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Abstract

This note is based on the works [5], [7]. We study the level statis-
tics of one-dimensional Schrédinger operator with random potential
decaying like 7% at infinity. We consider the point process £, con-
sisting of the rescaled eigenvalues and show that : (i)(ac spectrum
case) for a > %, &1 converges to a clock process, and the fluctuation
of the eigenvalue spacing converges to Gaussian. (ii)(critical case) for
a= %, &1, converges to the limit of the B-ensemble.
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1 Introduction

1.1 Background

We consider the following Schrédinger operator

2

d 2
H:= 7t a(t)F(X;) on L*(R)

where a € C* is real valued, a(—t) = a(t), non-increasing for ¢ > 0, and

satisfies
Cit™* < a(t) < Cot™®

for some positive constants C;,Cy and a > 0. F is a real-valued, smooth,
and non-constant function on a compact Riemannian manifold M such that

(F) = /M F(z)dz = 0.

{X:} is a Brownian motion on M. Since the potential a(t)F(X;) is —%-
compact, we have o.(H) = [0,00). Kotani-Ushiroya[3] proved that the
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spectrum of H in [0, 00) is

(1) for a < % : pure point with exponentially decaying eigenfunctions,
(2) for @ = 1 : pure point on [0, E;] and purely singular continuous on
[E., o0) with some explicitly computable E.,

(3) for a > £ : purely absolutely continuous.

In what follows we discuss the level statistics of this operator. For that
purpose, let Hy, := H|jo ) be the local Hamiltonian with Dirichlet boundary
condition and let {E,(L)}22, be its eigenvalues in the increasing order. Let
n(L) € N bes.t. {E,(L)}n>n(r) coincides with the set of positive eigenvalues
of H;. We arbitrary take the reference energy Ey, > 0 and consider the
following point process

&L= Z Or(\/Bu(D)-vED)

n>n(L)

in order to study the local fluctuation of eigenvalues near Ey. Our aim is to
identify the limit of £; as L — oo 1.

As for the related works, Killip-Stoiciu [2] studied the CMV matrices
whose matrix elements decay like n~™*. They showed that, &; converges to
(i) a > % : the clock process, (i) a = % : the limit of the circular S-ensemble,
(iii) 0 < @ < 1 : the Poisson process. Krichevski-Valko-Virag{6] studied the
one-dimensional discrete Schrodinger operator with the random potential
decaying like n~1/2) and proved that £, converges to the Sines-process.

Our aim is to do the analogue of their works for the one-dimensional
Schrodinger operator in the continuum.

In subsection 1.2 (resp. subsection 1.3), we state our results for ac-case :

1 s C o — 132
o > 5 (resp. critical-case : a = 3)°.

Here we consider the scaling of y/E,(L)’s instead of E,,(L)’s. This corresponds to the
unfolding with respect to the density of states.
2We have not obtained results for pp-case : o < %
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1.2 AC-case

Definition 1.1 Let p be a probability measure on [0,7). We say that € is
the clock process with spacing m with respect to u if and only if

Efe~¢)] = / " du(9) exp (— S fnr —¢))

neZ

where f € Co(R) and &(f) == [ fdE.

We set
(T)rz =2 — [T]rz, [t]sz := max{y € 72|y < z}.
We study the limit of £, under the following assumption
(A)

(1) a> 3,
(2) A sequence {L;}%2, satisfies lim;_, L; = 0o and

(VEoLj)nz = B+ o(1), j— o0

for some 5 € [0, 7).

The condition A(2) ensures that &7, converges to a point process. If a = 0
for instance, A(2) is indeed necessary.

Theorem 1.1 Assume (A). Then &1, converges in distribution to the clock
process with spacing m with respect to a probability measure ug on [0, 7).

Remark 1.1 Let z; be the solution to the eigenvalue equation : Hyx, = k*z,
(k >0). If we set

Tt [ rsinb, B _
( Ty /K ) N ( r: cOs 0, ) , Oilk) = Kt + 6i(k),

then 0y(k) has a limit as t goes to infinity[3] : limy_oo 04(k) = Ooo(k), a.s.
; wg s the distribution of the random variable (8 + éoo(\/LTo)),rz. In some
special cases, we can show that (O (v/Ep))rz is not uniformly distributed for
large Ey, implying that pg really depends on 3.
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Remark 1.2 We can consider point processes with respect to two reference
energies Eo, E)(Ey # E}) simultaneously : suppose a sequence {L;}32; sat-
1sfies

(VEoLj)az = B+0(1), (VEpL;)rz =0 +0(1), j— 00
for some 3,5 € [0,7). We set

Z 6L(\/—— VE;) €L = Z Js L(v/Ex(L)~\/E})

n>n(L) n>n(L)

Then the joint distribution of §1,,&; converges, for f,g € C.(R),

Jim E [exp (£, (f) = €,(9))]
= /0 d(9,¢) exp (— >_(f(nm =) + glnm - ¢’>>)

where p(p,¢’) is the joint distribution of (B + 0oo(VEQ))rz and (B +
Ooo (\/E}))nz- We are unable to identify u(¢, ¢’) but it may be possible that
¢ and ¢’ are correlated.

Remark 1.3 Suppose we rearrange eigenvalues near the reference energy Ey
so that

< E (L)< E' (L)< Ey < Ey(L) < E{(L) < E5(L) <

Then an argument similar to the proof of Theorem 2.4 in [4] proves the
following fact : for any n € Z we have

LllmooL(‘/E;H(L) —VE/ (L) =7, a.s. (1.1)

which is called the strong clock behavior [1]. We note that the integrated
density of states is equal to VE /7.

We next study the finer structure of the eigenvalue spacing, under the fol-
lowing assumption.

(B)
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%‘< a <1,
A sequence {L;}22, satisfies lim; .o L; = 0o and

\'/EoL':ij"{—ﬂ‘f‘Ej, ]—-)OO
for some {m;}22,(C N), g [O ) and {e;}°2; with lim;_€; = 0.
(3) a(t) =t7*(1 +o(1)), t — o0.

Roughly speaking, E, (L;) is the eigenvalue closest to Ey. In view of
(1.1), we set

X,m) = { (\/ By ni1(L3) = \/Emyen( L)) I =} LTE, me .

Theorem 1.2 Assume (B). Then {X;(n)}nez converges in distribution to
the Gaussian system with covariance

E, L W ,
C(n,n') = C(£) Re/ s 2eein=n)ms9 (1 _ cos2ms)ds, n, n' € Z,
8EO 0
where C(E) := [,,|V(L+ 2iVE IF! dz and L is the generator of (X3).

Remark 1.4 By using the results in [2] we have

+ 0o (VE
Em (L) = VEs - 2 L( ) Ly,
j
where Y; = O(L]-_a—%Jre) +O0(g;L;Y), a.s. for any € > 0. Furthermore by the

definition of {X;(n)} we have
Eny (L) + 85+ A S5 X50) (> 1)

B in(L;) = g
V Emsanl) mxanz—:——;;zlzn X0 (hs-1)

and Theorem 1.2 thus describes the behavior of eigenvalues near B, (Lj) in
the second order.

Remark 1.5 Suppose we consider two reference energies Eg, E)(Ey # Ey)
simultaneously and suppose a sequence {L; }32, satisfies lim;_, L; = oo and

VEoL; =mym+ B +0(1), ELj=mim+08 +0(1), j— oo

for some m;,m}; € N, and 3,0 € [0,7). Then {X;(n)}n and {X}(n)},
converge jointly to the mutually independent Gaussian systems.
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1.3 Critical Case

We set the following assumption.

(C) a(t)=t"2(1+0(1)), t— oo

Theorem 1.3 Assume (C ). Then

/0 ’ ~;—gexp (—Zf(\lfl_l(er + 9)))

nez

hm E[ ) =E

where {U:(-)}i>0 is the strictly-increasing function valued process such that
for any c1,---,cm € R, {W:(c;)}jL, is the unique solution of the following
SDE :

d¥,(c;) = 2¢;dt + DRe {(e”ﬂcﬂ - 1)‘%}

‘1’0(03',) = 0, ] = 1,2, .

where C(Ey) := [, |V (L + 2iv/Ey) 1F| dz, D := 02(50 and Z, is a com-
plex Browninan motion.

Definition 1.2 For 3 > 0, the circular 3-ensemble with n-points is given by

1 ["df db, . .
B — eu o Zna(0 0 . 0|0
En[G] Zn,ﬁ 271' /—w ot G( Ly’ n)IA(e ) € )l
where Z, g is the normalization constant, G € C(T™) is bounded and A is

the Vandermonde determinant. The limit £g of the circular 3-ensemble is
defined

Ele Y] = lim E? |:exp (—if(n@))} , feCHR)

n—o00

‘whose existence and characterization is given by [2]. The result in [2] together
with Theorem 1.3 imply the limit of £;, coincides with that of the circular
(B-emsemble modulo a scaling.



Corollary 1.4 Assume (C). Writing€s =3, 0x,, let £ := 3 0x, /2. Then

&0 € with 8 = B(Ep) = S

Remark 1.6 The corresponding B = 3(Ey) = 58(%’5 depends on the reference

energy Ey, so that the spacing distribution may change if we look at the

different region in the spectrum. To see how 3 changes, we recall some results
in [3]. Let op(\) be the spectral measure of the gemerator L of {X;} with
respect to . Then

1 /% A

Ey=—-=— [ —2 _
1) = —g5 | serqp der(), E>0

is the Lyapunov exponent in the sense that any generalized eigenfunction Yg
of H satisfies

Jim (logt) M og {ws(t)® +Uip(t)'}'” = —(E), as.

Moreover E < E. (resp. E > E.) if and only if y(E) > 5 (resp. v(E) < 3)
and Y(E,) = 3. Since C(E) = 8E - y(E), we have B(E) = —7%5 It then
follows that E < E, (resp. E > E.) if and only if B(E) < 2 (resp. B(E) > 2)
and B(E;) = 2. This is consistent with our general belief that in the point
spectrum (resp. in the continuous spectrum) the level repulsion is weak (resp.
strong). We also note that if 8 = 2, the circular 3-ensemble with n-points
coincides with the eigenvalue distribution of the unitary ensemble with the

Haar measure on U(n).

Remark 1.7 If we consider two reference energies Ey, Eg(Ey # E}), then
the corresponding point process £1,,&; converges jointly to the independent

557 6,,6’

Remark 1.8 We can also prove that £, converges to the Sineg-process [7],
which is the bulk scaling limit of the Gaussian beta ensemble [8]. Together
with Corollary 1.4, we have that the scaling limits of these two beta-ensembles
coincide.
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