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ON QUADRATIC NONLINEAR KLEIN-GORDON EQUATIONS

NAKAO HAYASHI AND PAVEL I. NAUMKIN

ABSTRACT. We report our recent results on nonlinear Klein-Gordon equations
with quadratic interactions.

1. INTRODUCTION

In this article, we survey recent progress on asymptotic behavior of solutions to
the nonlinear Klein-Gordon equations
(1.1) 02y — Av+ mPv =% (t,z) € R x R"

with quadratic self interaction term for n = 1 or n = 2, where v is a real-valued
function, m > 0 is the mass of particle, and A is the Laplacian. We also consider
a system of quadratic nonlinear Klein-Gordon equations

: ot (t, x R x R?,
vy — Avg + mivy = v? (t,2) €

(1.2) { 02v, — Avy + m2v; = vyvg,
where my,mg > 0 are the masses of particles. Quadratic nonlinearities do not
include resonance terms for (1.1) and for (1.2) if 2my # mgy. There are two different
ways to treat quadratic nonlinear Klein-Gordon equations. One of them is the
method of algebraic normal forms due to Kosecki [26] for (1.1) and Sunagawa [32]
for (1.2) under the non resonahce mass condition 2m; # my. The method of
algebraic normal forms does not yield any nonlocal nonlinearity, however it leads
to a derivative loss difficulty. Another way is the method of the normal forms
of Shatah [31], which yields a complicated nonlocal nonlinear problem, but the
derivative loss difficulty is avoided. When nonlinearity contains derivatives of the
unknown function, we again encounter the derivative loss difficulty, so it seems that

the method of Shatah also does not work well for this case.

2. Quadratic nonlinear Klein-Gordon equations in 1d

When n = 1, in [19] the large time asymptotic profile of small solutions to the
Cauchy problem (1.1) was obtained without the restriction of a compact support
on the initial data which was assumed in [3]. One of important tools of [3] was
based on the transformation by hyperbolic polar coordinates following [25]. The
application of hyperbolic polar coordinates implies the restriction to the interior of
the light cone and therefore requires compactness of the initial data.

In order to state the result in [19], we change u = % (v + 1 (iV)’l 'z}t> in (1.1)
with m = 1, where <1V>'= V1 — A, then u satisfies the following Cauchy problem

{ Lu=1it (V) (u+T)°,(t,2) € R xR,

(2.1) u(0,2) = ug (), € R™;
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where £ = 8;+i (iV),ug = 3 (vo +i(iV)7! v1> - We denote the Lebesgue space by

L? = {¢ € &; |9l < 0o}, with the norm [|¢[l, = ([ ¢ (2 |pdm) VP i1 < p < oo
and ||¢||Le = sup,cgrn |¢ (2)] if p = 0o. The weighted Sobolev. space is

H = {¢ € L ()" (iV)" I, < o0},

for m,s € R, 1 < p < 00, where (z) = 4/1+ lxlz. For simplicity we write H™*® =
HJ"*. We usually omit the index zero if this does not cause confusion, e.g. we
write H™ instead of H™C, We denote the Fourier transform of the function ¢ by

A 1 .
Fo=¢= - /e"x"sd)(m)dw
T 2m?
Then the inverse Fourier transformation is given by

-1 1 iz-£ d
F= [ e <oterae

Our main result in [19] is the following.

Theorem 2.1. Let m = 1, ug € H?! and the norm ||uo|l g2 = €. Then there
erists €9 > 0 such that for all 0 < € < €¢ the Cauchy problem (2.1) has a unique
global solution u (t) € C ([0,00); H?1!) satisfying the time decay estimate

o=

lu ()l < Ce(1+12)"
Furthermore there ezists a unique final state uy € L such that

< Ctd-s,
LOO

’fei(ia;,;)tu (t) _ a+e-—iﬂ|u+|2 logt

and the large time asymptotics

2
z =~ z o 0%
X exp (zﬂ( tz—x2> uy < t2—x2> lobt>+0<6t )

is valid uniformly with respect to x € R, where 6 (z) =1 for 2| < 1 and 6 (z) =0
for |z| > 1, 6 is a small poeiﬁve constant and

201 9 (57 + 579

There are some works devoted to the study of the cubic nonlinear Klein-Gordon
equation

(22) { vtf+v—vx1=/\v37 (t,df)ERXR,
' v(

0,2) =ao (2),v:(0,2) =v1(2), z€R

with A € R. When A < 0, the global existence of solutions to (2.2) can be easily
obtained in the energy space, however which is not sufficient to imply the large
time asymptotic behavior of solutions. The sharp L - time decay estimates of
solutions and non existence of the usual scattefing states for equation (2.2) were
shown in [8] under the condition that the initial data are sufficiently regular and
have a compact support.
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Some sufficient conditions on quadratic or cubic nonlinearities were given in [3],
which allow us to prove global existence and find sharp asymptotics of small solu-
tions to the Cauchy problem with small and regular initial data having a compact
support. Moreover it was proved that the asymptotic profile of solutions differs
from that of the linear Klein-Gordon equation. Compactness condition on the data
was removed in [11] in the case of a real-valued solution, When the initial data are
complex-valued, the global existence and L - time decay estimates of small solu-
tions to the Klein-Gordon equation with cubic nonlinearity ivlz v were obtained in
[33] under some conditions of regularity and a compact support of the initial data.
As far as we know the problem of finding the large time asymptotics is still open
for the case of the cubic nonlinearity v3 with the complex-valued initial data.

Existence of scattering operators in the neighborhood of the origin in the space
H'* 21 N H?%! for the super critical nonlinear Klein-Gordon equation

Uy — Autu=p ]uI”_1 u, (t,z) e RxR",

was proved in [13], where p > 1+ 2, 4 € C, n = 1,2 (see [6] in which the case

n=3p>1+ % was treated). The same method is useful for a system of equations

2

—2
O2vy — Avy + mivy = [P vy,
~2
B2vy — Avy + mug = [vg|P* vl

Note that the mass condition is not needed in the super critical case p > 1+ % The
regularity of order 14 % was required for the above problem to obtain the sharp
L - time decay estimates. Non existence of usual scattering states was studied in
[9], [28] for the case of sub-critical and critical nonlinearities [v[" ™' v with p < 1+ 2
and space dimension n > 2. However non existence problem is still open for n = 1
and 1 < p < 3.

In [15], we used the method of normal forms of Shatah to obtain a sharp asymp-
totic behavior of small solutions to the Cauchy problem for the quadratic nonlinear
Klein-Gordon equation Lu = ¢ (i@x)_l %2 without a condition of a compact support
of the initial data. In [15], we have used the fact that the bilinear Fourier multiplier
operator

iz(€+n) 5(5) QZ (n) .
faee Ex )+ @ + ) s

has the Hélder type estimate |7 (¢,%)| 1, < Cl|élle 1¥]lL-, where 1 < p < g,r <

! o a =1 2
00, % = é— + 1. However the case of the general nonlinearity i (:8,) ™" (u + u)? was
an open problem since we need to estimate the bilinear Fourier multiplier operators

i 0©OP)
/Rae T — (&) — () edn

and

eiz(E+n) é (€)% (n)
Jo T GEXCI

In [19] we proved the desired estimates for these bilinear operators. In order to
remove the quadratic term from (2.1), we multiply both sides of (2.1) by the free
Klein-Gordon evolution group FU (—t) = Fe(i%%) = & F and put o, (t,&) =

75



76

NAKAO HAYASHI AND PAVEL I. NAUMKIN

et (¢, €) to get

3
(2.3) Bup (6,8) = i (O O F (@ +1?) = 31,
j=1
where
_ b tere-mr g o -~
‘ll 2\/2_7T<£>‘/1;‘6 Sou( )n E)Lpu( ) 77) 77>
_ [ o ate--m—ty (e d
I 2\/5;(5)/Re @, (8, € —m) @, (t,m)dn,
oot it ((€)— (=) +(n) N oTTE Tdn,
3 \/27(5)/6 Pu (t,€ —n) py (t, —m)dn
Define the bilinear operators
etz(€+m) déd
T 00) @) = 5= [[ e m, (€3 (€)% () dedn
with symbols
A
e I T EXGEX )k
A
"G = e e — @O = @)
ms (67 ) A

2+ ((E+n) = &)+ )

Then we have

I = 8, MO FT, (7,7) — 2¢O FT; (7, Lu),

Iy = 8,6¥ FT 5 (u,u) — 28 FT (u, Lu),
and

I3 = 8, FT3 (u,T) — ¢*® FT3 (u,Lu) — e*©FT5 (Lu,T).
Therefore returning to the function u (t,2) = U (t) ]-"E__fl_cpu, we get from (2.3)
L(u—T(w,7) - T2 (v,u) — T3 (u, W)

(2.4) = —27; (g,Lu) — 275 (u, Lu) — T (u, Lu) — T3 (Lu,T).

Denote the symbols

ma (€,m) = 15 (2m1 (€,7) — m3 (7,8) ()™
ms (&,m) = ~i% (22 (6,7) = ms (€,1)) ()

and the corresponding bilinear Fourier multiplier operators by 74 and 75. In view
of (2.1) we find '

[’(u - 7-1 (-ﬁ>ﬁ) - ’TQ (u)u) - 773 (uvﬂ))
(2.5) =T (a (H+u)2> +'f5‘(u, (H+u)2>.

Thus we consider the cubic nonlinear nonlocal problem. This is the target equation
which we study. We note that the nonlocal nonlinearities of the right hand sides of
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(2:5) include the resonance nonlinearities which are not removable by the method
of the normal form.

3. Bilinear operators and their estimates in 1d

We write the bilinear operators 7; as
1 v Y Y
7} ((b,'lﬁ) = '2'— // ddeK;'jla ,(yaz) <Zacc>r Qb(IB - y) <Za:c> ¢ (33 - Z)a
v R2 .

where the kernels K (y, z) = fgjyf,;jz (( OHTH M my(&n )), 1<5<5.
- In the next lemma we state the estimate of the kernels K; " (y,z) without a proof
(see [19]). Define o; =0 for j = 1,2,3, and 0; =1 for j = 4, 5.

Lemma 3.1. Let u > ~1,v+0; > =1, u+v+0; > 0. Then the estimate
, —4 —4 -1 -1
K™ (y,2)] < Cy) ™" () 1y =)
is true for all y,z e R\ {0}, where 0 < y < fmin(p+1l,v+o;+ 1, u+v+o0;).

Next we give the estimate of the bilinear Fourier multiplier operators 7 (¢, )
defined by the multiplier m (&, 7)

T =g [[ e men 3 dean
=5[]ttt 6w,

where K (y, 2) = }'E_jyf;j,z‘fn €&n).
Lemma 3.2. Suppose that a kernel K (y, z) obeys the estimate
K (3,2)] <C )™ () Wl
forally,z € R\ {0}, where v € (0,1). Then the following estimates are valid
17 (6,9 le < Clidllno 14llLr

127 (¢, ¥)llrs < C (l2llpe + 6llLe) ]l

and
IPT (6, 9)llLs < C(IPEllLa + 1101 ]lLa) 1] -
+ Cligllea (Pl + 18ellL)
for
1<p<g g Soo s = 4oz l,+l,
r q9 T 49 r

provided that the right-hand sides are finite, where P = t0, + z0;.

For the proof of Lemma, 3.2, see [19} Application of Lemma 3.2 to the bilinear
Fourier multiplier operators

T8 = 5 [ s (,2) (6006 (0 - ) (02" b (2 - 2)

yields the following result.

77
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Lemma 3.3. Let p> —1, v+0; > =1, p+v+0; >0, > -1,V +0; > -1,
v +0;>0,0;=0forj=1,2,3, and o5 = 1 for j = 4,5. Then the following
estimates are valid

175 (6, ¥)le < Cli6llpn
1275 (¢, W) lLs < C ldllggpn 19l

¢”H: J

and .
IPT; (6, D)ls < C (IPolly + 10z ) 1461
+C 1l (1Pl + N0l )
for1< 5 <5, where |

1
+ +;‘—,,

| =
) -
i
“Q\I)—A

1
1 S PS q,r,q’,r’ S o0, — =
p

provided that the right-hand sides are finite.

For the proof of Lemma 3.3, see [19].
4. DECOMPOSITION OF THE FREE KLEIN-GORDON EVOLUTION GROUP

We decompose the free Klein-Gordon evolution group U (t) = e 0t = F-LE(t) F,
where E (t) = e similarly to the factorization of the free Schrodinger evolution
group. We denote the dilation operator by

1 z -1
Dy = —— (—) D)™ =D
w¢ md’ W ( w) 1 :J
Define the multiplication factor M (t) = e~®{2)%() where 6 (z) = 1 for |z| < 1
and 6 (z) =0 for |z] > 1. We introduce the operator

(B (€)) (2) = g (?%) |

(z:r)%

The inverse operator B~ acts on the functions ¢ () defined on (-1, 1) as follows
1 £

B @) © = 7o (5)

( ) 3 \(©

for all £ € R. This follows by setting § = ch—)- € R and deducing z = T% € (-1,1).
We now introduce the operators

V(t) = B M (t) Dy L F~le )

and
W(t) = (1 — 0) D LFLe itO
so that we have the representation for the free Klein-Gordon evolution group
U () FL = e i) F=l = F=1e=E = DM (2) (BY (t) + W (1))
(4.1) =DM (t)B+D:M(E)B(V(t)—1)+ DM (t)W(t).

The first term D, M (t) B¢ of the right-hand side of (4.1) describes the well-known
leading term of the large time asymptotics of solutions of the linear Klein-Gordon
equation Lu = 0 with initial data ¢ and is in the inside of the light cone. The
second term of the right-hand side of (4.1) is considered as a remainder term which
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is in the inside of the light cone, whereas the last term represents the large time
asymptotics in the outside of the light cone which decays more rapidly in time. We
also have

FU (—t) = Fetli%) = MO F = =1 (1) B7IM (t) D, + WL (t) Dy
=B M @)D+ (V) - 1) B ()DL + WL () Dy L,
where the right—invérse operators
V7L(ty=E(t) FD:M (t) B
and
W H(t)=E({t)FD,(1-6),
where E (t) = e,

5. OUTLINE OF PROOF OF THEOREM 2.1

Application of the operator FU (—t) to equation (2.5), factorization of free Klein-
Gordon operator and the estimates of bilinear operators by Lemma 3.3 yield the
ordinary differential equation

B FU (—t)u = it Q (&) (FU (—t)w) |FU (=t)u]* + R

for all ¢ > 1 uniformly with respect to £ € R, where R is a remainder term. By
changing the dependent variable

W (t) = (FU (~t)u) e~ FIFUCETumP S
to get the desired a-priori estimate || FU (—t) u|| . < C. Main problem is to prove
R is the remainder term in the function space

X = {ue C([0,1];L%); lulx, < oo},

where

“u”xT

= sup (07 e @l + O I1GVIU )2t (~H) 0 Ol + @ F o @)oo )
te(0,T)

and v > 0 is small. We have used the operator 7 since J = (V) U (t) 24 (—t). For
the details of the proof, see [19].

6. A system of quadratic nonlinear Klein-Gordon equations in 2d

We consider a system of equations (1.2). In the same way as in the derivation
of (2.1), by changing the dependent variables u; = % (vj +1 (ZV);: 8tvj) , we find
that u; and uy satisfy the following system of equations-

Lo, ur = 2 (iV) 1 (Reuy) (Reug),
(6.1) o fon—1 2
Loyug = 26 (iV), - (Reup)”,

where L, = 0y +1(iV),,, (iV),, = vVm? — A, To state our results in [20] we

introduce the function space

Xoo = {¢=(¢1,45) € C ([0,00);L%);]¢llx_ < oo},

79
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where the norm
2

Iollx., =30 s {145 (0l

j=1"€10
and the norm Y is defined as follows

1-2
l6 @Oy = sup OISO apoa)
Lg<5ts H, ‘
with 1 < 0 < 2, p > 0. We also denote
Xoo,p = {¢ € C([0,00);L%); [I¢llx, <P}

Our first result in [20] is the existence of solutions to the Cauchy problem (6.1)
with the initial data ug = (u1,0,u2,0) -

Theorem 6.1. Let my < 2my. Assume that initial data ug € H_ H*, n > o,
+
€

o € (1,8], with a norm |luollgr  ~ps < & Then there exists € > 0 such that

the Cauchy problem (6.1) unth the initial data ug has a unique global solution u =
(u1,uz) € C([0,00); H*) satisfying the estimate |lullx_ < Ce%. Purthermore for
any small ug € H*, NHF there exists a unique scattering state uy = (u1,4,u2,4) €

b Eay
HH* such that

lim Z lluj —miv)“'Ju +H = 0.

t—o0 HH

We next consider the final state problem. We suppose a final value uy € H;‘:—- N

H* and solve equation (6.1) in the functional space X, under the final state
condition

2
(6.2) S Huj (6) — e Mgy

as t — oo. The last estimate means that we look for solutions of (6.1) in the
neighborhood of a free solution in L? - sense.

Theorem 6.2. Let my < 2m,. Assume that the final value uy = (ug 4,u2,4) €

H‘z‘iv NHA u> 0,0 € (1, %]v, with a norm ||u0||Hy‘1 s < €. Then there ex-
+e
ists € > 0 such that equation (6.1) has a unique global solution u = (ui,uz) €

C ([0, c0) ; HH) satisfying the estimate |lullx_ < Ce? and condition (6.2).

We next state the existence of the scattering operators. We introduce the func-
tion space Xoo = {d) = (¢7,¢5) € C([0,00); L?); ”d)]lxw < oo} , where the norm

2

ol = 22 sup (165 Ollgo + 1,05 Ollo-s
te[0,00

J=1

+ 1185 Ollggos + P85 Ol ) -
We also define

Pt

cop = {6 € C (0,001 L3):1dl1x,, < p}
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where the operator
~7m — <Zv>m e—i(iV)mtxe’i(iv>mt — <'Lv>m T+ itV

is analogous to the operator z + itV = e~ ¥8zeT2 in the case of the nonlinear
Schrédinger equation (see [10]) and commutes with Ly, @ [Lony Tin] = LinTm —

ImLm = 0. However 7, is not a purely differential operator, so it is apparently .

difficult to calculate its action on the nonlinearities. We also use the first order
differential operator P = tV + z8; which is closely related to 7,, by the identity
P = Lz — 1Ty, It acts easily on the nonlinearities and almost commutes with

Lo : [Lom, P] = =i (iV) "' VL,,, where we applied the commutator [m, (zV)’i] =
B2

BGVIT?Y.

Theorem 6.3. Let mg < 2my. Assume that initial data ug € H!, o € (1, %] ,
with a norm |[ug|ge,r < €. Then there ezists € > 0 such that the Cauchy prob-
lem (6.1) with the initial data uo has a unique global solution u = (ui,uy) €
C ([O, 00); HO'1) satisfying the estimate flullx < Ce?. Furthermore for any small
ug € HO, there exists a unique scattering state uy = (u1,4,uz2,+) € HO! such that

) .

7=1

LIV

mj 1[,.,]' (t) _— 'U/j‘_‘_”HU,I b d O

ast — oo.

Finally we consider the final state problem for equation (6.1) in the functional
space X, under the final state condition (6.2) with a final value u, € H!,

Theorem 6.4. Let my < 2m;. Assume that the final value u, € HY 0 € (1, -?—] ,
with a norm |luy|go. < €. Then there ezists € > 0 such that equation (6.1) has
a unique global solution’ u = (uy,uz) € C ([0,00);H'Y) satisfying the estimate

lullx < C’E% and condition (6.2).
Remark 6.1. We denote by

2
Hyo = 0 6= (91,62) € Hp*; 6l = D |65l <

Jj=1
By Theorem 6.4, there. exists the wave operator
(6.3) Wi tup € HY — u(0) € H;”lg.

\E
Theorem 6.3 is valid for the negative time and we find that there evists a unique
global solution u = (uy,u3) € C ((—00,0]; HO'Y) of (6.1) with the initial data u (0) €

51 L] , N p y
H",. Furthermore for any small u (0) € H’ L., there ezists the unique scattering
23

2, £
1 _
state u_ = (u1,—,us,-) € H° 4 Thus we have the inverse wave operator
5 b 2,5;
- 1 1
(6.4) W=lu(0) e HT s —u_ € H .
2¢% 2.8

Then by (6.3) and (6.4) we can define the scattering operator

S=WI'W, :uy € Hg’sl —u_ € H;’lé.
£

. . . —1 . ,1 o,l
The inverse scattering operator S~™' is also defined from. H; 4 to H2 re
& &

81
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Under the mass condition 2m; > mg in Proposition 7.1 below we state the
estimates of the bilinear operators associated with the system (6.1) and apply them
to derive a-priori estimates of solutions to (6.1) as in the previous works [16], {17},
[18] where a single equation was treated. Our conditions are more natural ones
on the data comparing with the previous papers (see, [26], [29], [30] for a single
equation and [32] for a system of equations, where the higher order derivatives for
the data were assumed). Our result on the existence of the scattering operator in
H!*%1 §> 0, is new even for a single equation, see [16], [17], [18]. We note that
global existence in time of solutions for (1.1) was obtained in an almost energy
H'*S class recently for n = 2 in [7], where 6 > 0.

It was shown in [32] that a small solution (v1,v2) to the Cauchy problem for
system (1.2) exists globally and is asymptotically free under the non resonance
mass condition 2m; # mg and rather strong hypotheses on the initial data, See
[14] in which the final value problem of (1.1) was considered with the final data
which are in H¥1NH?! by using the method of algebraic normal forms by Sunagawa
[32]. This method works well for (1.2) under the mass condition 2m; # ms. Global
existence and time decay of small solutions were obtained in [24] for the resonance
case 2m; = ma, under some regularity and compactness conditions on the initial
data, see also [23] for another resonance case, whereas the large time asymptotic
profile is not well known for the case of 2m; = m; for (1.2).

Under the mass condition 2m; > mg, we give a positive answer to the scattering
problem in an almost natural weighted Soholev space H'+%! with § > 0. Another
point of our theorems is to say existence of the scattering states and wave operators
in the lower order Sobolev space H]%t‘sé NH*. It seems that the method of algebraic

normal forms by [32] does not work well for the construction of the scattering
operator even if we consider the problem in higher order Soholev spaces. On the
other hand, the method of algebraic normal forms works well for a proof of global
existence of solutions in the case of 2m; < mgy. However our proof depends on
Proposition 7.1, and so does not work for this case. Thus the existence of the
scattering operator is an open problem for the case of 2m; < my.

Since the Klein-Gordon equation is a relativistic version of the Schrodinger equa-
tion, it is interesting to compare our results with those concerning the system of
nonlinear Schrodinger equations in two space dimensions

{ i@tul -+ -2—711—A’LL1 = u_1u2,

(6.5) 2

iatu2 + mAUQ = uy.

In [21], time decay of small solutions of the Cauchy problem (6.5) and the non
existence of the usual scattering states were studied under the resonance mass
condition 2m; = my. However the existence of the modified scattering states is
not known. For the non resonance case 2m; # mo and m; # mg, there are no
results for the global existence of solutions to the Cauchy problem for the system of
nonlinear Schrodinger equations (6.5). On the other hand, the final value problem
was studied in [22] and the wave operators were constructed as follows. Define the
homogeneous Sobolev semi-norm by

1= -2)% s

L2

. —2b
Proposition 6.5. Let 2m; # mg, mi # my. Assume that ¢, € H"?NnH
¢y, € H®2. Then there exists € > 0 such that for any (¢14, boy) with the norm
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“qﬁH”HM -2+ H¢2+”H0,2 < ¢, the system (6.5) has a unique global solution

= (u1, uz) € C([1,00) ;Lz) , such that the following estimate

2
(6.6) >
j=1

holds for all t > 1, where % <b< 1l

4 iEs S
uj(t) —e ™",y

‘ <ctb
L2

. —2b
Proposition 6.6. Let mi = mo. Assume that ¢, € H"2NH | ¢,, € H?%2 and
the intersection of support of ¢, and support of o, is empty. Then there ezists

£ > 0 such that for any (¢y4, ¢oy ) with the norm HqSH_H'Hn N |62+ |50, < &
2n

the system (6.5) has a unique global solution u = (uy,us) € C ([1,00) ;L?) such
that (6.6) holds with 3 < b < 3.

Propositions 6.5 and 6.6 correqpond to Theorem 6.4, though the final data con-
ditions and non resonance mass condition are different.

In order to remove the critical nonlinearities, we use the method of the normal
forms of Shatah [31] which requires us to estimate the bilinear operators depending
on the nonlinearities and the Klein-Gordon evolution group Z/{m( ) = e itV
F~ 1 -—zt(E) F.

We define the bilinear operators 7, 4 . by

m =

P

Tone (19)(2) = [ € Loy (6n) FlE)3 () dedn

with a,b,c € R and the symbols

1
42 ((€ +mn), + (€), signb + (n),signe)’

where (z), = 1/a? + lz|%. A direct calculation yields

o (1) 0 e B = e (1) (T4 @) (467 0)

1 A
= g [ SOOI )T (1)
™ R2

La,b,c (5) "7) =

with up (£) = Uy (£) wy (£) and u, (t) = Ue (t) we (t) . Then we obtain the identity

Uy (—1) up (H)ue (t)
= —iatua (_t) /];1,b,c ('U_b',ﬂZ)
(67) +2‘Z’{a (”t) (%,b,c (%’ ﬁc“c) + Za,b,c (L:bum—ﬁg)) )

where Ly = 0y + i (iV), . Next we.get

Un (—8)up (8) ue (£) = F~let&aF (e"“(m)bwb> (e—“@vhwc)

= —i0ly (—t) Ta,—b,—c (up, uc)
(6.8) +ildy (—t) (Ta,—b,—c (U, Letic) + Ta,—b,—c (Lous, ue)) -
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Finally we obtain
U, (_t)muc (t) = Fleit®aF (eit(iV)bw—b) (e,—u@wcwC)
= _iatua ('—t) %,b,—c ("U,—b, uc)
(6.9) +ild, (—1t) (ﬁ’b,_c ([Zbub,uc) + 7:1,_17’~c (up, Lcuc)) .

We now apply (6.7)-(6.9) to (6.1) to remove quadratic nonlinearities from the right
hand sides of (6.1). Multiplying both sides of (6.1) by U, (—=t) and Upm, (—t),
respectively, we obtain

(610)  Ohm, (—t)tr = 5 (V) Unm, (=) (w1 +T07) (w2 + W),

i

(6.11) Oy (—t) up = = (iV) 7} Unmy (—8) (w1 +707)°.

o]

By virtue of (6.7)-(6.9) we find

Um, (—1) (w1 +77) (u2 + 72)

= ‘iatz/{m1 (=t) (Tml,m1,m2 (1, Tz) + Tmlg—m1,~mz (u1,ug)
Ty, —mima (81,82) + Ty imy,—m, (W1, U2))
Fildm, (=1) (Tmama,ma (T, Lmgti2) + Ty ma,ma (Lmy 1, 02)
+ Ty, —my,—ma (U1, Lmau2) + Ty —my,—ma (Lmy U1, U2)
+ Ty, —m1,ma (U1, Ly 42) + Ty, —mymy (L, 1, 02)

(612) +7;nl,m1,—mg (Ul-, Em2u2) + 7;711,m1,-—'mg (Emlul>u2))
and

Uy (—t) (w1 + T7)°
= —iOlm, (=) (Tmy my,my (BT, 81) + Tmg,—my,—m, (U1, u1)
+ Ty, —mymy (U1,T1) + Ty my,—my (T1, 1))
Filhmy (—t) (Tmg,my,my (@, Lmy1) + Tmgimy,my (L, u1,T)
+ Ty, —my,—my (U1, Lmyu1) + Ting,—my,—my (Lo, w1, u1)

+Tm2,-—m1,m1 (ul,['mlul + T’mg,—ml,‘nn (Emlul»m)

(613) +Tm2,m1,—m1 (TE, leul) + ng,ml,—ml (Emlul»ul)) .
We substitute (6.12) and (6.13) into (6.10) and (6.11), respectively to get
Lom, (u1 + Q1 (u1,u2)) = Ci(u1,u2),
(6.14) Lo, (uz + Q2 (u1)) = C2(u1,u2),
where
| o
Ql (ula ’U;z) = f_2' <2v>mi (Tmlyml,mz (u17 u2) + Tml,—m1,—m2 (ul, u'Z)
+Tm1,—m1,m2 (UI,'U,_Q‘) + Tm;,ml,—mg (’Tj‘_l—, u2)) )
1, -1 .
Q2 (ul) = 9 <Zv>m2 (Tm2,m1.7n1 (ul’ ul) + ng,—ml,-—ml (ul, ul)

+Tm2,—m1,m1 (ul"ﬂ—l-) + 7;'12,m1,—"n1 (ﬂl)ul)) )
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Crluwa) = —5 V)t (T (05 Do) + Tongons . (B0, 73)
Ty =y, —ms (U1 Lmgu2) + Doy =my,—ma (Lmy 1, u2)
+ Ty —ma,ma (41, Lma2) + Ty, —myma (Lo, 1, 02)
+ Ty oy —ma (TTs Loy 2) + Tony g, —ma (Long 1, Uz))

and

Co(ug,ug) = —= (zV} g (ng,ml,mx (m, leul) + Ty yma,ma (Emlul,‘u_l)
‘*’Tmz,—mlﬁml (Ul,ﬁmlul) +‘Tmz,—mh—m1 ([‘:mlul)u’l)
+ g —mama (01, Lo 41) + Tong,—maymy, (Lmy 1,71
+ng,7m,_m1 (w7, Emlul) + Ty ymy,—ma (»le uy, ul)) )

Note that we substitute equations (6.1) in the definitions of Cy (w1, we) and Ca (u1, ug),

so that @; and C; are quadratic and cubic nonlinearities, respectively. Thus we can
transform the original system to the cubic nonlinear problem (6.14). However the
estimates of the bilinear operators 7, . have a small order derivative loss (see
Proposition 7.1 below), which does not allow us to apply directly the Holder in-
‘equality, the LP — L9 time decay estimates and the vector fields method. In order to
compensate the derivative loss in the bilinear operators 7 p ., we use the splitting
argument as in the previous papers [18}, [16], [17]

-2 - -2
1= < @ty V> R <z G V> ,
where the first term has a gain of regularity and the second one has a better time
decay. Then we find from (6.1)

Lon,u1 = % <i @1 v) (V)7L (uy + ) (up + )

(6.15) —%(t)Z”"zA (i <t>”*1v>" (V)2 (a4 ) (w2 + ),
Lonus = .;L<z'<t>"“1v> (VYL (uy + )2
(6.16) —%<t>2”‘2A<i <t>”‘1v>— (V) (un+ )2

We apply the method of normal forms to remove the first terms in the right-hand

sides of (6.15) and (6.16)
(6.17) Lo, (ul + @ (t,ur,u2) ) = 34—y o Qak+1 (G un, ug) + G (¢, w1, u2),
. £m2 (U’Z + @2 (t7u1> = Zk:]ﬂg QZk-FZ (tv ul) ~+ 52 (tv Uy, “’2) )

where

~

G () = (1077 9) Q1 (unya), B tyw) = (10”7 V) Qa ),

1

Qs (t,ur,u2) = ~—<t>zu—2A<i <t>u_lv>_ (V) (uy + 1) (w2 + Ta),

Qs (t,u1) <t>2”"2A<z' <t>”-1v>' (V)2 (ur+ )2,
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Qs (t,ur,ug) = 2(w—1t{H**A <Z . V>*2 Q1 (t,u1,ug),

Qslt,iur) = 2(v—1t{H> A <2 (tyr! v>_2 0o (t,u1),

G (tyuruz) = (i (9779 (s, ug), Ga (b, ua) = (i (977 )

86

2
Co (uy,uz).

The first and second terms in the right-hand side of equations (6.17) are the qua-
dratic nonlinearities with an explicit additional time decay, whereas the third terms

are cubic nonlocal nonlinearities. System (6.17) is our target equation.

7. Bilinear operators and their estimates in 2d

We consider the bilinear operators 7, 4+ +. defined by the multipliers Lq 14 +. (§, 7).

By a simple calculation we find for a,b,c¢ > 0
1
-4 2La —b,—c ’ =
T e G = T, T,
Ep+ M+ &+, _ 9&n)
M+2&,m.—2¢& n) k(&)

where v
g&m = &+ M+ {E+m) (M+2E), M. +2(&-1),
h(gm) = (M+2(),n)) -4 n)?,

and M = b% + c% — a?. We write (z), = 1/a? + lz|* and also (z) = 1/1 + |z|°. It is

easy to check the identity
h(€,m) = (M +2bc)® +4(b(n), — c(£),)”
+4.(M +2be) ((€), ()~ be) + 4 (J€*Inf® = (€ - m)*).

Also we have |§[2 ’77[2 — (& n? = (&1mg — {27)1)2. Therefore
h(&m) = (M +2bc)” + 4 (b(n), - c(€),)”
+4 (M + 2bc) ((€), (m). — be) + 4 (E1mz — Eam1)*.
In the polar coordinates
€ = (€] cos ¢, [£]sin ¢¢) ,n = (In| cos ¢,,, [n|sin ) .
we have the identity
(€115 — &om1)? = €17 In® = (& - m)® = [€]* Inl® sin® (¢, — ¢,) -
Therefore we also obtain
h(&m) = (M +2bc)* +4(b(n), — c(£),)?
+4 (M + 2bc) ((€), (n), — be) + 4 [€]° In[* sin? (¢¢ — 6,) -
We assume that a,b,c¢ > 0, and b+ ¢ > «a, then we find M + 2bc > 0. Hence
(7.1) R(&m) 2 CE)° +C )" +4l¢)” nl” sin® (¢ — ¢y)

for all £,7 € R2. The condition b+ ¢ > a requires us the mass condition.
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We can easily see that the asymptotic behavior of the derivatives agag/m,_b,“c (&,m)

is determined by the term (£;71y — 52771)2. Hence a multiplier theorem of Coifman-
Mayer type [1], [2] can not be expected. However the radial derivatives of Lg,—p,—c
yield a decay property with respect to |£| and |n| which enable us to consider the
problem in lower order Sobolev norms.

Our key bilinear estimate is given by

Proposition 7.1. Assume that conditions
(7.2) a,be>0,a+c¢c>b, b+ec>a, a+b>c

are true. Let a, 31,85 > 0 be such that at least one of the inequalities fulfills o > 1,
By +By>1,0r By >1, a+ By >1,0r By > 1, a+ By > 1. Then the bilinear
operators To +b,+c, are bounded from HEI‘ X Hff to H’a, ie.

1 7e,26,4c (£, 9 IIH—a < C'HfHHm 9/l gz

whe'r‘el<p<s2<oo _+;_1 i-1l1<ig2

) 81
We have by the following time decay estimate for the free evolution group
e~ #V)m from [27].
Lemma 7.2. The estimate is true
H o—it(iV)

< o3t ”(N>2'% ¢|

B

L? Lr—1

for p € [2,00].
We state a time déca,y estimate from [13].
Lemma 7.3. The estimate is valid

21
6o < C 5 (161 os + 1Tl s )
for all t > 0, where 2 < q < oo, provided that the right-hand side is finite.

8. OUTLINE OF PROOF OF THEOREM 6.1

We start with the linearized version of (6.17) written as

Lo, <U1 + Q1 (t,01,3) ) = D op=12 @2kt (t,v1,v2) + Cy (t,v1,v2),

Lo, (uz + Q2 (t,v1) ) = 2oy 2 Qakt2 (L, 01) + C2 (L, 01,02)
with the initial data u (0) = ug, and a given function v = (vi,v2), such that
v(0) = up and v € X,p, where p = €% ¢ > 0. The Cauchy problem for (8.1)

defines the mapping v = M (v). We have global existence in time of small solutions
if we prove

(8.1)

IM@)llx,, <Ce<p.
and
IM(©) - Mw)lx., < 5l - vl

These estimates are obtained by the estimates of the bilinear operators 7.1 and
time decay estimates Lemma 7.2. By the contraction mapping principle, we find
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that there exists a unique solution u of (6.17) such that ||ulx_ < p. By the integral
equation associated with (6.17) we obtain

e iV, (ul (t) + @1 (t,u1,uQ)> — e VIm, (u1 (s) + él (s’ul’UZ))

t
= / eV, Z Q2k+1 (T,u1,uz) + C1 (T, u1,uz) | d7
S k=1,2

and
V), (ug (t) + @2 (t, u1)> — &V m, (u2 (s) + @2 (S’ul))

i
_ /esz)mZ ZQ2k+2(¢’u1)+C2(T,ul,u2) dr.
S k=1,2

Existence of scattering states is obtained by showing

it(iV) < C -y
<cl)

e

miyy (t) _ eis(‘iV)mlul (3)

for all t > s > 0. From this estimate we have a unique scattering state u; € H?
such that

up (t) — eV iy

< ‘vt".'y
W SO0

as t — oo. In the same way, there exists a unique scattering state up 4 € H? such
that

”uz (t) - C_Miv)”‘*uz&H <Cc{.
This completes the proof of Theorem 6.1.

9. OUTLINE OF PROOF OF THEOREM 6.2

Multiplying equations of system (6.17) by e V)m and € Vm, respectively
we write
it(iV A it(iV 5
8,1V my (u1 + Q1 (t,ul,ug)) = MV, Z Qak+1 (¢, ur,uz) + Cy (Hu,u2) |,
k=1,2
B,V Im, (ug + Q2 (t,u1)> = iV, Z Qak+2 (¢, u1) +Co (¢, u1,u2)
k=1,2

By the condition u € X, and Lemma 7.2 we have the estimate

(9.1) HUHHo(f ) <Cc@® 7 ullx,,
for 0 < ¢/ < g, wherer (¢’) = 5:;4:&-,— Then in view of Proposition 7.1 and estimate

(9.1) we obtain

’

| “’“““”llmz - o “’“ﬂ“mg | Sl R

Therefore we have

(9.2) ”@1 (t,uhuz)HY + “@2 (t,u1)

o
Y



89

ON QUADRATIC NONLINEAR KLEIN-GORDON EQUATIONS

as t — oo. Hence the integral equation associated with the final state problem for
(6.17) can be written as

ur () = —Q1 (t,u1,u2) + eV Iy
w . . ~
(9.3) —/ e~ T | N Qopeyr (Tyur,u ) 4 Ca (7, un,u2) | dr
t. k=12
and
u (t) = — Q2 (t,ug) + eV mauy
‘m . . 4 ~ .
04) = [ SO S Qua () 4 G () |
4

k=1,2

We next assume that v € X, p = £% and consider the linearized version of (9.3)
and (9.4)

Ug (t) = ~@1 (t,’vl,'l)z) + €_i<iv>"”'1tu1?+

[ o]
(9.5) —/ e V), (82T) Z Qoky1 (G v1,v )+ Cy (E,v1,v2) | dT
t k=12

and
ug (t) = =Qs (t,v1) + eV uatyy o
< i (1 V t A
(9.6) — / e V), (027) Z Qak+2 (t,v1) + Ca (t,v1,v2) | dT,
t k=12
which defines the mapping u = M (v) . Theorem 6.2 comes from
M@, < Cet

and

—

IM @) = Mw)x,, <5 lv-wlx,-

10. OUTLINE OF PROOF OF THEOREM 6.3

From Proposition 7.1 we obtain

Lemma 10.1. Assume that condition (7.2) is true. Leta € [0,1], a+5; > 1 , By >
1 orﬂl > 1, a+62 > 1, anda+ﬁ3 > 1,8, >1,0r B3> 1, a+ B4 > 1, and
L + % - ﬁ, =T ;1; = %— = 1< 14,0, L2 Theﬂ the follmmng estimates are
vahd

”xTa,:i:b,fcb (‘baw)“H—a <C “¢”Hfll'1 ”"b”Hsz
and
IPT etb e (68w < C (IPOlgsr + 106 lgszs ) Izt

+C10lzy (IPYllsa + 108lags )

provided that the right-hand sides are finite.
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10.1. Outline of Proof of Theorem 6.3. We apply the contraction mapping
principle in the function space X . As in the proof of Theorem 6.1, we consider

the mapping u = Mv defined by (8.1) with v € ioo,p = {¢> € ioo?-uqb”xw < p},

where p = 6%, € > 0. Note that u also satisfies the linearized version of system
(6.1)

(10.1) { L1 = 2 (iV),,, (Revy) (Revp),

Lom,uz = 21 (ZV) ' (Revy)?.
The desired a priori estimate
(10.2) [ullx < Ce+ Cp?

comes from the estimate

2
(10.3) > N Ton, s
j=1

o1 S Ce+Cp?
which requires the estimate

2
(10.4) Y Pl < Ce +Cp (1)
j=1
For the proof of (10.4), see [20]. In the same way as in the proof of (10.2), we have

(10.5) [ Muv — Mw”x - ||v - w”xw

By (10.2) and (10.5) we find that there exists a unique solution of the integral
equation associated with (6.17) in X . Tme decay estimate of Theorem 6.3 follows
from (10.3).

10.2. Existence of scattering states. We consider the existence of scattering
states by the integral equations associated with (6.17). In the same way as in the
proof of Theorem 6.1 we have

(10.6) 1 V0m, u; (t) — eV, uj (S)HH“ < Cp(s)™”

for t > s > 0. By (10.4) we find that

(10.7) Vs (Pu) (8) — &V )my ” < Cps)™

for ¢ > s > 0. We again use the identity 7, = P —.zﬁmjx to obtain
TImu1 = 1Puy — i [Lyy,2]ug — ix[lmlul

(10.8) = iPuy —i[Lmy, 2] ur + 22 (ZV) (Reuy) (Reug) .

Changing =z = (iV);Lj Tm; — itV (iV)mj and applying the estimate ||@|g.-1 <
C “d)”L’Z‘E? we find

|zug (t) ug (8)|gv—1

12 6932 T,

IN

 tCt Hugv (zV)%i u1‘

Hv-1

IA

Cllull gty (|69 Tyt | s + Ctlull? s,
< Cllull psy 1T, utll + Co? )77 < CP2 (1)
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Therefore we get

i(iV),, £) — V), s )H
“93( 1U1() € g Ho

eVt Ty (8) — €0V T s (S)Hm <Cp ()7

This completes the proof of Theorem: 6.3.

11. OUTLINE OF PROOF OF THEOREM 6.4

By Lemma 7.3 we get the estimate
Iy Ollgy < € 07 (uujnm [Tyt < Cllully, (877

for all ¢ > 0, where 2 < ¢ < 57 U, o =0-2+ %. Therefore as in the proof of
Theorem 6.2 we can write the integral equations (9.3) and (9.4) associated with the
final state problem for (6. 17) Then to apply the contraction mapping principle we
assume that v € Xoo o P = % and define the mapping © = M (v) via the linearized

equations (9.5) and (9.6). Iri the same way as in the proof of Theorem 6.3 we have

IM@)lx,, < Ce+CpP,

[M(v) = M (w)llx, *Ilv—wﬂx

and

e_it(iw"wu +“ < Cpt
L2

H“j (t) -
for all ¢ > 0. Thus we show that there exists a unique global solution u €
C ([0,00); H) of (6.1) satisfying the estimate [|ufy_ < Ce3 and condition (6.2).
This completes the proof of Theorem 6.4.
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