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1 Introduction

The purpose of our presentation was to study actions of finite groups on finite $T_{0^{-}}$

spaces, i.e. topological spaces having finitely many points with the $T_{0}$-separation axioms,
that is, for each pair of distinct two points, there exists an open set containing one but
not the other. Many well-known properties about finite $(T_{0^{-}})$spaces may be found in [2],
[4], [7] and [11]. Throughout this note, assume that any finite topological space (for short,
finite space) has the $T_{0}$-separation axiom. Moreover we consider the finite space with a
finite group $G$-action, called a finite $G$ -space. Let $X,$ $Y$ be finite $G$-spaces. Let $X$ denote a
finite space. Let $x$ be an element of $X$ . Then we define a subset $C_{x}$ of $X$ by $C_{x}=U_{x}\cup F_{x},$

where a set $U_{x}$ be the minimal open set of $X$ which contains $x$ , and a set $F_{x}$ be the closure
of one point set $\{x\}$ . For a $G$-map $f$ : $Xarrow Y$ , we consider a condition: for any $x\in X,$

$(*) f(C_{x})\subset C_{f(x)}.$

Let $\mathcal{F}top_{ex}^{G}$ be the category consisting of the following data: objects are finite $G$-spaces
and morphisms are $G$-maps satisfying $(*)$ . On the other hand, let $\mathcal{F}_{SC}^{G}$ be the category
which consists of finite $G$-simplicial complexes and simplicial $G$-maps. Remark that a
finite $G$-space correspondences to a finite $G$-partially ordered set $(for$ short, $a G-$poset) .
Therefore a finite $G$-space $X$ determines a finite $G$-simplicial complex $\mathcal{K}(X)$ . Then

Theorem A. Let $X,$ $Y$ be finite $G$ -spaces. Then $X$ is $G$ -homotopy equivalent to $Y$ in
$\mathcal{F}top_{ex}^{G}$ if and only if $\mathcal{K}(X)$ is strong $G$ -homotopy equivalent to $\mathcal{K}(Y)$ .

We shall explain some notations and terminologies. In $\mathcal{F}top_{ex}^{G}$ , we define the homotopy.
Let $f,$ $g$ be morphisms from a finite $G$-space $X$ to another finite $G$-space $Y$ satisfying $(*)$ .
Let $\mathcal{I}=\{0$ , 1 $\}$ be a finite space whose topology is $\{\emptyset, \{0\}, \{0, 1\}\}$ with the trivial G-
action. Then $f$ is $G$ -homotopic to $g$ if there is a sequence $f=f_{0},$ $f_{1},$

$\cdots,$ $f_{n}=g$ such that
for each $i(1\leq i\leq n)$ there exist two maps $F_{i},$ $G_{i}$ : $X\cross \mathcal{I}arrow Y$ satisfying $(*)$ with

$F_{i}(x, 0)=G_{i}(x, 1)=f_{i-1}(x)$ and $F_{i}(x, 1)=G_{i}(x, 0)=f_{i}(x)$ ,

denoted by $f\simeq_{ex}^{G}g$ . Moreover $X$ is $G$ -homotopy equivalent to $Y$ , denoted by $X\simeq_{ex}^{G}Y$ , if
there are $G$-maps $f$ : $Xarrow Y$ and $g$ : $Yarrow X$ satisfying $(*)$ such that $g\circ f\simeq_{ex}^{G}1_{X}$ and
$f\circ g\simeq_{ex}^{G}1_{Y}.$

Let $K$ and $L$ be finite simplicial $G$-complexes, and $\varphi$ and $\psi$ simplicial $G$-maps from
$K$ to $L$ . Let $\sigma$ be any simplex of $K$ . If $\varphi(\sigma)\cup\psi(\sigma)$ is also a simplex of $L$ , two simplicial
$G$-maps $\varphi$ and $\psi$ are said to be adjacent. A fence in $L^{K}$ (the set of all simplicial $G$-maps
from $K$ to $L$ ) is a sequence $\varphi_{0},$ $\varphi_{1},$ $\cdots,$ $\varphi_{n}$ of simplicial $G$-maps from $K$ to $L$ such that any
two consecutive are adjacent. A simplicial $G$-map $\varphi$ is strong $G$ -homotopic to a simplicial
$G$-map $\psi$ if there exists a fence starting in $\varphi$ and ending in $\psi$ , and it is denoted by
$\varphi\sim c\psi$ . Note that the geometric realization is $G$-homotopic, i.e., $|\varphi|\sim c|\psi|$ : $|K|arrow|L|.$
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When there are simplicial $G$-maps $\varphi$ : $Karrow L$ and $\psi$ : $Larrow K$ such that $\psi\circ\varphi\sim c1_{K}$

and $\varphi\circ\psi\sim G1_{L},$ $K$ is said to be strong $G$ -homotopy equivalent to $L$ (or two simplicial
$G$-complexes $K$ and $L$ have the same strong $G$ -homotopy type), denoted by $K\sim {}_{G}L.$

Next we presented the second topic. Let $G$ be a finite group. Let $X$ be a finite G-
$CW$-complex, $S(G)$ be the set of all subgroups of $G$ . For each $H\in S(G)$ , let $X^{H}$ be the
$H$-fixed point set, and $\pi_{0}(X^{H})$ be the connected components of $X^{H}$ . Then we put

$\Pi(X):=\coprod_{H\in S(G)}\pi_{0}(X^{H})$
(disjoint union),

called a $G$ -poset associated to $X$ . On the ordering of $\Pi(X)$ , we define

$\alpha\leq\beta$ if and only if $\rho(\alpha)\supset\rho(\beta)$ and $|\alpha|\subset|\beta|$ $(\alpha, \beta\in\Pi(X))$ ,

where $\rho$ : $\Pi(X)arrow S(G);\alpha\mapsto H$ s.t. $\alpha\in\pi_{0}(X^{H})$ , and $|\alpha|$ is the underlying space of $\alpha.$

A finite G-CW complex $Z$ with a basepoint $q$ is called a $\Pi(X)$ -complex if it is equipped
with a specified set $\{Z_{\alpha}|\alpha\in\Pi\}$ of subcomplexes $Z_{\alpha}$ of $Z$ , satisfying the following four
conditions:
(i) $q\in Z_{\alpha},$

(ii) $gZ_{\alpha}=Z_{g\alpha}$ for $g\in G,$ $\alpha\in II,$

(iii) $Z_{\alpha}\subseteqq Z_{\beta}$ if $\alpha\leqq\beta$ in $\Pi$ , and
(iv) for any $H\in S(G)$ ,

$Z^{H}:=\fbox{Error::0x0000}z_{ \alpha}a\in \Pi withp( \alpha)=H$

where $\chi(Z_{\alpha})$ is the Euler characteristic of $Z_{\alpha}$ . Here we define a equivalence relation:

$Z\sim W\Leftrightarrow^{def}\chi(Z_{\alpha})=\chi(W_{\alpha})$ for all $\alpha\in\Pi(X)$ .

We put $\Omega(G, \Pi(X))$ $:=$ { $\Pi(X)$ -complexes}/ $\sim$ . Then $\Omega((G, \Pi(X))$ is an abelian group
via $[Z]+[W]$ $:=[Z\vee W].$

Let $X$ and $Y$ be pointed finite $G$-spaces. Let $|\mathcal{K}(X)|($resp. $|\mathcal{K}(Y)|)$ be the geometric
realizations of $\mathcal{K}(X)($resp. $\mathcal{K}(Y))$ . Now, we simply write $\Pi(X)$ for $\Pi(|\mathcal{K}(X)|)$ . Similarly
$\Pi(Y)$ for $\Pi(|\mathcal{K}(Y)|)$ . Note that $\Omega(G, \Pi(X))$ anld $\Omega(G, \Pi(Y))$ are finitely generated free
abelian groups. Then we have a group homomorphism

$\Omega(G, \Pi(f)):\zeta l(G, \Pi(X))arrow\Omega(G, \Pi(Y)) ;[Z]_{\Omega(G,\Pi(X))}\mapsto[Z]_{\Omega(G,\Pi(Y))}$

Let $\mathcal{F}top_{*}^{G}$ be the category of pointed finite $G$-spaces. Let $Ab$ be the category of abelian
groups. Hence we have

Theorem B. There exist a functor $F:\mathcal{F}top_{*}^{G}arrow Ab$ such that

$F(X)=\Omega(G, \Pi(X))$ and $F(f)=\Omega(G, \Pi(f))$ .
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2 Outline of proofs

Proof of Theorem $A.$

We need some preliminaries to prove Theorem 1. First we prepare the following lemma.

Lemma 1. Let $f,$ $g$ : $Xarrow Y$ be two $G$-homotopic maps between finite $G$-spaces
satisfying $(*)$ in $\mathcal{F}top_{ex}^{G}$ . Then there exists a sequence $f=f_{0},$ $f_{1},$

$\cdots,$ $f_{n}=g$ such that
for every $0\leq i<n$ and there is a point $x_{i}\in X$ with the following properties:
1. $f_{i}$ and $f_{i+1}$ coincide in $X\backslash Gx_{i}$ , where $Gx_{i}=\{hx_{i}|h\in G\}$ and
2. $f_{i}(x_{i})\leq f_{i+1}(x_{i})$ or $f_{i+1}(x_{i})\leq f_{i}(x_{i})$ .

Proposition 2. Let $f,$ $g:Xarrow Y$ be $G$ -homotopic maps satisfying $(*)$ between finite
$G$ -spaces. $Then\mathcal{K}(f)\sim c^{\mathcal{K}(g)}.$

Let $\mathcal{X}(K)$ be a face poset for a simplicial complex $K$ . Giving a simplicial map $\varphi$ :
$Karrow L$ between simplicial complexes, we can induce a map $\mathcal{X}(\varphi)$ : $\mathcal{X}(K)arrow \mathcal{X}(L)$ .

Proposition 3. Let $\varphi,$
$\psi$ : $Karrow L$ be simplicial $G$ -maps which is strong $G$ -homotopic

between finite $G$ -simplicial complexes. Then $\mathcal{X}(\varphi)\simeq_{ex}^{G}\mathcal{X}(\psi)$ .

Under these preliminaries, we show the following.

Theorem A. Let $X,$ $Y$ be finite $G$ -spaces. $X$ is $G$ -homotopy equivalent to $Y$ in $\mathcal{F}top_{ex}^{G}$

if and only if $\mathcal{K}(X)$ is strong $G$ -homotopy equivalent to $\mathcal{K}(Y)$ .

Proof. Suppose $f$ : $Xarrow Y$ is a $G$-homotopy equivalence between finite $G$-spaces with
$G$-homotopy inverse $g:Yarrow X$ . By Propositon 2, $\mathcal{K}(f)\mathcal{K}(g)\sim c1_{\mathcal{K}(Y)}$ and $\mathcal{K}(g)\mathcal{K}(f)\sim c$

$1_{\mathcal{K}(X)}$ . If $\mathcal{K}(X)$ and $\mathcal{K}(Y)$ are $G$-simplicial complexes with the same strong $G$-homotopy
type, there exist $\varphi$ : $\mathcal{K}(X)arrow \mathcal{K}(Y)$ and $\psi$ : $\mathcal{K}(Y)arrow \mathcal{K}(X)$ such that $\varphi\circ\psi\sim G1_{\mathcal{K}(Y)}$ and
$\psi\circ\varphi\sim c1_{\mathcal{K}(X)}$ . By Proposition 3, $\mathcal{X}(\varphi)$ : $\mathcal{X}\mathcal{K}(X)arrow \mathcal{X}\mathcal{K}(Y)$ is a $G$-homotopy equivalence
with a $G$-homotopy inverse $\mathcal{X}(\psi)$ . Hence, it suffices that $\mathcal{X}\mathcal{K}(X)\simeq_{ex}^{G}X$ . Note that
$X\subset \mathcal{X}\mathcal{K}\langle X)$ . Let $x_{0}$ be the maximal element of a simplex $\sigma$ of $\mathcal{K}(X)$ . We define a
$G$-map $f$ from $\mathcal{X}\mathcal{K}(X)$ to $X$ by $f(\sigma)=x_{0}$ . Then $fo\iota\simeq_{ex}^{G}id_{X}$ and $\iota$ $of\simeq_{ex}^{G}id_{\mathcal{X}\mathcal{K}(X)},$

where $\iota$ is an inclusion map from $X$ to $\mathcal{X}\mathcal{K}(X)$ . In fact, $fo\iota=id_{X}$ and $(\iota\circ f)(\sigma)\subset\sigma$

for every $\sigma\in \mathcal{K}(X)$ . $\square$

As a corollary, we have the following.

Corollary 4. A functor $\mathcal{K}$ : $\mathcal{F}top_{ex}^{G}arrow \mathcal{F}_{SC}^{G}$ induces a fully faithful functor between
homotopy categories:

$\mathcal{H}\mathcal{K}:\mathcal{H}\mathcal{F}top_{ex}^{G}arrow \mathcal{H}\mathcal{F}_{SC}^{G}.$

Proof of Theorem $B.$

The following is the key lemma to prove Theorem B.
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Lemma 5. Given a $G$-map $f$ : $Xarrow Y$ and $\Pi(X)$ -complex $Z$ , there exist a $G$-map
$p:Zarrow|\mathcal{K}(X)|$ such that the following diagram

commutes. Moreover $Z$ has also a $\Pi(Y)$-complex structure.

Let $\mathcal{F}top_{*}^{G}$ be the category of pointed finite $G$-spaces and $Ab$ be the category of abelian
groups. Then we show the following.

Theorem B. There exist a functor $F:\mathcal{F}top_{*}^{G}arrow Ab$ such that

$F(X)=\Omega(G, \Pi(X))$ and $F(f)=\Omega(G, \Pi(f))$ .
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