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Transformation of Herglotz functions and KdV equation
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Abstract

It is expected to solve the KdV equation
8eq = 839 — 690aq

starting from various oscilating functions such as quasi-periodic functions,
derivative of Brownian motion, etc. Althogh a KdV flow can be constructed
on a space containing some quasi-periodic functions and rapidly decreasing
functions, the space is quite restrictive. In this note an atempt to extend the
domain of the flow is tried by interpreting the Darboux transformation in
terms of the Weyl-Titchmarsh functions and iterating the transformation.

1  Weyl-Titchmarsh functions

Let ¢ be a measurable real valued function on R, = [0,00) and consider a 1D
Schrodinger operator on R

L=L"=-8+q

with Dirichlet boundary condition at 0. Assume L7 is uniquely defined as a self-
adjoint extension of a symmetric operator with domain of smooth functions having
compact supports in R, . For such a function the boundedness is sufficient. Let

Ao = inf spL?,

and assume )y > —oo. Then, the condition on g implies the boundary oo is of the
limit point type, and it is known that for any A € C\ [\, 00) there exists uniquely
f = f;(z,A) modulo constant multiple satisfying

Lf=MXf, and feL*(R,), f#0.



The Weyl-Titchmarsh function is defined by
AR
£4(0,2)
m (A) is holomorphic on C \ [Ag, 00) and maps C, (the upper half plane) into C..

Such a function is called a Herglotz function. Any Herglotz function m has a
representation:

m(A) =m (A q)

m(/\)zomLﬁ/\—{-/_oo (fi/\_lfﬁ2>0(d€)

oo

with a € R, # > 0 and a measure ¢ on R satisfying

* 1
/_ 1+€20(d§)<oo.

o is called as spectral measure of m. For m (}, q) it holds that

suppo = spL? C [Ag,0), (=0,

mov)=at [ (5= ria) o). (1)

0

and

The measure o describes the nature of the spectrum of L? completely.
On the other hand, Gelfand-Levitan theorem states that ¢ can be recovered

from its Weyl-Titchmarsh function m uniquely. Generally any Weyl-Titchmarsh
function m of L? has an asymptotics:

1
m ()) zx/X-i—O(\/X), (2)
as A — oo in a suitable sense. Here iv/\ is the Weyl-Titchmarsh function for
the free potential ¢ = 0, and if a Herglotz function m is close to iv/X like (2),
then it is known that there exists a potential g with its Weyl-Titchmarsh function
as m. In this way, between potentials and Herglotz functions there is a one-to-
one correspondence, and in some cases it is useful to replace potentials ¢ by their
Weyl-Titchmarsh functions.

2 Darboux transformation

Darboux [1] introduced the following transformation of potentials to investigate
the eigenvalues of L?. For A\; € C \ [Ag, 00) set

(Dx,q) (z) = g (z) — 2021og fo (x, M),
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and let us call it as Darboux transformation of q. D, q is real valued for
A < Ao, and

fé (.’II, )‘1)

qu (CL‘, ’\)’ (, =6-’L‘)

fDalq (z,A) = fé (z,2) -

satisfies
Dy, q _
L™ fD,\lq = >‘fD,\1<I'

Since most of the cases we have
fDxlq € L2 (R-i-) )
it holds that

_ fb,\lq(oa)‘) _ /\—)\1
fDxlq(07’\) m()‘>Q) _m()‘hq

m (A, Dy,q) ) ~m (A1, q). (3)

If m (A, q) satisfies the property (2), then so does m (A, Dy,q). An identity

m()\aQ)—m()\l,Q)z/w 1 o(d¢€)
A

A=A s E—AE— N\

shows this function is of Herglotz, hence so is the right hand side of (3), which
makes it natural to define Darboux transformation in the space of Herglotz func-
tions. For any Herglotz function m let

(Bem) () = == = (0),

and call it as Darboux transformation of Herglotz function m. This has meaning
if { € C\R, and sometimes for some real numbers. The following is easily verified.

Lemma 1 For any (1,(, it holds that A A¢, = A¢, A¢,.

Generally, A¢m is no longer a Herglotz function, even if so is m. However, as
we have already seen, if the spectral measure o of a Herglotz function m has a
finite Ay = inf suppo, then A m is of Herglotz for { < Ag. Moreover we have

Lemma 2 Let m be of Herglotz. Then, A¢Azm is of Herglotz as well for any
¢ e C\R.



Proof. Set Ao ¢
RN 2 S
m(A)—m(() m(¢)—m(C)
Then
m\) —-m(() 1 [~/ 1 1
A—C “ﬂ+)\——f _oo(f—)\— )U(dg)

where v = / o¢ (d€), hence

(ﬁ+/_°°5‘<o—<<ds>) (8 +7)

F) = -~ T
/~ o (d€)

Note

pty —AtC

1 - 3 < 1 '3 ~
_/w : )=a+m+/_oo<£—f1+52>”(df)
Y

is valid. Since o is a finite measure, we easily see

=X
lim

A—o0 [ _ 5——)\

ocde) = [ octde) =1

o0
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and B = v~!, hence

e D [ (- i) s,

1= £ ¢ (d€)

Consequently we have

(AcAgm) (N)

(-T —
= f{\) — > 4+m
- om0
—a@ent < L@ [ (- )e
Im( _ e ¢
~ﬁ—+—7+(ﬁ+v)c+a+ﬁc+/_w(§_z—1+§2>0(dé),
and
g
7<,3+~y>InM+<ﬂ+~y>/ T ) £y ImC /m| __Igd(dﬁ)
i m " o
=S @A) [ mEn 20

which proves the lemma. m

Remark 1 For a potential g and real numbers \; satisfying \; < Ao (1 < j < n)
the n-fold iteration Dy, Dy, --- Dy, q can be described as follows. For smooth func-
tions f; (1 <35 <mn)let

fi(z) f2 (z) o fai (T) fn ()
i@ h@ o fia@) S
W(fl,fz,"‘,fn)= : : . .
@) (@) e f » (2) £ » (2)

M) B @) e @) @)

Then, setting f;(z) = f,(z,);) and f = f, (z,\)
{ (D)\lD/\z Tt D)\nQ) (II]') = Q(.’E) - 282 logW (f1> f2a e afm)

W 1,J2y" " sy Jmy
T2, Day Do (8:) = W(J(cflfcfm . ‘,ffm{)
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3 KdV flow

For potential q defined on R one can define a Weyl-Titchmarsh function on R_ =
(—00, 0] similarly, and we denote it by m_ (A, q). The previous one is denoted by

my (€ +10,q) = —m_ (£ +10,q9) forae €€F

holds for a measurable set F' on R with positive Lebesgue measure, q is called as
reflectionless on F'. For Ay, A; € R such that Ay < ); define the underlying space

Doy = {¢; spL? C [N, 00) and g is reflectionless on [A\,00)},

where L7 is a Schrodinger operator defined on L? (R). For g € Q) ,, the Weyl-
Titchmarsh function m, is given by

VAR VAR
M= g (dg) with / BTl o(dg) <1

m(-z2+)\,q)=-z—/ — V= =<
" 1 e A= Ao = ¢

A (=2
Moreover, it is known by Lundina [4], Marchenko [5] that ¢ € 2y, », is holmorphic

on a strip
~1
{z €eC; |Imz| <A —Xo }

with uniform bound
—2
19(2) = M| < 2 (M = Ao) (1 — VA1 = o |Irnz|) .

Therefore, {2, , turns to be compact. Let

['={g; g =¢€", his holomorphic on B 5=}
Trea = {g €T; g(z) €R for any z € B srm; NR}
where
B, ={z€C; |z|<r}.
Then I" and I, become Abelian groups by usual multiplication. In [2],[3] it was

proved that there exists a smooth flow {K (g)},cr,  on 1, satisfies

(K (e7%)q) (z) = q(z +1),

and

a(t,z) = (K () a) (@)
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solves the KdV equation. Actually K (g) can be defined for g € T" and the resulting
potential K (g)q takes complex values on R even if g € 2y, 5,
On the other hand, if we choose

rc(z)=1—§EF for [¢] > VA1 — Mo,

then 7¢7z € [real and it is related to the Darboux transformation as
qc Qz\o,/\1 = K (T(TE) q = DCDZq’

Therefore, noticing for ¢ € C\R such that (™! + Z_l =

e ¥ = lim (1 - ni(> (1 — %) = lim (rperg)” (2),

n—00 n n—00

and, w such that w3 =1, (w # 1)

23

for ¢ € C\R such that (7' + Z_l = —4t we have

3\ "N 3\ N
e’ = lim (1 — z—) (1 - f:)
n--00 nc nC

n
= lim (’r’(nc)x/g’r(nz)l/sr(nc)l/awr(nz)1/3wT(n<)1/3w27‘(nE)1/3w2) (z)

n—oo

Summing up the argument we obtain

Theorem 1 For q € Qy,, and { € C\R such that (™' + ¢ = —4t the limit

n—00

lim (A(nouaA(nz)1/3A(nc)uawA(nz)l/swA(nol/awzA(nz)uawz) my (A, q) (4)

exists finitely and the associated q(t,x) yields a solution to the KdV equation
starting from q.

4 Open problem

In order to construct solutions to the KdV equation starting from more general
functions Theorem 1 suggests the followings:



(1) Determine the class of Herglotz functions such that (4) converges.
(2) Characterize the class of two Herglotz functions (m,,m_) such that the limits

(m!.,m" ) yields potentials (q+ t 2)| e, » a- (&, :L'),xeR_) for which
g (t,z) for zeRy
q(tz) = { qg- (t,z) for zeR_

solves the KdV equation.
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