl(l) o P1(2) $2 @93 én Dén P,(,l) ® P2 P t1O%n{1 Pr(l.}zl @ Pg)l e
Therefore, we have HH"(A) & HH"(A(1y) @ HH"(A()) for any n > 2. O

Remark 3.2. For n = 0,1, the above equation fails in general (see Example 4.3 for the
case n = 1).

If le) N Qg“)) = {vp} and vyAvy = kvp, then we have le) N Q&z) = &. Also, by Lemma
3.1 and Theorem 3.3, we have the following corollary.

Corollary 3.4. ([IFS, Corollary 3.4]) In the case Q((,l) N Q((f) = {vw} and voAvy = kvg, we
have the direct sum decomposition of the Hochschild cohomology groups

HH"(A) = HH"(Aq)) © HH"(A(2))
for any n > 2.

Remark 3.3. Hence, for a finite dimensional monomial algebra obtained by linking some
quivers bound by monomial relations successively, we can also decompose the Hochschild
cohomology groups as in Corollary 3.4.

4. EXAMPLES

In this section, we give examples of monomial algebras satisfying the condition AP®(1)N
AP?(1) = @.

Example 4.1. Let Q be a quiver
" ‘Ui U Ui
N4 N4
as Ug by [> az
Vg vy )
Q

Yo Yo by
/a: k
vy

QoW Q@
bound by I = (a1az, a2a3,a3a;, biba, bobs, bsbi). We set the algebra A = kQ/I. Let QM be
the subquiver of @ bound by IV) = (a,ay, aza3,aza;) and Q@ the subquiver of Q bound
by I® = (byby, bybs, bsby). We set Ay = kQW/I® for i = 1,2. Then Q) N Q) =
@ holds and for each i = 1,2, o(p™)At(p") = o(p")Awut(p™) holds for any n > 1 and
p" € AP®(n). Applying Corollary 3.4, we obtain the direct sum decomposition of the
Hochschild cohomology groups HH"(A) = HH"(A¢y)) @ HH"(A(g)) for any n > 2. Also, since
A (i = 1,2) is a self-injective Nakayama algebra, we know the dimension of HH"(A;)
from [EH, Propositions 4.4, 5.3] for i = 1,2, and so we have the dimension of HH"(A) by
the decomposition above.

Example 4.2. Let Q be a quiver



bound by

I =(ala2 O,y G203 Gy - -y Q@1 " G bl
biba - - - by, babg -+ bryrga, - oo, bbb )

for any integers m, m’ > 2 with m < n and m’ < n’. We set the algebra A = kQ/I. Let Q")
be the subquiver of @ bound by I® = (@109 -+ Qm,a2a3- --am+1, ey Op01 " O pmt1)
and Q® be the subquiver of Q bound by I® = = (biba-- b, bobs - -bpy1,..., by
b pmr1), where Q) N QY = {vg} and Q“) NQP = @. We set Ay = kQ® /IO

ol V2 'Ulz\
.-":' a\ /;1
1) .
Q( ) . Vp Q(z) N
=., an /‘ \b,.'
Un-1 Vpiy
On-1 b1 .
", Gnm2 vn_z/ \u;.,_ bwg .o

for i = 1,2. Then the condition of Corollary 3.4 is satisfied. Applying Corollary 3.4,
we obtain the direct sum decomposition of the Hochschild cohomology groups HH"(A) =
HH"(Aq)) @ HH"(A(y)) for any n > 2.

//\N
\\%

bound by I = (a1a2,a2a3,a3a4,a4a1,blbg,b2b3,bgb4,b4b1). We set the algebra A= kQ/I
Let Q) be the subquiver of @ bound by IV = (a,a4, azas, azas, asa;) and Q@ be the
su(quve(r )of Q bound by I® = (byby, bobs, bsbs, bsby), where Q5 N QY = {wy,v1} and
oV ngf

We set Agy = kQ(’)/I(’) for i = 1,2. Then APM(1)NAP@(1) = @ holds and for each i =
1,2, o R")At(R") = o(R")A(,)t(R") holds for any n > 1 and any R* € AP®(n). Applying
Theorem 3.3, we obtain the direct sum decomposition of the Hochschild cohomology groups
HH"(A) =2 HH"(A¢1y) @ HH"(A(g)) for any n > 2.

Example 4.3. Let Q be a quiver

51
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Yo Vo
a4 b4
o . % 0w . ;\\
V3 Vg 1)'2 ’U;’;
Qg b2
as %
0 1

On the other hand, by direct computations, we have dim; HH!(A) = 3 and dim; HH'(A(;)) =
1 (i =1,2). Hence the above decomposition does not hold for n = 1.
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