On the finite space with a finite group action

獨協医科大学基本医学基盤教育部門 藤田亮介 (Ryousuke Fujita) Premedical Sciences, Dokkyo Medical University

1 Introduction

The purpose of our presentation was to study actions of finite groups on finite T_0 -separation axioms, spaces, i.e. topological spaces having finitely many points with the T_0 -separation axioms, that is, for each pair of distinct two points, there exists an open set containing one but not the other. Many well-known properties about finite $(T_0$ -)spaces may be found in [2], [4], [7] and [11]. Throughout this note, assume that any finite topological space (for short, finite space) has the T_0 -separation axiom. Moreover we consider the finite space with a finite group *G*-action, called a *finite G-space*. Let X, Y be finite *G*-spaces. Let X denote a finite space. Let x be an element of X. Then we define a subset C_x of X by $C_x = U_x \cup F_x$, where a set U_x be the minimal open set of X which contains x, and a set F_x be the closure of one point set $\{x\}$. For a *G*-map $f : X \to Y$, we consider a condition: for any $x \in X$,

$$(*) \qquad f(C_x) \subset C_{f(x)}.$$

Let $\mathcal{F}top_{ex}^G$ be the category consisting of the following data: objects are finite *G*-spaces and morphisms are *G*-maps satisfying (*). On the other hand, let \mathcal{F}_{SC}^G be the category which consists of finite *G*-simplicial complexes and simplicial *G*-maps. Remark that a finite *G*-space correspondences to a finite *G*-partially ordered set(for short, a *G*-poset). Therefore a finite *G*-space *X* determines a finite *G*-simplicial complex $\mathcal{K}(X)$. Then

Theorem A. Let X, Y be finite G-spaces. Then X is G-homotopy equivalent to Y in $\mathcal{F}top_{ex}^G$ if and only if $\mathcal{K}(X)$ is strong G-homotopy equivalent to $\mathcal{K}(Y)$.

We shall explain some notations and terminologies. In $\mathcal{F}top_{ex}^G$, we define the homotopy. Let f, g be morphisms from a finite G-space X to another finite G-space Y satisfying (*). Let $\mathcal{I} = \{0, 1\}$ be a finite space whose topology is $\{\emptyset, \{0\}, \{0, 1\}\}$ with the trivial Gaction. Then f is G-homotopic to g if there is a sequence $f = f_0, f_1, \dots, f_n = g$ such that for each $i (1 \leq i \leq n)$ there exist two maps $F_i, G_i : X \times \mathcal{I} \to Y$ satisfying (*) with

$$F_i(x,0) = G_i(x,1) = f_{i-1}(x)$$
 and $F_i(x,1) = G_i(x,0) = f_i(x)$,

denoted by $f \simeq_{ex}^{G} g$. Moreover X is *G*-homotopy equivalent to Y, denoted by $X \simeq_{ex}^{G} Y$, if there are *G*-maps $f: X \to Y$ and $g: Y \to X$ satisfying (*) such that $g \circ f \simeq_{ex}^{G} 1_X$ and $f \circ g \simeq_{ex}^{G} 1_Y$.

Let K and L be finite simplicial G-complexes, and φ and ψ simplicial G-maps from K to L. Let σ be any simplex of K. If $\varphi(\sigma) \cup \psi(\sigma)$ is also a simplex of L, two simplicial G-maps φ and ψ are said to be *adjacent*. A *fence* in L^K (the set of all simplicial G-maps from K to L) is a sequence $\varphi_0, \varphi_1, \cdots, \varphi_n$ of simplicial G-maps from K to L such that any two consecutive are adjacent. A simplicial G-map φ is strong G-homotopic to a simplicial G-map ψ if there exists a fence starting in φ and ending in ψ , and it is denoted by $\varphi \sim_G \psi$. Note that the geometric realization is G-homotopic, i.e., $|\varphi| \sim_G |\psi| : |K| \to |L|$.

When there are simplicial G-maps $\varphi : K \to L$ and $\psi : L \to K$ such that $\psi \circ \varphi \sim_G 1_K$ and $\varphi \circ \psi \sim_G 1_L$, K is said to be strong G-homotopy equivalent to L (or two simplicial G-complexes K and L have the same strong G-homotopy type), denoted by $K \sim_G L$.

Next we presented the second topic. Let G be a finite group. Let X be a finite G-CW-complex, S(G) be the set of all subgroups of G. For each $H \in S(G)$, let X^H be the H-fixed point set, and $\pi_0(X^H)$ be the connected components of X^H . Then we put

$$\Pi(X) := \prod_{H \in S(G)} \pi_0(X^H) \quad \text{(disjoint union)},$$

called a *G*-poset associated to X. On the ordering of $\Pi(X)$, we define

 $\alpha \leq \beta$ if and only if $\rho(\alpha) \supset \rho(\beta)$ and $|\alpha| \subset |\beta|$ $(\alpha, \beta \in \Pi(X))$,

where $\rho: \Pi(X) \to S(G)$; $\alpha \mapsto H$ s.t. $\alpha \in \pi_0(X^H)$, and $|\alpha|$ is the underlying space of α . A finite *G-CW*-complex *Z* with a basepoint *q* is called a $\Pi(X)$ -complex if it is equipped with a specified set $\{Z_{\alpha} \mid \alpha \in \Pi\}$ of subcomplexes Z_{α} of *Z*, satisfying the following four conditions:

(i) $q \in Z_{\alpha}$, (ii) $gZ_{\alpha} = Z_{g\alpha}$ for $g \in G$, $\alpha \in \Pi$, (iii) $Z_{\alpha} \subseteq Z_{\beta}$ if $\alpha \leq \beta$ in Π , and (iv) for any $H \in S(G)$,

$$Z^H := \bigvee_{\alpha \in \Pi \text{ with } \rho(\alpha) = H} Z_{\alpha} \;.$$

where $\chi(Z_{\alpha})$ is the Euler characteristic of Z_{α} . Here we define a equivalence relation:

$$Z \sim W \iff \chi(Z_{\alpha}) = \chi(W_{\alpha}) \quad \text{for all } \alpha \in \Pi(X).$$

We put $\Omega(G, \Pi(X)) := {\Pi(X)\text{-complexes}} / \sim$. Then $\Omega((G, \Pi(X))$ is an abelian group via $[Z] + [W] := [Z \lor W]$.

Let X and Y be pointed finite G-spaces. Let $|\mathcal{K}(X)|$ (resp. $|\mathcal{K}(Y)|$) be the geometric realizations of $\mathcal{K}(X)$ (resp. $\mathcal{K}(Y)$). Now, we simply write $\Pi(X)$ for $\Pi(|\mathcal{K}(X)|)$. Similarly $\Pi(Y)$ for $\Pi(|\mathcal{K}(Y)|)$. Note that $\Omega(G, \Pi(X))$ and $\Omega(G, \Pi(Y))$ are finitely generated free abelian groups. Then we have a group homomorphism

$$\Omega(G, \Pi(f)) : \Omega(G, \Pi(X)) \to \Omega(G, \Pi(Y)) \quad ; \ [Z]_{\Omega(G, \Pi(X))} \mapsto [Z]_{\Omega(G, \Pi(Y))}$$

Let $\mathcal{F}top_*^G$ be the category of pointed finite G-spaces. Let Ab be the category of abelian groups. Hence we have

Theorem B. There exist a functor $F : \mathcal{F}top_*^G \to Ab$ such that

$$F(X) = \Omega(G, \Pi(X))$$
 and $F(f) = \Omega(G, \Pi(f))$.

2 Outline of proofs

Proof of Theorem A.

We need some preliminaries to prove Theorem 1. First we prepare the following lemma.

Lemma 1. Let $f, g : X \to Y$ be two *G*-homotopic maps between finite *G*-spaces satisfying (*) in $\mathcal{F}top_{ex}^G$. Then there exists a sequence $f = f_0, f_1, \dots, f_n = g$ such that for every $0 \leq i < n$ and there is a point $x_i \in X$ with the following properties: 1. f_i and f_{i+1} coincide in $X \setminus Gx_i$, where $Gx_i = \{hx_i \mid h \in G\}$ and

2. $f_i(x_i) \leq f_{i+1}(x_i)$ or $f_{i+1}(x_i) \leq f_i(x_i)$.

Proposition 2. Let $f, g : X \to Y$ be G-homotopic maps satisfying (*) between finite G-spaces. Then $\mathcal{K}(f) \sim_G \mathcal{K}(g)$.

Let $\mathcal{X}(K)$ be a face poset for a simplicial complex K. Giving a simplicial map φ : $K \to L$ between simplicial complexes, we can induce a map $\mathcal{X}(\varphi) : \mathcal{X}(K) \to \mathcal{X}(L)$.

Proposition 3. Let $\varphi, \psi: K \to L$ be simplicial *G*-maps which is strong *G*-homotopic between finite *G*-simplicial complexes. Then $\mathcal{X}(\varphi) \simeq_{ex}^{G} \mathcal{X}(\psi)$.

Under these preliminaries, we show the following.

Theorem A. Let X, Y be finite G-spaces. X is G-homotopy equivalent to Y in $\mathcal{F}top_{ex}^G$ if and only if $\mathcal{K}(X)$ is strong G-homotopy equivalent to $\mathcal{K}(Y)$.

Proof. Suppose $f: X \to Y$ is a *G*-homotopy equivalence between finite *G*-spaces with *G*-homotopy inverse $g: Y \to X$. By Propositon 2, $\mathcal{K}(f)\mathcal{K}(g) \sim_G 1_{\mathcal{K}(Y)}$ and $\mathcal{K}(g)\mathcal{K}(f) \sim_G 1_{\mathcal{K}(X)}$. If $\mathcal{K}(X)$ and $\mathcal{K}(Y)$ are *G*-simplicial complexes with the same strong *G*-homotopy type, there exist $\varphi: \mathcal{K}(X) \to \mathcal{K}(Y)$ and $\psi: \mathcal{K}(Y) \to \mathcal{K}(X)$ such that $\varphi \circ \psi \sim_G 1_{\mathcal{K}(Y)}$ and $\psi \circ \varphi \sim_G 1_{\mathcal{K}(X)}$. By Proposition 3, $\mathcal{X}(\varphi): \mathcal{X}\mathcal{K}(X) \to \mathcal{X}\mathcal{K}(Y)$ is a *G*-homotopy equivalence with a *G*-homotopy inverse $\mathcal{X}(\psi)$. Hence, it suffices that $\mathcal{X}\mathcal{K}(X) \simeq_{ex}^G X$. Note that $X \subset \mathcal{X}\mathcal{K}(X)$. Let x_0 be the maximal element of a simplex σ of $\mathcal{K}(X)$. We define a *G*-map *f* from $\mathcal{X}\mathcal{K}(X)$ to *X* by $f(\sigma) = x_0$. Then $f \circ \iota \simeq_{ex}^G id_X$ and $\iota \circ f \simeq_{ex}^G id_{\mathcal{X}\mathcal{K}(X)}$, where ι is an inclusion map from *X* to $\mathcal{X}\mathcal{K}(X)$. In fact, $f \circ \iota = id_X$ and $(\iota \circ f)(\sigma) \subset \sigma$ for every $\sigma \in \mathcal{K}(X)$.

As a corollary, we have the following.

Corollary 4. A functor $\mathcal{K} : \mathcal{F}top_{ex}^G \to \mathcal{F}_{SC}^G$ induces a fully faithful functor between homotopy categories:

$$\mathcal{HK}:\mathcal{HF}top_{ex}^{G}\to\mathcal{HF}_{\mathcal{SC}}^{G}.$$

Proof of Theorem B.

The following is the key lemma to prove Theorem B.

Lemma 5. Given a *G*-map $f : X \to Y$ and $\Pi(X)$ -complex *Z*, there exist a *G*-map $p: Z \to |\mathcal{K}(X)|$ such that the following diagram

$$Z \xrightarrow{p} |\mathcal{K}(X)|$$

$$|\mathcal{K}(f)| \circ p \qquad |\mathcal{K}(f)|$$

$$|\mathcal{K}(Y)|$$

commutes. Moreover Z has also a $\Pi(Y)$ -complex structure.

Let $\mathcal{F}top_*^G$ be the category of pointed finite G-spaces and Ab be the category of abelian groups. Then we show the following.

Theorem B. There exist a functor $F : \mathcal{F}top^G_* \to Ab$ such that

$$F(X) = \Omega(G, \Pi(X))$$
 and $F(f) = \Omega(G, \Pi(f)).$

References

- [1] Buchstaber, V.M. and Panov, T.E., Combinatorics of simplicial cell complexes and torus actions, Proc. Steklov Inst. Math. 247 (2004), 1-17.
- [2] Barmak, J., Algebraic Topology of Finite Topological Spaces and Applications, Lecture Notes in Math, **2032**, Springer-Verlag, 2011.
- [3] Björner, A., Posets, regular CW complexes and Bruhat order, European. J. Combinatorics. 5 (1984), 7-16.
- [4] Fujita, R. and Kono, S., Some aspects of a finite T₀-G-space, RIMS Kokyuroku, 1876 (2014), 89-100.
- [5] Ginsburg, J., A structure theorem in finite topology, Canad. Math. Bull. 26 (1) (1983), 121-122.
- [6] Itagaki, S. and Henmi, Y., On the correspondence between the category of the finite topological space and the category of the finite simplicial complex (in Japanese), Abstract on topology session, Hiroshima University, 4-5, 2014
- [7] Kono, S. and Ushitaki, F., Geometry of finite topological spaces and equivariant finite topological spaces, in: Current Trends in Transformation Groups, ed. A.Bak, M.Morimoto and F.Ushitaki, pp.53-63, Kluwer Academic Publishers, Dordrecht, 2002.
- [8] Kono, S. and Ushitaki, F., Homeomorphism groups of finite topological spaces, RIMS Kokyuroku, 1290 (2002), 131-142.
- [9] Kono, S. and Ushitaki, F., Homeomorphism groups of finite topological spaces and Group actions, RIMS Kokyuroku, **1343** (2003), 1-9.

- [10] McCord, M.C., Singular homotopy groups and homotopy groups of finite topological spaces, Duke. Math. J. 33 (1966), 465-474.
- [11] Stong, R.E., Finite topological spaces, Trans.Amer.Math.Soc. 123 (1966), 325-340.
- [12] Stong, R.E., Group actions on finite spaces, Discrete Math. 49 (1984), 95-100.