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Some mathematical aspects of topological materials
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Abstract

I shall present a concise surhmary of some mathematical aspects of topological materials for topologists
without much background of physics. I shall summarize how physical properties of a crystal yield some
vector bundle on the Brillouin torus, which is constructed from the crystal, by which, some important
physical quantities are translated into (equivariant) homotopy theoretical invariants of these vector bun-
dles. For instance, the classical TKNN formula states that the Hall conductivity, induced by the Lorenz
force, is quntized by the 1°* Chern class of the corresponding vector bundle. We shall also report a.re-
cent remark of Gomi-De Nittis, which claims the Fu-Kane-Mele Z-invariant of the topological insulators
(quantum spin Hall effect) is the FKMM invariant of the corresponding “Quaternionic” vector bundle.

1 Introduction

The theory of Topological matters studies the homotopy theory of matters, i.e. physical properties

stable under small perturbations. The essential ideas may be summarized as follows:
e Symmetry of a crystalline solid defines its Brillouin torus.

o Physical properties of a crystalline solid, described by some “energy” i.e. some Schrédinger operator
on'some Hilbert space ,

= (equivarint) vector bundle on the Brillouin torus.

e Physical invariants may be expressed by some homotopy theoretical invariants of (equivariant) vector
bundles.

In this summary, I concisely review some mathematical aspects of the topological materials by ex-
plaining these points. My presentation follows [C, DN-G|. For the transparency and the brevity, I have
omitted the bulk-edge correspondence, for which, the readers are referred to [GP].

2 Brillouin torus

We start with a mathematical “definition”of an our physical objective:
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crystal C: the locations of atoms in R? (d = 2,3), which is invariant by discrete translations T, of

vectors v in a chosen Bravais lattice I' = Z4(C R%).

Now, to construct the Brillouin torus, we must work in the dual space, in which we define the dual

lattice of the Bravais lattice I':

reciprocal lattice I'* := {G € R? |Vy €T, G-y€2rZ}.

Then, we can define the requisited Brillouin torus by quotienting out the dual space R? by this

reciprocal lattice I™:

d-dimensional Brillouin torus BZ := R%/T™*.

3 (equivarint) vector bundle on the Brillouin torus

In order to quantum mechanically represent physical states on the crystal C caused by a finite number
of internal degrees of freedom of atoms, e.g. the spin of electrons, we prepare a finite-dimensional complex
vector space V equipped with a scalar product (—, —)y. For simplicity, we shall consider the tight-binding
model, in which electronic wave functions are restricted to the crystal C (with canonical extensions to

elsewhere). Then the physical states of an electron in this crystal C are represented by:

Hilbert space of crystalline states H = £%(C,V) : the space of V-valued square-summable func-

tions on C with the scalar product

(Wlx) = Y_(H(@)Ix(@)v-

zeC
H reflects the symmetry of the crystal C, through:

T,, the translation of states ¢ € H by vy € It the unitary operator T’, on H such that

T,(z) =z —v), ze€C.
Then an energy eigenstate of an electron corresponds to:

Bloch function y(z) € H with quasi-momentum k € RY/T* = BZ : Eigenfunctions of all uni-

tary operators T (y € T')

= 3k € RY/T* = BZ s.t.
T,(z) (= ¢(z - 7)) = ¥ 7Y(z), Yz el Vyel.

From these, we now have a tractible finite dimensional vector space Hy for each quasi-momentum
k € R¢/I"* = BZ:

finite dim’/ Hilbert space H; with dim(Hx) = |C/T| x dim(V):

e made of Bloch functions on ¢ with quasi-momentum k € R?/T* = BZ;



o equipped with the scalar product

(Wrlxe)e = Y Yu(@)xs(@)-

z€C/T

H, the Bloch bundle on the Brillouin torus R¢/T* = BZ :

dim(Hg) = lC/F\ x dim(V) dim’¢ complex v.b.;
whose fiber at &k € RY/T* = BZ is Hy.

e with Hermitian structure.

The Fourier transform (z) 17); induces a norm preseving identification:

H:=¢(C, V)= L*(BZ,H)

¥(@) = ke i(a) =Y e (- y) € Hy

yel'
 Jg Un(a)dk .
wla) = Bt (ko @)
o In fact...

Bad News: The vector bundle % — BZ is trivial.

We are still in such boring mathematical situation, because we have not reflected the nature of the
electronic phase in the physical side yet. We must take into account the “energy” (Hamiltonian) of the

physical property:

periodic Hamiltonian H: The invariance of C by T,’s forces the Hamiltonian H periodic w.r.t. T.

= H and T,’s commute

= Can simultaneously diagonalize H and T, ’s!

Bloch Hamiltonian Hy: the Hamiltonian actionH restricts to the finite dim’¢ vector space Hy for
each k € BZ :

H:-H->H
= Hy : Hr — Hex,

where Hy may be expressed by a Hermitian matrix with spectra (eigenvalues)
Spec Hi = {(E)y < (Br), < - < (B c/ryam }

To construct a tractible subvector bundle of H, which reflects rich physical phase of the crystal C, we

impose the following assumption:

Insulator assumption: 3 Fermi energy er , s.t.

Vk € BZ, ¢p ¢ Spec Hy, ( i.e. an insulator. )

&x: The subspace of #Hy, spanned by the eigenspaces whose eigenvalues are stricktly smaller than the

Fermi energy ep,

§__: the valence-band subbundle of the Bloch bundle H , whose fiber at k € BZ is above &.

This is the vector bundle we really wish to study!
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4 Quantum Hall effect and 1% Chern class ¢

Consider a plate (in the zy-plane) crystalline insulator at the absolute temperature 7' = 0:

B, :=the strength of the magnet field applied in
the z-direction, which we fix and make inexplicit.
E, = the strength of the electronic field applied in

the z-direction, which we explicitly vary.

Then the Lorenz force

-

F=gq (E + 7 X E)
is responsible for

jz := electronic currency in the z-durection.

(jz): the expected value of j; w.r.t. the Fermi-Direc distribution

1 1
f(E,T) = BE—T 1 (ﬁ”—‘m)

at the absolute temperature T = 0.

The Hall conductivity o,y := %ﬁ Klaus von Klitzing experimentally discovered the

integer Quantum Hall effect:

2

Ozy = %— x (integer)

. 2
Here, set V = C and H = %‘ZL 4+ V(r), then the 1°* Chern class ¢1(€) of the valence-band
subbundle £ is shown to be responsible for this phenomenon:
Thouless-Kohmoto-Nightingale-den Nijs, Nakano (Kubo), Berry, Simons..

0wy =-%ci(€)

ci(€) € H¥(BZ;Z) =1

For more details, the reder is referred to [C].

5 FKMM invariant of Quaternionic vector bundles
Here, we take into account the special relativity and work with the Dirac equation

L0 -
zfi&vj)(m,t) = Hy(Z,1)
H = ca - (—ihV) + Bmc?,



where

and the wave function is the 4 component Dirac spinor

Y1(Z, )
Yo(&, t)
¥3(Z, t)
V(& 1)

U(Z,t) =

However, instead of the Dirac Hamiltonian
H = cd - (—ihV) + Bmc?

we work with spin-orbit interaction Hamiltonian:

el@

Hgo =~ :
2m2¢c? r dr '

where,

1 .
S:= 5?15‘, spin angular momentum operator

L:=r xp, orbit angular momentum operator

and & = (01, 02,03) is given by Pauli matrices

0 1 - 0 —1i 1 0
oy = , = , O3 = .
Tl oo 7\ o 7 lo -1
Thus, in this case, we set V = C*, H = Hgp, but...

Bad News: The nontriviality of the valence-band Bloch bundle £ in this case is elusive.

Good News: In this case, the time-reversal symmetry of the system makes the valence-band Bloch
bundle “equivariant.” This extra “equivariant”structure gives the valence-band Bloch bundle more

chance of becoming nontrivial, at least “equivariantly”.

Actually, for the spin-orbit interaction Hamiltonian

e 1d¢
Hgp = ————--—-=8.
s0 2m2c2rdrs L

= e 1d¢ <%hc’r‘>~(rxp)

2m2c? r dr

___en 1o (o 1) 0 =) 10
T 4m22rdr 1 0o/’ \i o/ \0o -1 P

the time-reversal symmetry operator © becomes

© = —ig K, (K is the complex conjugate operator)
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[6,Hso] =0
= (0O:H — H_k, (k€ BZ)
o2 = I

= O endows the block bundle H with
a “Quaternionic” vector bundle structure.

Here, a complex vector bundle 7 : E — X over a Z/2-space 7 : X — X (72 = Ix) with a complex
anti-linear lift 75 : E —» E:

te(av + Bw) = are(v) + Bre(w)
TOM=TOTE

is called a
“Real” vector bundle

“Quaternionic” vector bundle

’r% =1
Tfé =-1

Now, De Nittis-Gomi [DN-G] proved the following translation of some important physical invariants

of topological insulators to some mathematical invariants:
De Nittis-Gomi

Fu-Kane-Mele Zy-invariant of the topological insulators (quantum spin Hall effect) is the FKMM

invariant of the “Quaternionic”vector bundle.

For the Fu-Kane-Mele Zy-invariant, see [FK, FKM, C]; for the FKMM invariant, see [DN-G, FKMM];
and for the proof of this theorem of De Nittis-Gomi, consult the original proof of [DN-G].
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