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1 Introduction and Results

Let $p$ be an odd prime and $k$ be an algebraically closed field of characteritic $p$ . Let $q$ be a prime $P_{\sim}^{ower}$

with $p|q-1$ and set $\tilde{G}=GL(p, q)$ , $G=\tilde{G}/Z(\tilde{G})=PGL(p, q)$ . The principal block algebra $B_{0}(kG)$

has a unique cuspidal simple module (of dimension $\prod_{i=1}^{p-1}(q^{i}-1)$ ) and it is known to be periodic as a
$kG$-module. Our purpose in this talk is to describe the support variety of the cuspidal simple module.

For this, we apply the so called a cohomological pushout method of constructing endotrivial modules
developed by Carlson and Th\’evenaz who classified such modules for $p\overline{-}$groups. For the method refer the

articles by Carlson [8], by Carlson, Mazza and Th\’evenaz [10] and see the refferences in the article on
classification theorem.

1.1 $\Psi$Local subgroups of $GL(p, q)$

Let $p^{n}$ be the exact power of $p$ dividing $q-1$ . Then a Sylow $1\succ$subgroup $\tilde{P}$ of $\tilde{G}$ is isomorphic $to\sim$

$\mathbb{Z}_{p^{\mathfrak{n}}}[\mathbb{Z}_{p}$ . Write $\tilde{P}=\tilde{Q}\rangle\triangleleft\langle\tilde{a}\rangle$ where $\tilde{Q}$ is a Sylow $p$-subgroup of the group of diagonal matrices in $G$

and $\tilde{a}$ is a permutation matrix $corresponding_{arrow}to$ a suitable $cyclic\sim$ permutation of length $p$ . We know that
$Z_{2}(\tilde{P})\cong\langle\tilde{b}\rangle\cross Z(\tilde{P})$ for some element $\tilde{b}\in Q$ of order $p$ and $E$ $;=\langle\tilde{a},$ $\tilde{b}\rangle\cong p_{+}^{1+2}$ . We have

$N_{\tilde{G}}(\tilde{Q})=\tilde{D}x\overline{W}$ (1.1)

where $\tilde{D}$ is the group of diagonal matrices in $\tilde{G}$ and $\tilde{W}\cong\sum_{-}p$ is the group of permutation matrices of

degree $p$ , the Weyl group of $\tilde{G}$ . Set $\tilde{A}=\langle\tilde{a}\rangle$ . Then $\tilde{A}\subset W$ and $N_{\overline{W}}(\tilde{A})=\tilde{H}\ltimes\tilde{A}$ for some subgroup
$\tilde{H}\subset\Sigma_{p-1}$ such that $\tilde{H}\cong \mathbb{Z}_{p-1}$ . And we have

$N_{\overline{G}}(\tilde{P})=Z(\tilde{G})(\tilde{Q}\rangle\triangleleft(\tilde{A}\lambda\tilde{H}))\subset N_{\tilde{G}}(\tilde{Q})$ (1.2)

$N_{\tilde{G}}(E)$ has a subgroup $\tilde{L}$ such that $\tilde{L}\cong SL(2,p)$ and

$N_{\tilde{G}}(\tilde{E})=Z(\tilde{G})*(\tilde{E}\rangle\triangleleft\tilde{L})$ (1.3)

Let $P,$ $Q$ and $E$ be the images in the factor group $G=\tilde{G}/Z(\tilde{G})=PGL(p, q)$ of $\tilde{P},$ $\tilde{Q}$ and $\tilde{E}$ , respectively.
$P$ is a Sylow p–subgroup of $G.$

$E=\langle a,$ $b\rangle$ is an (maximal) elementary abelian p–subgroup of $G$ of rank 2 where $a$ and $b$ are images

in $G$ of $\tilde{a}$ and $\tilde{b}$, respectively. Note that $Q$ is of index $p$ in P. $N_{G}(Q)$ and $N_{G}(E)$ (and $N_{G}(P)$ ) controll
the $p\overline{-}$fusion in $G$ . For these facts, see the paper by Alperin and Fong [2]. We shall give the elements $a$

and $b$ concretely, below.
As we denote by $P$ the image of $\tilde{P}$ in $G$ , in the following we shall denote the images of various

subgroups $\tilde{K}$ of $\tilde{G}$ in $G$ by $K.$
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1.2 The cuspidal simple module

The Weyl group $W$ is isomorphic to $\Sigma_{p}$ which is a Coxeter group of type $A_{p-1}$ . For a subset $J$ of the

generating set for $W$ , let $\tilde{G}_{J}$ be the corresponding standard parabolic subgroup of $\tilde{G}$ . And the set of
parbolic subgroups defines so called the Tits Building for $\tilde{G}=GL(p, q)$ . Associated with the building,

we have a complex of $k\tilde{G}$-modules $($actually, $of kG-$modules) of the following form ;

. . $arrow 0arrow X^{p-2}arrow fX^{p-3}arrow\cdotsarrow X^{0}arrow k_{G}arrow 0arrow\cdots$ (1.4)

where $X^{i}= \oplus\sum_{|J|=p-2-i}k_{\tilde{G}_{J}}\uparrow^{\tilde{G}}$ . In particular, $X^{p-2}=k_{\tilde{B}_{0}}\uparrow^{\tilde{G}}$ where $\tilde{B}_{0}$ is a Borel subgroup of $\tilde{G}.$

In our setting that $q-1\equiv 0(mod p)$ , we have the following situation.
The sequence is exact except at $X^{p-2}$ . Each term $X^{i}$ is a $Q$-projective permutation $kG$-module and

the sequence is $Q$-split. In particular, the sequence is the first $p-1$ terms of a $Q$-projective resolution
of $k_{G}$ (although, terms are not minimal). This fact is shown by, for example, by an investigation
by Cabanes and Rickard [7]. The Brauer character of $Kerf$ is a modular reduction of the Steinberg
character. By results of James (Lemma 3.4 [13]) and Geck, Hiss and Malle (Theorem 4.2 [12]), Top $Kerf$

is a cuspidal simple $kG$-module whose Brauer character is the modular reduction of an ordinary cuspidal
irreducible character (of degree $\prod_{i=1}^{p-1}(q^{i}-1$ and projective when restricted to $Q$ . For these facts, see
also a study by Geck [11].

Set $S=Topkerf$ , the cuspidal simple $kG$-module.

1.3 A $Q$-projective resolution of $k_{G}$

The principal block $B_{0}(kG)$ has a close relation with the group algeba $k\Sigma_{p}$ (and with the Hecke algebra
$End_{kG}(k_{B_{0}}\uparrow^{G}$ A minimal $Q$-projective resolution of $k_{G}$ is described as follws.

By studies of Dipper, James and others (see [11]), we can label the set of the projective indecomposable
module of the Hecke algebra $End_{kG}(k_{B_{0}}\uparrow^{G})$ by the set of p–regular partitions of the number $p$ . The set
bijectively corresponds to the set of indecomposable direct summand of $k_{B_{0}}\uparrow^{G}$ . And in our setting of
the present note, each such summand has a simple top (and simple socle).

For each integer $0\leqq i\leqq p-2$ , let $P_{Q}(i)$ be an indecomposable direct summand of $k_{B_{0}}\uparrow^{G}$ corresponding
to the partition $(1^{p-i}, 1, \cdots, 1)$ . Then $P_{Q}(i)$ has the following Lewy (and socle) structure;

$S_{0} S_{1}$
$P_{Q}(0)=S_{1} P_{Q}(1)=S_{0}\oplus S_{2}, \cdots,$

$S_{0} S_{1}$
(1.5)

$S_{i} S_{p-2}$
$P_{Q}(i)=S_{i-1}\oplus S_{\iota+1} , \cdots, P_{Q}(p-2)=S_{p-3}\oplus S$

$S_{i} S_{p-2}$
where $S_{0}=k_{G},$ $S_{1},$

$\cdots,$ $S_{p-2}$ are simple $kG$-modules (which have $P$ as vertex and belong to the principal
block algebra $B_{0}(kG)$ ). The cuspidal simple module $S$ appears in the composition factors of $P_{Q}(p-2)$ .

The complex (1.4) is isomorphic to the following complex of $kG$-modules;

. . . $arrow 0arrow P_{Q}(p-2)arrow P_{Q}(p-3)\pi_{p-2}arrow^{\pi_{p-3}}$ . . . $arrow^{2}P_{Q}(1)\piarrow^{1}P_{Q}(0)\piarrow S_{0}\pi_{O}arrow 0arrow\cdots$ (1.6)

where the maps $\pi_{i}$ ’s are uniquely determined map (up to scalar) by the shapes of modules $P_{Q}(i)’ s.$

Thus the complex (1.6) (and (1.4)) is the first $p-1$ terms of a $Q$-projective resolution of $k_{G}=S_{0}$ and
$\Omega_{Q}^{p-1}k_{G}=\Omega_{Q}^{p-1}S_{0}=Ker\pi_{p-2}$ . Thus

$S$

$\Omega_{Q}^{p-1}k_{G}=$ (1.7)
$S_{p-2}$

Here we denote a $Q$-projective sygyzy of a $kG$-module $V$ by $\Omega_{Q}V$ . I learned from Kunugi and Miyachi
that the situation above mentioned occurs.

One of our main results is the following theorem. Set $N=N_{G}(P)$ . Then $N=PnH$ and $H\cong$

$\mathbb{Z}_{p-1}\cong GF(p)^{\cross}$ . Remember that we set $A=\langle a\rangle.$
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Theorem 1.1 $\Omega_{Q}^{2(p-1)}k_{G}$ is an endotrivial $kG$-module and its Green correspondent is $\Omega^{-2(p-1)}\Omega_{A}^{2(p-1)}k_{N}.$

Furthermore, there exists a $kG$-module $M$ such that we have exact sequences of $kG$-modules of the fol-
lowing forms;

$0arrow k_{G}arrow\Omega_{Q}^{2(p-1)}k_{G}arrow Marrow 0, 0arrow\Omega^{p-2}Sarrow M\oplus projarrow\Omega^{p-1}Sarrow 0$ (1.8)

Remark 1.2 The Green correspondent of $\Omega_{Q}^{p-1}k_{G}$ is $\Omega^{-(p-1)}\Omega_{A}^{p-1}\epsilon_{N}$ and is endotriial, where $\epsilon_{N}$ is a
one dimensional $kN$-module with $\epsilon_{N}^{2}=k_{N}$ . However, $\Omega_{Q}^{p-1}k_{G}$ is not endotrivial.

1.4 A vertex of $S$

$S$ is periodic because $S\downarrow Q$ is projective and $Q$ is of index $p$ in $P$ . If we set $G_{0}$ $;=PSL(p, q)\subset G,$

then $G/G_{0}$ is of order $p$ and we see that $S\downarrow G_{0}$ is a direct sum of $p$ nonisomorphic simple $kG_{0}$-modules,
that is, $S$ is induced from a $kG_{0}$-module. And then we can see that $E$ is a minimal elementary abelian
$p$-subgroup of $G$ such that $S\downarrow E$ is not projective. By a result of Benson [5] and the fact that $C_{G}(E)=E,$

we have the following proposition. Let $K\subset L\cong SL(2,p)$ be a cyclic subgroup of $L$ of order $p+1$ (which
is uniquely determined up to $L$-conjugate) and set $N_{0}=E\rangle\triangleleft K\subset N_{G}(E)$ .

Proposition 1.3 $E$ is a vertex of S. And there exists an indecomposable $kN_{0}$ -module $T$ such that
$T\uparrow^{G}=S\oplus proj.$

1.5 The support variety $V_{G}(S)$ of $S$

We have $\Omega k_{E}=\langle(a-1)$ , $(b-1)\rangle_{kE}=J(kE)$ . Let $\lambda_{0},$ $\mu_{0}\in H^{2}(E, k)$ be the Bocksteins of the following
elements in $H^{1}(E, k)\cong Hom_{kE}(\Omega k_{E}, k)$ ,

$\{\begin{array}{l}(a-1) \mapsto 1\{\end{array}$

$(a-1)$ $\mapsto 0$

$(b-1)$ $\mapsto 0$
’

$(b-1)$ $\mapsto 1$
’ respectively

so that $H^{*}(E, k)=k[\lambda_{0}, \mu_{0}]+\sqrt{0}$ . And set

$\rho_{0}=\prod_{x\in GF(p^{2})-GF(p)}(\mu_{0}-x\lambda_{0})\in H^{2p(p-1)}(E, k)$

Theorem 1.4 The support variety $V_{G}(S)$ of $S$ is given by

$V_{G}(S)=res_{E}^{*}(V_{E}(p_{0}))$

, where $res_{E}^{*}$ is the map from $V_{E}(k)arrow V_{G}(k)$ induced by the restriction map $res_{E}$ : $H^{*}(G, k)arrow H^{*}(E, k)$ .

The first half of Section 2 is devoted to describe p–local structures of $G$ . In the latter half of the
section, we construct some cohomology elements in $H^{*}(G, k)$ and some endotrivial $kG$-module making
use of the cohomological pushout method. Proofs of Theorem 1.1 and 1.4 will be given in Section 3.

2 Subgroups of $G$ and $H^{*}(G, k)$

We shall define various subgroups of $G=\tilde{G}/Z(G)$ and construct some cohomology elements in $H^{*}(G, k)$

which we need for our investigation below.
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2.1 Subgroups of $\tilde{G}$

We first define subgroups of $\tilde{G}=GL(p, q)$ . Rows and columns are indexed by the set $GF(p)=\mathbb{Z}_{p}=$

$\{0, 1, \cdots, p-1\}$ . Let $K_{0}\subset GF(q)^{x}$ be the multiplicative subgroup of order $p^{n}$ Let fix an element
$n-1$

$\zeta_{0}\in K_{0}$ of order $p^{n}$ and set $\zeta=\zeta_{0}^{p}$ so that $\zeta$ is of order $p.$

For $\alpha_{i}\in GF(q)^{\cross},$ $0\leqq i\leqq p-1$ , let $d(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{p-1})$ be the diagonal matrix with $(i, i)$-entry
$\alpha_{i}$ . And set $c(\alpha)=d(\alpha, \alpha, \cdots, \alpha)$ for $\alpha\in GF(q)^{x}$ Set

$\tilde{Q}=\{d(\alpha_{0}, \alpha_{1}, \cdots, \alpha_{p-1})_{\rangle}\alpha_{i}\in K_{0}\}, \tilde{Z}=\{c(\alpha);\alpha\in K_{0}\}$

and
$\tilde{D}=\{d(\beta_{0}, \beta_{1, )}\beta_{p-1});\beta_{i}\in GF(q)^{\cross}, (|\beta_{i}|,p)=1\}$

Let $\Sigma_{p}$ be the symmetric group on $\{0, 1, \cdots,p-1\}=\mathbb{Z}_{p}$ . We identify each permutation with the

correponding permutation matrix in $\tilde{G}.$

Let $\tilde{a}\in G$ be the permutation matrix corresponding to the cyclic permutation $(01 . . . p-1)$ . Then

$\tilde{a}^{-1}\cdot d(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{p-1})\cdot\tilde{a}=d(\alpha_{p-1}, \alpha_{0}, \alpha_{1}, \cdots, \alpha_{p-2})$

(2.1)
$\{\tilde{a}\cdot d(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots , \alpha_{p-1})\}^{p}=c(\alpha)$ where $\alpha=\alpha_{0}\alpha_{1}\cdots\alpha_{p-1}$

Set

$\tilde{d}=d(\zeta_{0},1, \cdots, 1)$ , $\tilde{b};=d(1, \zeta, \zeta^{2}, \cdots, \zeta^{p-1})$ , $\tilde{c};=c(\zeta)$ , $\tilde{u};=d(1, \zeta_{1}, \zeta_{1}^{4}, \cdots, \zeta_{1}^{i^{2}}, \cdots, \zeta_{1}^{(p-1)^{2}})$

where $\zeta_{1}=\zeta:(p+1)$ so that $\zeta_{1}^{2}=\zeta$ . Then we have the following equalities ;

$(\tilde{a}\tilde{d})^{p}=c(\zeta_{0}) , [\tilde{a}, \tilde{b}]=\tilde{c}, \tilde{u}^{-1}\tilde{a}\tilde{u}=\tilde{a}\tilde{b}\tilde{c}^{\langle p-1)/2}, \tilde{u}^{-1}\tilde{b}\overline{u}=\tilde{b}$ (2.2)

Set $\tilde{P}=\langle\tilde{Q},$ $\tilde{a}\rangle=\tilde{Q}\rangle\triangleleft\langle\tilde{a}\rangle$ . Then $\tilde{P}$ is a Sylow $r$-subgroup of $\tilde{G}.$

For each $0\neq s\in \mathbb{Z}_{r}=GF(p)$ , consider the permutation $p(s)$ on $\mathbb{Z}_{p}$ defined by

$p(s)=(\begin{array}{lllllll}0 1 2 \cdots i \cdots p-10 s 2s \cdots is \cdots (p-l)s\end{array})$

And denote by $\tilde{h}(s)$ the corresponding permutation matrix to $p(s)$ . Then the following equalities hold.

$\tilde{h}(s)d(\alpha_{0}, \alpha_{1}, \cdots, \alpha_{i}, \cdots\rangle\alpha_{p-1})\tilde{h}(s)^{-1}=d(\alpha_{0}, \alpha_{s}, \cdots, \alpha_{i\epsilon}, \cdots, \alpha_{(p-1)s})$

(2.3)
$\tilde{h}(s)^{-1}\tilde{a}\tilde{h}(s)=\tilde{a}^{s}, \tilde{h}(s)^{-1}\tilde{b}\tilde{h}(s)=\tilde{b}^{s^{-1}}, \tilde{h}(s)^{-1}\tilde{u}\tilde{h}(s)=\tilde{u}^{e^{-2}}$

2.2 Subgroups of $G$

Now we shall work in the group $G=\tilde{G}/Z(\tilde{G})=PGL(p, q)$ . We denote the images in $G$ of elements and

subgroups of $\tilde{G}$ defined above by deletin$g^{\sim}$ attached to them. Thus, for example, $P=Q\rangle\triangleleft\langle a\rangle$ is a Sylow

p.subgroup of $G$ . We also denote by $W$ the image in $G$ of the subgroup $\Sigma_{p}$ of $\tilde{G}$ . Let $W_{0}\cong\Sigma_{p-1}$ be the
subgroup of $W$ corresponding to the stabilzer of the point $0\in\{0, 1, \cdots, p-1\}$ and $W_{1}$ be the subgroup
of $W$ corresponding to the pointwise stabilzer of the set $\{0$ , 1 $\}$ . Thus if we set $H=\{h(s) ; 0\neq s\in \mathbb{Z}_{p}\},$

then $H\subset W_{0}.$

The results we shall describe are all due to the study by Alperin and Fong [2],

2.2.1 $p$-Local subgroups of $G$

By the equality (2.1), we see that $Z(P)=\langle b\rangle$ . Again by the equality (2.1), we see that any element in
$aQ$ is of order $p$ and is $P$-conjugate to $ad^{k}$ for some $k$ with $0\leqq k\leqq p-1$ . Set

$E_{k}=\langle ad^{k}, b\rangle, A_{k}=\langle ad^{k}\rangle, 0\leqq k\leqq p-1, B=\langle b\rangle, U=\langle u\rangle$
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$E_{p}=$ the subgroup generated by elements of order $p$ in $Q$

If $p=3$ , then $E_{p}=\langle u,$ $b\rangle.$

By the equality (2.3), $(ad)^{h(s)}=a^{s^{-1}}d$ and $(a^{s^{-1}}d)^{s}$ is $P$-conjugate to $ad^{s}$ by the equality (2.1). Thus
the p–l subgroups $A_{k},$ $1\leqq k\leqq p-1$ are $Px$ $H$-conjugate.

Lemma 2.1 The following statements hold.

1. The set $\{E_{i};0\leqq i\leqq p\}\dot{u}$ a representatives set for the $P$ -conjugacy classes of maximal elementary
abelian $p$-subgroups of $P.$

2. $E_{i},$ $1\leqq i\leqq p-1$ are $N_{G}(P)$ -conjuagte and the set $\{E_{0}, E_{1}, E_{p}\}$ is a representatives set for the
$G$ -conjugacy classes of maximal elementary abelian $p$ -subgroups of $G.$

3. $E_{0}$ and $E_{1}$ are of rank 2. $E_{p}$ is of rank $p-1.$

4. Let $G_{0}\subset G$ with $G_{0}\cong PSL(p, q)\subset PGL(p, q)$ . Then $G_{0}$ is a normal subgroup of $G$ of index $p$ and
$E_{1}\not\subset G_{0}.$

We are mainly concerned with the subgroup $E_{0}=\langle a,$ $b\rangle$ so that we set $E=E_{0}$ . We can write
$N_{G}(E)=ExL$ with $L\cong SL(2,p)$ . We may assume that $U\rangle\triangleleft H\subset L$ where the corresponding matrices
in $SL(2,p)\cong L$ of the elements $u,$ $h(s)$ are given as follows (see (2.2), 2.3));

$u\mapsto(\begin{array}{ll}1 10 1\end{array}), h(s)\mapsto(\begin{array}{ll}s 00 s^{-l}\end{array})$ (2.4)

Lemma 2.2 The followig $statement_{\mathcal{S}}$ hold.

1. $O_{p’}(N_{G}(Q))=D$ and $N_{G}(Q)=D\rangle\phi(Q\cross W)$ .

2. $A\aleph H\subset W$ . And $W=W_{1}(A\rangle\triangleleft H)$ , $W_{1}\cap(AxH)=1.$

3. $N_{G}(P)=Q\lambda(A\rangle\triangleleft H)$ .

4. $N_{G}(E)=ExL.$

5. The fusion in $P$ is controlled by $N_{G}(Q)$ and $N_{G}(E)$ (and $N_{G}(P)$ ).

We end this subsection with the following lemma.

Lemma 2.3 Set $\mathcal{Q}_{0}=\{N_{G}(P)\cap^{g}Q;g\in G\}$ . Then any subgroup $R\in \mathcal{Q}_{0}$ is $N_{G}(P)$ -conjugate to a
subgroup $Q$ or is conjugate to $A.$

2.3 Some elements in $H^{*}(G, k)$

In this section, we shall construct some cohomology elements in $H^{*}(G, k)$ , especially, the element $\rho\in$

$H^{2p(p-1)}(G, k)$ such that $res_{E}\rho=\rho_{0}$ where $\rho_{0}\in H^{2p(p-1)}(E, k)$ is the element given in Section 1.5. The
results we shall see may be known. However, we can not find appropriate literature and for the sake of
completeness, we do. The study by Sasaki [14] is useful for our investigation.

2.3.1 $H^{*}(N_{G}(Q), k)$

We first consider $H^{*}(N_{G}(Q), k)$ . As $N_{G}(Q)=O_{p’}(N_{G}(Q))\rangle t(QxW)$ by Lemma 2.2, we may work in
$N(Q);=Q\rangle\triangleleft W$ . Set

$\tilde{Q}_{1}=\{d(1,1, \alpha_{2}\cdots, \alpha_{p-1});\alpha_{i}\in K_{0}\}\subset\tilde{Q}\subset\tilde{G}, \tilde{x}_{1}=d(1, \zeta_{0},1, \cdots, 1)\in\tilde{Q}$

and $Q_{1}\subset G$ and $x_{1}\in G$ be the images in $G$ of $\tilde{Q}_{1}$ and $\tilde{x}_{1}$ , respectively. Then $Q=\langle x_{1}\rangle\cross Q_{1}.$
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We can write $\Omega k_{Q}=\langle(x_{1}-1)$ , $J(kQ_{1})\rangle_{kQ}=J(kQ)$ and consider the element in $H^{1}(Q, k)=$

$Hom_{kQ}(\Omega k_{Q}, k)$ satisfying
$(x_{1}-1)\mapsto 1, J(kQ_{1})\mapsto 0$

Let $\mu\in H^{2}(Q, k)$ be the Bockstein of the element. $W_{1}\subset W$ normalizes $Q_{1}$ and centralizes $x_{1}$ because

we defined $W_{1}\cong\Sigma_{p-2}$ to be the pointwise stablilizer of $\{0$ , 1 $\}$ . Thus if we set $N_{1}=QnW_{1}\subset N(Q)$ ,

then $\mu$ is canoniacally extended to the element in $H^{2}(N_{1}, k)$ which we denote by the same symbol $\mu.$

Let $\lambda_{0},$ $\mu_{0}\in H^{2}(E, k)$ be the elements given in Section 1.5. And recall that we set $B=\langle b\rangle\subset E.$

Lemma 2.4 The following equalities hold.

$res_{E}norm_{N_{1}}^{N(Q)}(\mu)=-(\mu_{0}^{p}-\mu_{0}\lambda_{0}^{p-1})^{p-1}=-\{\prod_{y\in GF(p)}(\mu 0-y\lambda_{0})\}^{p-1}$

Proof Set $\mu_{1}=res_{B}\mu$ . We have $bQ_{1}=x_{1}^{p^{7-1}}Q_{1}$ and we see that $\mu_{1}\in H^{2}(B, k)$ is the Bockstein of the

element in $H^{1}(B, k)=Hom_{kB}(\Omega k_{B}, k)$ satisfying $(b-1)\mapsto 1$ . By the equality (2.3), we have $b^{h(8)}=b^{s^{-1}}$

Thus $\mu_{1}^{h(s)}=s\cdot\mu_{1}$ . Then by the Mackey formula, we have

$res_{E}norm_{N_{1}}^{N(Q)}\mu=norm_{B}^{E}(\prod_{0\neq s\in Z_{p}}\mu_{1}^{h(\epsilon)})=norm_{B}^{E}((p-1)!\cdot\mu_{1}^{p-1})=$ -normBE $(\mu_{1})$

Thus the first equality holds by Proposition 4.1.4 [3]. The second equality is easy to see.

The trivial $k\Sigma_{p}$-module is periodic of period $2(p-1)$ and we have a $2(p-1)$-fold self extension of
$k_{N(Q)}$ of the form

$0arrow k_{N(Q)}arrow U_{2(p-1)}arrow$ . . . $arrow U_{1}arrow k_{N(Q)}arrow 0$

which is the first $2(p-1)$ terms of a projective resolution of $k_{N(Q)}$ as $kN(Q)/Q$-module. Let $\chi\in$

$H^{2(p-1)}(N(Q), k)$ be the cohomolgy element corresponding to the sequence. Then we may assume that

$res_{E}\chi=\lambda_{0}^{p-1}$ (2.5)

Lemma 2.5 Set

$\rho_{1}=\chi^{p}-norm_{N_{1}}^{N(Q)}(\mu)\in H^{2p(p-1)}(N_{G}(Q), k)$ and $\sigma_{1}=\chi\cdot norm_{N_{1}}^{N(Q)}(\mu)\in H^{2(p^{2}-1)}(N_{G}(Q), k)$

Then

$res_{E}\rho_{1}=\prod_{x\in GF(p^{2})-GF(p)}(\mu_{0}-x\lambda_{0}) , res_{E}\sigma_{1}=\{\lambda_{0}\prod_{y\in GF(p)}(\mu_{0}-y\lambda_{0})\}^{p-1}$

Proof. A proof of Lemma 4.2 [14] works well by the equlaity (2.5) and Lemma 2.4.

2.3.2 $\rho\in H^{2p(p-1)}(G, k)$ with $res_{E}\rho=\rho_{0}$

By Lemma 2.5, $res_{E}\rho_{1}\in H^{2p(p-1)}(E, k)$ and $res_{E}\sigma_{1}\in H^{2(p^{2}-1)}(E, k)$ are invariant under the action of
$GL(E)=AutE$ . They are the so called Dickson invariants (see Section 8.1, 8.2 [4]). In particular, they

are $N_{G}(E)$-invariant. Thus by Lemma 2.2.5, we have elements $\rho\in H^{2p(p-1)}(G, k)$ and $\sigma\in H^{2(p^{2}-1)}(G, k)$

such that
$res_{E}p=res_{E}\rho_{1}, res_{E}\sigma=res_{E}\sigma_{1}$ (2.6)

Thus $res_{E}\rho=\rho_{0}.$
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2.4 Some endotrivial $kG$-module

Let $L_{\rho}$ be the Carlson module of $\rho$ . We see that $res_{B}\rho\in H^{2p(p-1)}(B, k)=H^{2p(p-1)}(Z(P), k)$ is not
nilpotent and we can apply the method of constructing endotrivial modules (see [8], [10]). All the results
below are due to Carlson [8].

We are concerned with the group $E$ . The variety $V_{G}(L_{\rho})$ decomposes as

$V_{G}(L_{\rho})=V_{0}\cup V_{0}’$ with $V_{0}\cap V_{0}’=\{O\}$ where $V_{0}=res_{E}^{*}(V_{E}(L_{\rho}))=res_{E}^{*}(V_{E}(L_{\rho_{0}}))$

Here $L_{\rho_{0}}$ is the Carlson module of $\rho_{0}$ . Then $L_{\rho}$ decomposes as

$L_{\rho}=L_{0}\oplus L_{0}’$ where $V_{G}(L_{0})=V_{0},$ $V_{G}(L_{0}’)=V_{0}’$

Now set $Y=\Omega^{2p(p-1)}k_{G}/L_{0}’.$ $Y$ is an endotrivial $kG$-module which appears as a pushout in the following
diagram ;

$0$ $0$

$\downarrow$
$\downarrow$

$L_{0--}’ L_{0}’$

$\downarrow$
$\downarrow$

$0arrow L_{\rho}arrow\Omega^{2p(p-1)}k_{G}arrow k_{G}arrow 0$

$\downarrow \downarrow \Vert$

$0arrow L_{0}arrow Y arrow k_{G}arrow 0$

$\downarrow$
$\downarrow$

$0$ $0$

For our discussion, the dual $X=Y^{*}$ of $Y$ is convenient to use. Set $M_{0}=L_{0}^{*}$ so that we have an exact
sequence of the form

$0arrow k_{G}arrow Xarrow M_{0}arrow 0$ and $V_{G}(M_{0})=res_{E}^{*}(V_{E}(L_{\rho 0}))$ (2.7)

The endotrivial module $X$ satisfies the following;

$X\downarrow_{E}=\Omega^{-2p(p-1)}k_{E}\oplus$ proj, $X\downarrow_{E_{i}}=k_{E_{i}}\oplus$ proj, for $1\leqq i\leqq p$ (2.8)

By the construction of $Y$ , if we set $N_{p}=BxH$ , then $Y\downarrow_{N_{p}}=k_{N_{p}}\oplus$ proj. $N_{r}$ and $N_{0}=A\rangle\sqrt{}H$ are
conjugate in $N_{G}(E)$ (see (2.4)). Thus we have

$X\downarrow_{N_{0}}=k_{N_{0}}\oplus$ proj (2.9)

3 Proofs of Theorem 1.1 and 1.4

In this section, we shall give proofs of theorems in Section 1.

3.1 A proof of Theorem 1.1

3. 1. 1 $\Omega_{Q}^{2(p-1)}k_{G}$

First we shall construct the first $p-1$ terms of a $Q$-projective resolutions of $\Omega_{Q}^{p-1}k_{G}=$ Simple
$S$

$S_{p-2}$

$kG$-modules $S_{i}$ ’s and $S$ are all self-dual. Taking the dual of the $Q$-projective resolution (1.6) of $k_{G}$ , we
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have a $Q$-injective resolution

$0arrow k_{G}arrow P_{Q}(0)\pi_{0}^{*}arrow^{1}P_{Q}(1)\pi^{*}arrow\ldotsarrow P_{Q}(p\pi_{\dot{p}-3}-3)arrow P_{Q}(p\pi_{\dot{p}-2}-2)arrow^{g}S_{p-2 ,S} arrow 0$ (3.1)

which is a $Q$-projective resolution of $(\Omega_{Q}^{p-1}k_{G})^{*}=$ $S_{r_{S^{-2}}}$ As $S\downarrow_{Q}$ is projective, we see that the exact

sequence $0arrow Sarrow S_{p-2}$
$arrow S_{p-2}arrow 0$ is $Q$-split and a $Q$-projective resolution of $S$ is a usual projective

$S$

resolution. Thus by the sequence (3.1) the first $p-1$ terms of a $Q$-projective resolution of $S_{p-2}$ has the

form

$0arrow\Omega_{Q}^{p-1}S_{p-2}arrow g_{p-1}P_{Q}’(0)arrow g_{p-2}P_{Q}’(1)arrow\cdotsarrow P_{Q}’(p-3)arrow^{1}gP_{Q}(p-2)arrow g0S_{p-2}arrow 0$ (3.2)

where $P_{Q}’(i)=P_{Q}(i)\oplus$ proj. Furthermore, we have an exact sequence of the following form ;

$0arrow\Omega^{p-1}Sarrow k_{G}\oplus$ proj $arrow\Omega_{Q}^{p-1}S_{p-2}arrow 0$ (3.3)

We also have the $Q$-split exact sequence $0arrow S_{p-2}arrow\Omega_{Q}^{p-1}k_{G}arrow Sarrow 0$ and by the same argument as
above, we have the followings. By the sequence (3.2), the first $p-1$ terms of a $Q$-projective resolution of
$\Omega_{Q}^{p-1}k_{G}$ has the form

$0arrow\Omega_{Q}^{2(p-1)}k_{G}arrow P_{Q}"(0)f_{p-1}arrow P_{Q}"(1)f_{p-2}arrow\ldotsarrow P_{Q}"(p-3)arrow^{1}P_{Q}"(p-2)farrow\Omega_{Q}^{p-1}k_{G}f_{0}arrow0$ (3.4)

where $P_{Q}"(i)=P_{Q}(i)\oplus$ proj. Furthermore, we have an exact sequence of the following form ;

$0arrow\Omega_{Q}^{p-1}S_{p-2}arrow\Omega_{Q}^{2(p-1)}k_{G}\oplus$ proj $arrow\Omega^{p-1}Sarrow 0$ (3.5)

By (3.3), we have an exact sequence of the form $0arrow k_{G}arrow\Omega_{Q}^{p-1}S_{p-2}arrow\Omega^{p-2}Sarrow 0$ . And there exists a
$kG$-module $M$ such that we have exact sequences of the form ;

$0arrow k_{G}arrow\Omega_{Q}^{2(p-1)}k_{G}arrow Marrow 0,$ $0arrow\Omega^{p-2}Sarrow M\oplus$ proj $arrow\Omega^{p-1}Sarrow 0$

Thus the second statement in Theorem 1.1 follows.

3.1.2 $\Omega_{Q}^{2(p-1)}k_{c}\downarrow N_{G}(P)$

In this section, we investigate the restriction of $\Omega_{Q}^{2(p-1)}k_{G}$ to the subgroup $N_{G}(P)$ . We refer the aricle
by Bouc [6] for general results of relative syzygies.

Set $N=N_{G}(P)$ and $\mathcal{Q}_{0}=\{N\cap^{g}Q;g\in G\}$ . And set $Q_{0}’=\{Q, A\}$ . By Lemma 2.3, for
$kN$-modules, $\mathcal{Q}_{0}$-projective covers coincide with $\mathcal{Q}_{0}’$-projective covers.

$N=P\lambda H$ and $N/Q\cong A\nu H$ . Let $Narrow N/P=H$ be the canonical group surjection. The map
$Harrow GF(p)^{x},$ $h(s)\mapsto s$ is a group homomophism (actually, isomorphism). Let $\varphi_{N}:Narrow GF(p)^{x}$ be the
composite of these tow maps and we denote by the same symbol $\varphi_{N}$ the corresponding one dimensional
$kN$-module. Then by the equality (2.3), we can see that

$\Omega_{Q}^{2}k_{N}=\varphi_{N}$ (3.6)

Taking relative sygyzies is compatible with the restriction to subgroups and the followings hold ;

$\Omega_{Q}k_{G}\downarrow_{N}\equiv\Omega_{Q_{0}}k_{N}=\Omega_{Q_{O}’}k_{N}$ (mod $\mathcal{Q}_{0}$ )

By the fact that $Q\cap A=1$ , and by a result of Th\’evenaz and Bouc (Lemma 5.2.1 [6], see also an argument

by Alperin [1]), we have
$\Omega\Omega_{Q_{0}’}k_{N}=\Omega_{Q}\Omega_{A}k_{N}$
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Thus by the commutativity of taking relative syzygies,

$\Omega_{Q}k_{G}\downarrow_{N}\equiv\Omega^{-1}\Omega_{Q}\Omega_{A}k_{N}$ (mod $\mathcal{Q}_{0}$ ), $\Omega_{Q}^{2}k_{G}\downarrow_{N}\equiv\Omega^{-2}\Omega_{A}^{2}\varphi_{N}$ (mod $\mathcal{Q}_{0}$ )

where we used the equality (3.6).
Thus for any even integer $2m$ , a Green correspondent of $\Omega_{Q}^{2m}k_{G}$ is $\Omega^{-2m}\Omega_{A}^{2m}\varphi_{N}^{m}$ and is an endotrivial

$kN$-module (Proposition 4.2 [10]). For $m= \frac{1}{2}(p-1)$ , the dimension of $\Omega_{Q}^{2m}k_{G}=\Omega_{Q}^{p-1}k_{G}$ is $q^{\frac{1}{2}p(p-1)},$

the degree of the Steinbeg character. We see that $q^{\frac{1}{2}p(p-1)}-1$ is divisible by $p^{n+1}$ but is not divisible by
$p^{n+2}$ Thus $\Omega_{Q}^{p-1}k_{G}$ itself is not endotrivial and Remark 1.2 follows.

A Green correspondent of $\Omega_{Q}^{2(p-1)}k_{G}$ is $\Omega^{-2(p-1)}\Omega_{A}^{2(p-1)}\varphi_{N}^{p-1}=\Omega^{-2(p-1)}\Omega_{A}^{2(p-1)}k_{N}$ . The sequences
(1.6) and (3.4) are $Q$-split and therefore we have

$\Omega_{Q}^{2(p-1)}k_{G}+\sum_{i=0}^{p-2}(-1)^{p-2-i}P_{Q}(i)"=\Omega_{Q}^{p-1}k_{G}=k_{G}+\sum_{i=0}^{p-2}(-1)^{p-2-i}P_{Q}(i)$ (3.7)

in the Green ring (the representation ring) of $kQ$-modules. As the sequences are sequences of $kG$-modules,
the equality (3.7) holds in the Green ring of $kR$-modules for any $R\in \mathcal{Q}_{0}$ . Thus $\Omega_{Q}^{2(p-1)}k_{G}\downarrow_{R}=k_{R}\oplus$ proj.
We can write as

$\Omega_{Q}^{2(p-1)}k_{G}\downarrow_{N}=\Omega^{-2(p-1)}\Omega_{A}^{2(p-1)}k_{N}\oplus V$

where $V$ is a $\mathcal{Q}_{0}$-projective $kN$-module. And then we can conclude that $V$ is projective and a proof of
Theorem 1.1 is completed.

3.2 A proof of Theorem 1.4

3.2.1 $\Omega_{Q}^{2(p-1)}k_{G}=X$

We shall show that $\Omega_{Q}^{2(p-1)}k_{G}\cong X$ where $X$ is the endotrivial $kG$-module given in Section 2.4.
We saw that $\Omega_{Q}^{2(p-1)}k_{G}$ is endotrivial. In the group $N=N_{G}(P)$ , any conjugate of $A$ intersects trivially

with $E_{i},$ $i\neq 0$ . Thus as endotrivial $kN$-modules, $\Omega^{2(p-1)}k_{G}$ and the module $X$ have the same “type” by
the equality(2.8). We can see that the equality $(3.73$ holds in the Green ring of $kN_{0}$ where $N_{0}=A\rangle\triangleleft H$

because $A\in \mathcal{Q}_{0}$ . Thus $\Omega_{Q}^{2(p-1)}k_{G}\downarrow N_{0}=k_{N_{0}}\oplus$ proj. Then by the equality (2.9), we see that Green
correspondents of $\Omega_{Q}^{2(p-1)}k_{G}$ and $X$ are isomorphic and the result follows.

3.2.2 $V_{G}(S)$

We refer to Benson’s book [3] for the support variety of modules.
Let $0arrow k_{G}arrow f\Omega_{Q}^{2(p-1)}k_{G}arrow Marrow 0$ be the first exact sequence given in (1.8). By the second exact

sequence in (1.8), $M$ is a periodic module. Thus $f\downarrow E$ is a not projective map because if it were, then
$M\downarrow E$ would have a direct summand isomorphic to $\Omega^{-1}k_{E}$ , a contradiction.

Consider the restriction of the sequence to $E$ . We saw that $\Omega_{Q}^{2(p-1)}k_{G}\cong X$ and therefore we have
$\Omega_{Q}^{2(p-1)}k_{G}\downarrow_{E}=\Omega^{-2p(p-1)}k_{E}$ . Thus the exact sequence which we consider has the form ;

$0arrow k_{E}arrow\Omega^{-2p(p-1)}k_{E}f_{0}arrow M’arrow 0$ (3.8)

where $M’$ is a direct summand of $M\downarrow E.$

We have an isomorphism $Hom_{kE}(k_{E}, \Omega^{-2p(p-1)}k_{E})\cong H^{2p(p-1)}(E, k)=k[\lambda_{0}, \mu_{0}]+\sqrt{0}$ , where $\lambda_{0},$ $\mu_{0}\in$

$H^{2}(E, k)$ is the cohomology elements given in Section 1.5. The corresponding elements $\nu\in H^{2p(p-1)}(E, k)$

to $f_{0}$ under the isomorphism is $N_{G}(E)$-invariant. We see that $H^{*}(E, k)^{N_{G}(E)}=k[\lambda_{0}, \mu_{0}]^{N_{G}(E)}+\sqrt{0}^{N_{G}(E)}$

By that fact that $N_{G}(E)/E\cong SL(2,p)$ , $k[\lambda_{0}, \mu_{0}]^{N_{G}(E)}$ is generated by $\rho_{0}\in H^{2p(p-1)}(E, k)$ and $\sigma_{0}’=$

$\lambda_{0}^{p}\mu_{0}-\lambda_{0}\mu_{0}^{p}\in H^{2(p+1)}(E, k)$ (see Section 8.2 [4]). Thus $\nu\equiv\rho_{0}$ (mod $\sqrt{0}$). $M’=L_{\nu}^{*}$ where $L_{\nu}$ is the
Carlson module of $\nu$ . Thus $V_{E}(M’)=V_{E}(\nu)=V_{E}(p_{0})$ .

Again by the second exact sequence in (1.8), $V_{E}(\rho_{0})=V_{E}(M’)\subset V_{E}(S)$ . As $S$ is $E$-projective and
periodic, we can conclude that $V_{G}(S)=res_{E}^{*}(V_{E}(\rho_{0}))$ and a proof of Theorem 1.4 is completed.
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