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1 Introduction

Let $p$ be a prime number and $(\mathcal{K}, \mathcal{O}, k)$ be a $p$-modular system. Here $\mathcal{O}$ is a complete discrete

valuation ring with a unique maximal ideal $(\pi)$ containing $p.$
$\mathcal{K}$ is the quotient field of $\mathcal{O}$ with

characteristic O. $k=\mathcal{O}/(\pi)$ is the residue class field with characteristic $p$ . We assume that $\mathcal{K}$ and
$k$ are splitting fields for $G$ . We can take a finite field as $k$ . Let $G$ be a finite group, and $B$ be

a $p$-block with defect group $D$ . We denote by $IBr(B)$ and IBro(B) the set of irreducible Brauer

characters and of those of height zero in $B$ , respectively. We also denote by $l(B)$ and $l_{0}(B)$ the

number of elements of $IBr(B)$ and $IBr_{0}(B)$ , respectively. Let $C_{B}$ be the Cartan matrix of $B$ and

let $\rho_{B}$ be the Frobenius-Perron eigenvalue (i.e. the unique largest eigenvalue) of $C_{B}$ . We denote

by $R_{B}$ the set of eigenvalues of $C_{B}$ . Then we had the following results for any finite groups $G$ and

for any blocks $B.$

Lemma 1 ([12, Proposition $4.5$] $\rangle$ . Let $G$ be a finite group, let $B$ be a p–block of $G$ with defect group
$D$ . If $\rho\in R_{B}$ , then $\rho$ divides $|D|$ in the ring of algebraic integers, which means that $|D|=\rho\cross\mu$

for some algebraic integer $\mu$ . In particular, if $\rho\in R_{B}$ is a rational integer then it is a power of $p$

which divides $|D|.$

Lemma 2 ([15, Proposition 3.5]). Let $|G|_{p}=p^{a}$ and $|D|=p^{d}$ . If the condition

$(*) \sum_{\varphi\in IBr(B)}(\frac{\varphi(1)}{p^{a-d}})^{2}\not\equiv 0 (mod p)$

holds, then there exists an eigenvalue $\rho\in R_{B}$ such that $|D|/\rho$ is a unit of $\mathcal{O}$ $(i.e. |D|/\rho\not\in(\pi))$ .

In particular, if $(*)$ holds and if all eigenvalues of $C_{B}$ are rational integers, then the $\rho$ above

equals $|D|$ and $\rho=\rho_{B}=|D|$ by Lemma 1.

Proposition 1 ([15, Corollary 3.6]). Let $G$ be a $p$-solvable group and $B$ be a $p$-block of $G$ . Then
$B$ satisfies the condition $(*)$ .

Example 1 ([11, Examples 7.2 and 7.3]). Let $G=SL(2,p)$ for $p>3$ and $B$ be a fuh-defect

$p$-block of $G$ , or let $G=\mathfrak{S}_{p}$ (the symmetric group on $p$ letters) for $p>3$ and $B$ be the principal
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1 block of $G$ . Then $B$ does not satisfy the condition $(*)$ .

The conditon $(*)$ is related to the integrality of the Frobenius-Perron eigenvalue $\rho_{B}$ of the Cartan

matrix of $B$ . As Example 1 shows that there exists a counter example of $(*)$ for $p>3$ , we will pay

our attention to $p=2$ . It is difficult to find a counter example of $(*)$ for $p=2$ , while we find the

following conter example of $(*)$ for $p=3.$

Example 2. We denote an irreducible Brauer character by its degree. Let $d(B)$ be the defect of

$B.$

(1) Let $G=M_{11}$ be the Mathieu simple group of degree 11, $p=3$ , and $B_{1}$ be the principal

3-block of $G$ . Then $l(B_{1})=7,$ $d(B_{1})=2$ and $IBr(B_{1})=\{1$ , 5, 5, 10, 10, 10, 24$\}$ . So $l_{0}(B_{1})=6\equiv 0$

(mod 3).

(2) Let $G=He$ be the Held simple group, $p=3$ , and $B_{1}$ be the principa13-b1ock of $G$ . Then

$l(B_{1})=7,$ $d(B_{1})=3$ and $IBr(B_{1})=\{1, 7\cdot 97,3\cdot 5^{2}\cdot 17, 3673, 2^{2}. 1543, 2^{7}\cdot 7^{2}\cdot 11, 11\cdot 23\cdot 43\}$ . So

$l_{0}(B_{1})=6\equiv 0$ (mod3).

Do any 2-blocks satisfy $(*)$ ? Are there 2-blocks which do not satisfy $(*)$ ? What kind of 2-blocks

satify $(*)$ ? This is our motiation to consider $l_{0}(B)$ for 2-blocks $B.$

2 Good blocks

The following lemmas and propositions are easy to see. So we omit a proof.

Lemma 3. For $p=2,$ $(*)$ holds if and only if $l_{0}(B)$ is odd.

Remark. As is alredy mentioned in Example 2, Lemma 3 holds for $p=3,too$ . i.e., For $p=3,$ $(*)$

holds if and only if $l_{0}(B)\not\equiv O$ (mod3). But this result does not hold for $p>3$ anymore.

We call a 2-block $B$ good if $l_{0}(B)$ is odd. What kind of 2-blocks are good? The following is by

the theorem of Fong [8].

Proposition 2. The principa12-b1ock of $G$ is good.

Corollary 1. If $G$ is 2-solvable and $B$ is a 2-block of $G$ , then $B$ is good.

The following is a corollary of the result of Kiyota-Okuyama-Wada in [11] and from Theorems

3 and 4later and [17].

Proposition 3 ([11, Theorem 1.4]). If $G=\mathfrak{S}_{n}$ (the symmetric group of $n$ letters) or $\mathfrak{A}_{n}$ (the

alternating group of $n$ letters) and $B$ be a 2-block of $G$ , then $B$ is good. Also any 2-blocks of their
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automorphism groups and covering groups are good.

Proposition 4. If $B$ is a cylic 2-block $(i.e., D is$ cyclic) , then $B$ is a nilpotent block. Hence
$t(B)=1$ and $B$ is good.

We define some notation in order to prove the following theorems which is defined for any prime

$p$ and for any $p$-block $B$ of $G$ . For $\varphi\in IBr(B)$ , we denote by $\Phi_{\varphi}$ the projective indecomposable

character of $G$ corresponding to $\varphi$ . Let us denote by $X_{B}$ $:=\{\varphi\in IBr_{0}(B)|\Phi_{\varphi}(1)_{p}=p^{a}\},$ $Y_{B}$ $:=$

$\{\varphi\in IBr_{0}(B)|\Phi_{\varphi}(1)_{p}>p^{a}\}$ and $Z_{B}:=\{\varphi\in IBr(B)|\varphi(1)_{p}>p^{a-d}\}$ . Then $IBr(B)=$

$x_{B}uY_{B}uz_{B}.$

The following is by the theorem of Brauer’s [4] which shows $(\dim B)_{p}=p^{2a-d}$ . It is easy to see
but very useful.

Lemma 4. Suppose $p=2$ , then $|X_{B}|$ is odd. In particular, $X_{B}\neq\emptyset$ , and $l_{0}(B)$ is odd if and only

if $|Y_{B}|$ is even.

3 Tame blocks

We consider the tame block as a typical well known 2-block that is a 2-block with defect group
isomorphic to a dihedral, a generalized quaternion or a semidihedral 2-group. In Theorem 1 we
will deal with 2-blocks of dihedral or generalized quaternion defect group. In Theorem 2 we will

deal with 2-blocks of semidihedral defect group. We note that if $B$ is tame, then $l(B)$ is 1, 2 or 3.
If $l(B)=1$ , then $B$ is good. So we consider when $l(B)=2$ or 3.

We proceed our argument based on the work of Erdmann [6], where the Morita equivalence classes
of $B$ are classified, and the Cartan matrix of $B$ is given for each equivalence class of $B$ . Then the fol-

lowing cases can be 2-blocks of finite groups: $l(B)=1,$ $D(2A)$ , $D(2B)$ , $D(3A)_{1},$ $D(3B)_{1},$ $D(3K)$ for

dihedral defect groups, $Q(2A)$ , $Q(2B)_{1},$ $Q(3A)_{2},$ $Q(3B)$ , $Q(3K)$ for generalized quaternion defect

groups, and $SD(2A)_{1},$ $SD(2A)_{2},$ $SD(2B)_{1},$ $SD(2B)_{2},$ $SD(3A)_{1},$ $SD(3B)_{1},$ $SD(3B)_{2},$ $SD(3C)_{2}(1)$ ,
$SD(3C)_{2}(2)$ , $SD(3D)$ , $SD(3H)$ for semidihedral defect groups. We note that $Q(2B)_{2}=SD(2B)_{3}$

cannot be a 2-block of a finite group which is pointed out in the beginning of 4.1 of [10].

In [6], Erdmann classified all blocks of tame representation type up to Morita equivalence. She

begins with the basic algebra $B_{0}$ . So all simple $B_{0}$-modules are 1-dimensional ([6, 1.2.4] or [2,

p.23]). She classifies Morita equivalence classes of $B_{0}$ in terms of the stable Auslander-Reiten
quivers. Then she obtains the Cartan matrix of each type of $B_{0}$ . Since $B$ and $B_{0}$ are Morita
equivalent, the Cartan matrices of $B$ and $B_{0}$ are the same. But the dimensions and the heights

of simple $B$-modules and $B_{0}$-modules are different. However, once the Cartan matrix of $B$ is

obtained, then we can determine the heights of irreducible Brauer characters in $B$ . Historically,

at first, Brauer [4] and Olsson [16] determined $k(B)$ and $l(B)$ and the decomposition numbers

of the tame block $B$ with respect to a suitable basic set. They also obtained some informations
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about the heights of irreducible ordinary characters of $B$ and the Cartan matrix $C_{B}$ with respect

to a suitable basic set. But it seems to be no description about the heights of irreducible Brauer

characters in $B$ in their works and also in Erdmann’s work.

We use the following notation for the both Theorems 1 and 2 below. We set $|G|_{2}=2^{a}$ . Let $D$

be a defect group of $B$ of order $2^{d}$ , and let $\varphi_{i}\in IBr(B)$ . We arrange so that $\varphi_{i}$ is corresponding

to the $i$ th row of the Cartan matrix of $B$ . We set the degree $\varphi_{i}(1)=f_{l}$ . Then $f_{i}=2^{a-d+e}if_{l}’\prime,$

where $e$: is the height of $\varphi_{i}$ and $f_{1}’$ is the odd part of $f_{i}$ . It is well known that there is at least

one $\varphi_{i}$ is of height O. But the height of $\varphi_{i}$ can exceed $2^{d}$ , which is different from the height of

irreducible ordinary characters of $B$ . We also set the degree of the projective indecomposable

character $\Phi.(1)=u_{i}$ corresponding to $\varphi_{i}$ . Then the 2-part of $u_{i}$ is larger than or equal to $2^{a}.$

In this report we do not write a proof in all cases of the tame block. But we give a proof of some

typical cases.

Theorem 1. Let $G$ be a finite group. If $B$ is a 2-block of $G$ with defect group isomorphic to a

dihedra12-group or a generalized quaternion 2-group, then $B$ is good. Furthermore, we have the

heights of irreducible Brauer characters in $B.$

Proof. (D.1) $l(B)=2.$

(1) $D(2A)$ . In this case, the Cartan matrix is of the form $(\begin{array}{ll}2^{d} 2^{d-1}2^{d-l} 2^{d-2}+1\end{array})$ , where $d\geq 2.$

Then

$u_{1}=2^{a+e_{1}}f_{1}’+2^{a-1e}f_{2’}=2^{a-1}(2^{c+1}f_{1’}+2^{c_{2}}f_{2}$

$u_{2}=2^{a-1+e_{1}}f_{1’}+2^{a-2+e_{2}}f_{2’}+2^{a-de}f_{2’}=2^{a-d}(2^{d-1+e}1f_{1’}+2^{d-2+e}f_{2’}+2^{e}f_{2}$

If $e_{1}=e_{2}=0$ , then $u_{1}=2^{a-1}(2f_{1}’+f_{2}$ Since $2f_{1’}+f_{2’} is odd,$ this contradicts that $(u_{1})_{2}\geq 2^{a}.$

If $e_{1}>0$ and $e_{2}=0$ , then $u_{1}=2^{a-1}(2^{e_{1}+1}f_{1’}+f_{2}$ which also contradicts that $(u_{1})_{2}\geq 2^{a}$ . Then

we have $e_{1}=0$ and $e_{2}>0$ . Hence $X_{B}=\{\varphi_{1}\},$ $Y_{B}=\emptyset,$ $Z_{B}=\{\varphi_{2}\}$ holds in this case. Furthermore,

we have that $u_{1}=2^{a}(f_{1’}+2^{e-1}2f_{2’})$ . Since $|X_{B}|$ is odd by Lemma 4, then $(u_{1})_{2}=2^{a}$ , hence

$f_{1}’+2^{e_{2}-1}f_{2’}$ must be odd. Therefore, $e_{1}=0,$ $e_{2}>1$ . If $d=2$ , then $u_{2}=2^{a-1}(f_{1’}+2^{e_{2}}f_{2’})$ , which is

a contradiction. We may assume $d>2$ . Then $u_{2}=2^{a-d}(2^{d-1}f_{1’}+2^{d-2+e}2f_{2’}+2^{e2}f_{2’})$ . If $e_{2}<d-1,$

then $u_{2}=2^{a-d+e2}(2^{d-1-e_{2}}f_{1’}+2^{d-2}f_{2’}+f_{2}$ which is a contradiction, because $a-d+e_{2}<$

$a-d+d-1=a-1$ . If $e_{2}>d-1$ , then $u_{2}=2^{a-d+(d-1)}(f_{1}’+2^{d-2+e_{2}-(d-1)}f_{2’}+2^{e_{2}-(d-1)}f_{2’})$ ,

which is also a contradiction, because $d-2+e_{2}-(d-1)=e_{2}-1>0$ now. Hence $e_{2}=d-1.$

(Q.2). $l(B)=3.$

(1) $Q(3A)_{2}$ . In this case, the Cartan matrix is of the form $(\begin{array}{lll}2^{d} 2^{d-l} 2^{d-1}2^{d-1} 2^{d-2}+2 2^{d-2}2^{d-l} 2^{d-2} 2^{d-2}+2\end{array}),$
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where $d\geq 3$ . Then

$u_{1}=2^{a+e_{1}}f’+2^{a-1+e_{2}}f’+2^{a-1+e_{3}}f_{33}’=2^{a-1}(2^{e_{1}+1}f’+2^{e_{2}}f’+2^{e_{3}}f$

$u_{2}=2^{a-1+e_{1}}f’1+2^{a-2+e_{2}}f’+2^{a-d+2+1}ef’+2^{a-2+e}3f_{3}’$

$=2^{a-d+1}(2^{d-2+e_{1}}f’1+2^{d-3+e_{22}}f’2+2^{e}f’2+2^{d-3+e}3f’3)$ ,

$u_{3}=2^{a-1+e_{1}}f’1+2^{a-2+e_{2}}f’2+2^{a-2+e_{3}}f’3+2^{a-d+e}f3$

$=2^{a-d+1}(2^{d-2+e}1f’1+2^{d-3+e}2f_{2}’+2^{d-3+63}f_{3}’+2^{es}f3$

(1.1) If $e_{1}=e_{2}=0$ and $e_{3}>0$ , then $u_{1}=2^{a-1}(2f_{1’}+f_{2’}+2^{e_{3}}f_{3}$ Since 2$f_{1}’+f_{2’}+2^{e_{3}}f_{3’}$ is

odd, this contradicts that $(u_{1})_{2}\geq 2^{a}.$

(1.2) If $e_{1}=e_{3}=0$ and $e_{2}>0$ , then we have the same contradiction for $(u_{1})_{2}.$

(1.3) If $e_{2}=e_{3}=0$ and $e_{1}>0$ , then we have the same contradiction for $(u_{2})_{2}$ , because $d\geq 3.$

(1.4) If $e_{1}=0$ and $e_{2}>0,$ $e_{3}>0$ , then there is a possibility to occur.
(1.5) If $e_{2}=0$ and $e_{1}>0,$ $e_{3}>0$ , then $(u_{1})_{2}=2^{a-1}$ which is a contradiction.

(1.6) If $e_{3}=0$ and $e_{1}>0,$ $e_{2}>0$ , then we have the same contradiction as (1.5).

(1.7) If $e_{1}=e_{2}=e_{3}=0$ , then since $u_{2}=2^{a-d+1}(2^{d-2}f_{1’}+2^{d-3}f_{2’}+f_{2’}+2^{d-3}f_{3’})$ , we have

the same contradiction, because $d\geq 3.$

Since only the case (1.4) occurs, we have that $X_{B}=\{\varphi_{1}\},$ $Y_{B}=\emptyset,$ $Z_{B}=\{\varphi_{2}, \varphi_{3}\}$ in this

case. Then $u_{1}=2^{a}(f_{1}’+2^{e_{2}-1}f_{2’}+2^{e-1}3f_{3’})$ . Since $|X_{B}|$ is odd by Lemma 4, then $(u_{1})_{2}=2^{a},$

hence $f_{1}’+2^{e_{2}-1}f_{2’}+2^{e_{3}-1}f_{3’}$ must be odd. Therefore, $e_{2}=e_{3}=1$ , or $e_{2}>1$ and $e_{3}>1.$

Assume $e_{1}=0,$ $e_{2}=e_{3}=1$ . Then $u_{2}=2^{a-d+2}(2^{d-3}f_{1’}+2^{d-3}f_{2’}+f_{2’}+2^{d-3}f_{3’})$ . If $d>3,$

we have a contradiction. So $d=3$ , in this case. Assume $e_{1}=0,$ $e_{2}>1,$ $e_{3}>1$ . Then $d>3,$

because if $d=3$ , then $u_{2}=2^{a-1}(f_{1’}+2^{e_{2}}f_{2’}+2^{e_{3}-1}f_{3’})$ , which is a contradiction. So now we
have $d>3$ and $u_{2}=2^{a-d+1}(2^{d-2}f_{1}’+2^{d-3+e2}f_{2’}+2^{e_{2}}f_{2’}+2^{d-3+e_{3}}f_{3’})$ . If $e_{2}<d-2$ , then we

have $u_{2}=2^{a-d+1+e_{2}}(2^{d-2-e_{2}}f_{1’}+2^{d-3}f_{2’}+f_{2’}+2^{d-3+e_{3}-e_{2}}f_{3’})$ , which is a contradiction, because

$a-d+1+e_{2}<a-d+1+d-2=a-1$ , and $d>3,$ $d-3+e_{3}-e_{2}>$ O. If $e_{2}>d-2$ , then

we have $u_{2}=2^{a-d+1+d-2}(f_{1}’+2^{e_{2}-1}f_{2’}+2^{e_{2}-(d-2)}f_{2’}+2^{e_{3}-1}f_{3’}),$which is also a contradiction.

Hence $e_{2}=d-2$ . The same augument for $u_{3}$ yields that e3 $=d-2$ . Therefore, we have $d>3$

and $e_{2}=e_{3}=d-2$ , in this case. We can unify these two cases into $d\geq 3,$ $e_{1}=0,$ $e_{2}=e_{3}=d-2.$

We have the following:

Table 1
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Theorem 2. Let $G$ be a finite group. Suppose that $B$ is a 2-block of $G$ with defect group isomor-

phic to a semidihedra12-group. Then $B$ is good except the two cases of $SD(3C)_{2}$ . Furthermore,

we have the heights of irreducible Brauer characters in $B.$

Proof. (5) $SD(3C)_{2}(2)$ . In this case, the Cartan matrix is of the form $(\begin{array}{lll}2^{d-2}+2 2 22 3 12 1 3\end{array}),$

where $d\geq 4$ . Then

$u_{1}=2^{a-2+c_{1}}f’+2^{a-d+C}1+1f’+2^{a-d+e}f+2^{a-d+e+1}f_{3}’=2^{a-d+1}(2^{d-3+e}f’1+2^{e_{1}}f’1+2^{C}2f’2+2^{es}f_{3}$

$u_{2}=2^{a-d+c_{1}+1}f’1+3\cdot 2^{a-d+e}2f’2+2^{a-d+e_{3}}f’3=2^{a-d}(2^{e}f1+3\cdot 2^{e}2f’2+2^{cs}f3$

$u_{3}=2^{a-d+c_{1}+1}fi’+2^{a-d+e_{2}}f’2+3\cdot 2^{a-d+e}3f’3=2^{a-d}(2^{\epsilon_{1}+1}fi’+2^{e}2f’2+3\cdot 2^{\epsilon_{3}}f3$

(5.1) If $e_{1}=e_{2}=0$ and $e_{3}>0$ , then $u_{2}=2^{a-d}(2f_{1’}+3f_{2’}+2^{e_{S}}f_{3’})$ which contradicts that
$(u_{1})_{2}\geq 2^{a}\rangle$ because $d\geq 4.$

(5.2) If $e_{1}=e_{3}=0$ and $e_{2}>0$ , then we have the same contradiction for $(u_{2})_{2}.$

(5.3) If $e_{2}=e_{3}=0$ and $e_{1}>0$ , then there is a possibility to occur.
(5.4) If $e_{1}=0$ and $e_{2}>0,$ $e_{3}>0$ , then we have a contradiction for $(u_{1})_{2}.$

(5.5) If $e_{2}=0$ and $e_{1}>0,$ $e_{3}>0$ , then we have the same contradiction as (5.4).

(5.6) If $e_{3}=0$ and $e_{1}>0,$ $e_{2}>0$ , then we have the same contradiction as (5.4).

(5.7) If $e_{1}=e_{2}=e_{3}=0$ , then we have the same contradiction as (5.4).

In (5.3), $e_{1}=1,$ $e_{2}=e_{3}=0$ can possibly occur. Then if this case occurs, $B$ is bad, and
$X_{B}=\{\varphi_{i}\},$ $Y_{B}=\{\varphi_{j}\},$ $Z_{B}=\{\varphi_{1}\}$ for $\{i,j\}=\{2$ , 3 $\}.$

In this case, since one of the 2-parts of $u_{2}$ and $u_{3}$ is $2^{a}$ by Lemma 4, we have $(u_{2}+u_{3})_{2}=2^{a}.$

Since $u_{2}+u_{3}=2^{a-d+2}(2^{\epsilon_{1}}f_{1}’+f_{2’}+f_{3}$ so we have $2^{e_{1}}f_{1’}+f_{2’}+f_{3’}=2^{d-2}x$ for some odd $x.$

On the other hand, $u_{1}=2^{a-d+1}(2^{d-3+e_{1}}f_{1’}+2^{e_{1}}f_{1’}+f_{2’}+f_{3’})=2^{a-d+1}(2^{d-3+e_{1}}f_{1}’+2^{d-2}x)=$

$2^{a-1}(2^{e-1}1f_{1’}+x)$ . Hence $e_{1}=1.$

Remark. In this case, calculating elementary divisors of $C_{B}$ using $\mathbb{Z}$-elementary operations, the

set $E_{B}$ of elementary divisors of $C_{B}$ is also $\{2^{d}$ , 2, 1 $\}$ and we have no contradiction for elementary

divisors.

We have the following:
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Table 2

Remark. At present, no example of a block of a finite group which is one of $SD(3C)_{2}$ seems to

be known yet as is seen in [6, p.301].

By the Tables 1,2 we have the following corollary. It might be worth mentioning, because it is

known that there exists $\varphi\in IBr(B)$ with $\varphi(1)_{2}>|G|_{2}$ . For example, $G=McL$ (McLaughlin’s

simple group), $p=2,$ $\varphi$ is in the principa12-b1ock and $\varphi(1)_{2}=2^{9}>|G|2=2^{7}$ which is shown

by J. G. Thackrey [7, p.166], and $G=\mathfrak{S}_{15},$ $p=2,$ $\varphi$ is in the principa12-b1ock and $\varphi(1)=2^{12}>$

$|G|_{2}=2^{11}$ which is shown by D. J. Benson [1]. We also have $G=J_{1},p=2$ and $\varphi(1)_{2}=2^{3}=|G|_{2},$

and $\varphi$ is in the principa12-b1ock, not in a 2-block of defect $0$ in [8]. A simiar case is seen in [17]

for $G=PSp(4,5),p=2,$ $\varphi(1)_{2}=2^{6}=|G|_{2}.$

Corollary 2. If $B$ is a block of tame type with positive defect and $\varphi\in IBr(B)$ , then $\varphi(1)_{2}<|G|_{2}.$

Remark. Let $l(B)=2$ and let $C_{B}=(c_{ij})$ for $1\leq i,$ $j\leq 2$ be the Cartan matrix of $B$ . Assume

that there exist at least different two 2-parts of $c_{ij}$ for $1\leq i,$ $j\leq 2$ . Then $l_{0}(B)=1$ holds. So, if

we want to show only the consequence $l_{0}(B)=1$ for tame blocks with $l(B)=2$ , it follows from

this more general result.

4 Nearly simple groups

It is not easy to determine the irreducible Brauer character table of 2-blocks of simple groups

of large order. But we see many examples of 2-blocks of the simple groups in the Modular Atlas

Homepage [17]. However, we cannot find a bad 2-block of the “‘simple groups” in the Modular

Atlas. Hence we consider 2-blocks of almost simple groups and quasi-simple groups.
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We omit the proof of the following theorems.

At frst, we must notice that the modular version of the Alperin-McKay conjecture does not hold.

Example 3. Let $G=\mathfrak{U}_{5}$ (the alternating group on 5letters) and $B$ be the principal 2-block of
$G$ . Let $D\in Sy1_{2}(G)$ . Then $D\simeq E_{4}$ and $N_{G}(D)\simeq \mathfrak{A}_{4}$ and $IBr(B)=\{1_{1}, 2_{1}, 2_{2}\}$ . So, $l_{0}(B)=1.$

But, for its Brauer correspondent $b,$ $IBr(b)=\{1_{1}, 1_{2}, 1_{3}\}$ and $l_{0}(b\rangle=3.$

We consider the case that there exists a normal 2-subgroup $R\neq\{1\}$ of $G$ . Let $B$ be a p-

block of $G$ with defect group $D$ . Then $\varphi\in IBr(B)$ can be regarded as an irreducible Brauer
character of $\overline{G}=G/R$ . Let $\pi$ be the canonical algebra homomorphism from $kG$ onto $k\overline{G}$ by

$\pi(\sum_{g\in G}\gamma_{g}g):=\sum_{\overline{g}\in\overline{G}}\gamma_{g}\overline{g}$

. Let $\overline{B}$ be the image $\pi(B)$ for a pblock $B$ of $G$ . Then $\overline{B}$ is decomposed

into $p$-blocks of $k\overline{G};\overline{B}=\overline{B}_{1}+\cdots+\overline{B}_{n}$ . Let $\overline{D}$. be a defect group of $\overline{B}_{i}$ for $1\leq i\leq n$ . Then
$\overline{D}.$

$\subseteq_{\overline{G}}D/R$ for $1\leq i\leq n$ . Furthermore, if $\overline{B}_{i}$ contains an irreducible Brauer character of height
$0$ in $B$ , then $\overline{D}_{i}=_{\overline{G}}D/R$ [ $7$ , Lemmas V.4.2, V.4.4]. Consequently we have the following.

Theorem 3. Let $R$ be a normal 2-subgroup of $G$ and $\overline{G}=G/R$ . Let $B$ be a 2-block of $G$ . If

2-block $\overline{B}_{i}$ of $G$ is good for all $1\leq i\leq n$ , then $B$ is good.

Theorem 4. Let $H$ is a normal subgroup of $G$ such that $G/H$ is 2-solvable. Let $B$ be a 2-block
of $G$ which covers a 2-block $b$ of $H$ . Then $B$ is good if and only if $b$ is good.

We must consider when $O(G)=O_{2’}(G)\neq\{1\}$ (the maximal normal subgroup of $G$ of odd
order). This case can be reduced to a cyclic centra12’-extension of $G/O(G)$ (see [7, Lemma X.1.1

and Theorem X.1.2 (Fong)] or [13, Theorem 7.4 (Fong)]). In this case, we cannot obtain any

effective results for reduction. Then we finally find the following example in The Modular Atlas

[17].

Example 4. There exists the faithful and full-defect 2-block $B_{3}$ (and also $B_{4}=\overline{B}_{3}$ ) of the
6 fold cover $G=6.Suz$ of the sporadic simple Suzuki group, where $B_{3},$ $B_{4}$ are the names in

the Modular Atlas Home Page [22]. These blocks satisfy $l_{0}(B_{3})=l_{0}(B_{4})=4$ . Then these

blocks are bad. There are 14 irreducible Brauer characters in $B_{3}$ , in which $\varphi_{20},$ $\varphi_{22},$ $\varphi_{23},$ $\varphi_{28}$ are
of height $0$ with degrees $3\cdot 11\cdot 13,$ $3\cdot 5^{2}\cdot 11,$ $3\cdot 5^{2}\cdot 11,$ $3\cdot 11\cdot 509$ , respectively. Here the
numbering of irreducible Brauer characters is the same as in The Modular Atlas, in which they

are ordered so that the degrees are from small to large, and the first one is corresponding to the
first row of the following Cartan matrix. We abbreviate $\varphi_{t}$ simly to its degree. Then $IBr(B_{3})=$

$\{12_{1}, 66_{1}, 429_{1}, 780_{1}, 825_{1}, 825_{3}, 2100_{1}, 2100_{3}, 3456_{1}, 6720_{1}, 16797_{1}, 19722_{1}, 27456_{1}, 46488_{1}\}.$ $B_{4}$

is the dual (complex conjugate) of $B_{3}$ as is well known by [3, Proposition $(8A)$ ] and [9, Corollary

1.6]. Then there also exsists a 2-block $B_{3}$ of 6. $Suz.2$ which satisfies $l_{0}(B_{3})=4$ by Theorem 4.
We notice that if $G=Suz$ itself, then a112-b1ocks of $G$ are good, and then so are for 2. $Suz$ , Suz.2

and 2.$Suz.2$ by Theorem 4.
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