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Existence of the Fomin derivative of the invariant
measure of a stochastic reaction—diffusion equation
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Abstract

We consider a reaction—diffusion equation perturbed by noise (not neces-
sarily white). We prove existence of the Fomin derivative of the corresponding
transition semigroup P;. The main tool is a new estimate for P;Dy in terms of
llll L2710y, Where v is the invariant measure of P;.
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1 Introduction

Let H = L*(0) where € = [0,1]", n € N ()| and denote by € the boundary of &.
We are concerned with the following stochastic differential equation
dX(t) = [AX(t) + p(X(¢))]dt + BdW (),
(1)
X(0) ==x.
where A is the realization of the Laplace operator A equipped with Dirichlet bound-

ary conditions,

Az = Agx, z € D(A), D(A)=H*(0)nHy(0),
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(This choice is made for simplicity, all result below hold for a bounded domain of & with suffi-
ciently regular boundary (Lipschitz for instance).
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p is a decreasing polynomial of odd degree equal to N > 1, B € L(H) and W is an
H-—valued cylindrical Wiener process on a filtered probability space (£2, &, (%#)i>0, P).

It is well known that this equation has unique strong solutions and that the
associate transition semigroup possesses a unique invariant measure.

The aim of this article is to derive new properties on this invariant measure. If B is
the identity, then the system is gradient and the invariant measure is explicit but this
is not the case in general. If B commutes with A and has a bounded inverse, it follows
from [BoDaR096] that the invariant measure has a density which is in a Sobolev space
based on the reference gaussian measure associated to the linear equation. It has
also been shown in [DaDe04] that under our assumptions, the invariant measure is
absolutely continuous with respect to the reference gaussian measure. Otherwise, not
much is known on this invariant measure.

For as the operator B is concerned, we shall assume:

Hypothesis 1. B = (—A)™"/? where 5 — 1 < v < 1. Obviously this implies that
n < 4.

Remark 2. The assumption 3 — 1 < v implies that the stochastic convolution
t
Wa(t) = / (—A) " 2ED4qW (s), ¢ >0,
0

is a well defined continuous process see e.g. [DaZal4], whereas under the condition
7 < 1 the Bismut-Elworthy-Li formula (4) below holds and implies strong Feller
property on H, see [Ce01]. If v > 1, we need to work with different topologies.

If v < % — 1, equation (1) is not expected to have solutions with positive spatial
regularity and the equation has to be renormalized. This has been studied in [DaDe03]
for n = 2 and more recently in [Hail4] and [CaCh14] for n = 3.

All following results remain true taking B = G(—A)™/2 with G € L(H) and
5 —1 <y < 1. We take this form for B for simplicity.

Also, the assumption that p is decreasing is not necessary and could be replaced
by: p’ is bounded above.

Before explaining the content of the paper, it is convenient to recall some results
about problem (1), that we gather from [Da04]. We notice, however, that Reaction-
Diffusion equations have been recently the object of several researches, see [DaZal4]
and references therein.

We start with the definition of solution of (1).

Definition 3. (i). Let x € L*(0); we say that X € Cw([0,T); H) @ is a mild
solution of problem (1) if X(t) € L?*N(O) for all t > 0 and fulfills the following

DBy Cw ([0, T); H) we mean the set of H-valued stochastic processes continuous in mean square
and adapted to the filtration (%) .



integral equation
t
X(t) = ez —}-/ e®4p(X (s))ds + Wa(t), t>0. (2)
0

(i1). Let x € H; we say that X € Cw ([0,T]; H) is a generalized solution of problem
(1) if there exists a sequence (x,) C L*N(€), such that

lim z, =z in L*(0),

and
lim X(-,z,) = X(-,z) in Cw([0,T); H).

n—o0

It is convenient to introduce the following approximating problem
dXo(t) = (AXo(t) + pa(Xa(t))dt + (= A)2dW (1),
X,(0) =z € H,

where for any a > 0, p, are the Yosida approximations of p, that is

pa(r) = é (r — Jo(1), Ja(r) = (L —ap(:))"*(r), reR.

Notice that, since p, is Lipschitz continuous, then for any o > 0, and any = € H,
problem (3) has a unique solution X, (-,z) € Cw([0,T]; H).
The following result is proved in [Da04, Theorem 4.8]

Proposition 4. Assume that Hypothesis 1 holds and let T > 0. Then

(i) If x € L?N(0), problem (1) has a unique mild solution X (-, x).

(i) If x € L*(0), problem (1) has a unique generalized solution X (-, ).

In both cases iii%Xa(-,:c) = X(-,z) in Cw([0,T); H).
We introduce now the transition semigroup P;
Fip(z) = Elp(X(t,2))], » € By(H)
and the approximate transition semigroup P2
Fo(z) = Elp(Xa(t, z))],  » € By(H).

By By(H) we mean the space of all H—valued real mappings that are Borel and
bounded.
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For P the following Bismut-Elworthy-Li formula holds, see [Ce01].
1 t
(DFp(a) ) = 1 B [p(Xa(t.2) [ (~A)ii(s,0aW(9)] . net, @
0

where for any h € H, n(t,x) =: D, X,(t,z) - h is the differential of X,(t,z) with
respect to z in the direction h and is the solution of the equation

& h(t,x) = Anf(t, ) — p(Xalt, @)t 2), nf(0,2) = (5)

The following result is proved in [Da04, Theorem 4.16]

Proposition 5. Assume that Hypothesis 1 holds. Then the semigroup P, has a unique
wnvariant measure v. Moreover there exists cy > 0 such that

Similarly the approximating problem (3) has a unique invariant measure v,. It is not
difficult to show that v, weakly converges to v and

| 1ogypalde) < cx. @

However, since we couldn’t find a quotation of this fact, we have added a proof in the
Appendix below.

As well known P; can be uniquely extended to a strongly continuous semigroup
of contractions in L?(H,v) (still denoted P,). We shall denote by .# its infinitesimal
generator and by % the differential operator

Sop = 3 T (A" D]+ (2, ADg) + (p(w), D) , € Ea(H),

where &4(H) is the linear span of all real parts of functions of the form
pn(z) =™, z € H,

where h € D(A). We have used the notation D¢ for the gradient of ¢ in H.

‘Similarly, for any o > 0, P can be uniquely extended to a strongly continuous
semigroup of contractions in L?(H, v) whose infinitesimal generator we denote by .£*.
We denote by £* the differential operator defined by

25 = 3T ((A)"D%) + (5, ADg) + (pa(e), D), 9 € &4(H), z € A



Proposition 6. Assume that Hypothesis 1 holds. Then £ is the closure of % in
L*(H,v) and £ is the closure of £& in L*(H,v,).

The first assertion of the proposition is proved in [Da04, Theorem 4.23], the proof
of the latter is completely similar and so, it is omitted.

Now we are ready to describe the main goal of the paper. First, we shall prove the
following integration by parts formula for the invariant measure v. For any h € H
and any ¢ € C}(H) there exists a function v" € L?(H,v) such that

/H (~A)~ D(z), b) v(dz) = / o(z) v(z) v(de). ®)

H

Then we deduce by (8) the existence of the Fomin derivative of v in any direction
A-1p 3

A similar result, concerning the Burgers equation driven by white noise, has been
proved in [DaDel4]. In the present case the proof of (8) is based, as in [DaDel4],
on an estimate of P,Dy depending only on ||¢||r2(#,,). However, the techniques used
here are obviously different.

We believe that our method could be used for other SPDEs as: singular dissipative
equations and 2D-Navier-Stokes equations. Both will be the object of future work.

In Section 2 we prove an identity relating DPf¢ and P2 Dy. Using this identity
in Section 3 we prove the estimate

/H<D%0($), h)v(dz) < Cllellcacua | ARl ¢ € L*(H,v). 9)

Finally, Section 4 is devoted to show some consequences as the definition of Sobolev
space with respect to the measure v.

2 An identity relating DFP p and P*Dy
Proposition 7. For any ¢ € C{(H), a > 0, h,z € D(A), we have
PE((Dola), 1) = (DFEe() ) = [ P2 ((Ah+ Dpal@)h DPo(@))ds, (10

where p* are the Yosida approximations of p.

(®)For the definition of Fomin derivative see e.g. [Pu98].
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Proof. Let ¢ € &4(H), u®(t,z) = PPp(z). Then ¢ € D(£*) and so,

Dar(t,2) = 20 (t,2) = BF (3T (A D(a)] + (4o +57(0), Do) )

Now let h € D(A). Then setting vi(t,xz) = (DP*p(x), h), we have
Dwi(t, z) = L%v;(t, z) + (Ah + pl,(x)h, Du®(t, z))

and by the variation of constants formula we deduce that
t
R6:2) = PRoR(0,) + | P2((Ah -+ @)h, DPSo(a)))ds
0

which is equivalent to

F({(Dy(z), h)) = (DPp(z), h)

-/ P (Ah + Bl (x)h, DPSp(x)))ds.

for all ¢ € &4(H). Since &4(H) is a core for- £* (Proposition 6), the conclusion

follows.
O

Remark 8. Probably identity (10) could be useful also in finite dimensions for SDEs
with non degenerate noise. In fact (10) looks simpler than the formula obtained via
Maliavin Calculus, even if the latter allows to consider non degenerate equations, see
[Ma97], [Sa05].

3 The main result

We first need a lemma.

Lemma 9. For anya >0, T > 0 and any h € H we have

an(T, r)| <|nl, z€H, (11)

/ [(=A)Y2nh(¢,2)|%dt < |B|?, =z € H. (12)
Finally, for any G € (0,1/2) we have

/ (= APt (t, 2)[Pdt < Crg T |hf2, o€ H. (13)
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Proof. By (5) and p), < 0, we have

1d

5 D)+ SICA P = [ Xt )it e <0 (4)

Integrating in ¢ from 0 to 7', yields
P+ [ AP )R <

So, (11) and (12) follow. It remains to show (13).
Let us recall a well known estimate from interpolation. For 0 < 3 < 1/2 we have

(42| < |27 |(—A) /%2, ¥z e D((-4)"?). | (15)

It follows that
T T
| icaynaapa < [ k) (a0 i o)
0 0

Recalling (11) and using Holder’s inequality it follows that

/0 (~A)Prp(t, o) P

/ l 1/2 h t $)|2ﬁdtlh|1 23

g
< T1/2 -B l:/ I 1/2 h t :L‘)l2dt |h|1—2[5‘

Finally, taking into account (12), yields
R e e (16

as claimed.

We are now ready to show

Theorem 10. There exists C > 0 such that for all ¢ € L*(H,v) and all h € D(A)
we have

/ (Dg(x), h) v(dz) < Cll@lli2gm | ARl (17)
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Proof. Let us integrate identity (10) with respect to v, over H. Taking into account
the invariance of v,, we obtain

/H (D(), hyva(dz) = /H (DP2g(x), h) va(de)

t (18
—/ / (Ah + pl(z)h, DPZp(x))ds ve(dz).
o JH
We are going to estimate
| (DPe(@). ) valdo) (19)
and
[ [+ @ oo va(a) (20)

using the Bismut-Elworthy-Li formula (4). First notice that by (4) it follows that
¢
(DPo(@). b < 3 Bl (Xalt, )] B [ ((—A)/2DuXals, 2)bl%ds
0

In view of Hypothesis 1 we can choose now 5 < 1/2 such that

g-—1<7<2ﬁ.

The operator (—A)("=28)/2 is bounded, set
K = ||(-4)077), (21)

Then, since (—A)"/? = (=A)~20)/2(—A)8,
t t
Ef |(—A)2D, X, (s, z)h|*ds < K2IE/ |(=A)’D, X,(s, x)h|*ds
0 0

Taking into account (13) we find

(DPE (@), )2 < iz P @)lA

Equivalently
(DPPp(x),h) < Kt~27P [PX(?)()]M? |hl.



Integrating with respect to v, over H, yields for a function h € L?(H, v,),

/H (DPS (), h(z))va(dz) < Kt~/20 /H P2 () @) 1) lva(dz)

/2
< Kt~/ </ P(¢?) vy dx) (/ |h(z)[Pry d:z:) ,

that is, taking into account the invariance of v,
/I{(Dﬂaw(m), h(@))va(dz) < Kt o)l aae) IRllra v
Now we can estimate (19) and (20). As for (19) we have by (22)
| (DPo(@). Wvaldz) < K gl A

and as for (20)

// (Ah + p.(z)h, DP%p(z))ds dv,

t
< K [ 79 ds ol (48] + I il
Now, using (22) and (23) we deduce (recall that 1/2 + § < 1)

/H (D(z), hYva(dz) < Kt™/28 ||l (a1, 1B]

2Kt1/2 s
————= ll¢lle2@w) (|AR] + (P4 Pl L2(av.)-

(24)

(25)

Setting t = 1 in (25) and letting o — 0, we arrive, recalling Proposition 14 below, at

| (Do), ) vlda) < Clilagna| AR + 1 Bl )

Thanks to Sobolev embedding, we choose r > 2 such that D(A4) C L"(0).

thanks to Holder inequality and (7), there exists C, > 0,C) > 0 such that
”p' hHLZ(H,u) < Cr‘h|Lr(ﬁ) < C:"Ah', Vhe D(A)

Thus the conclusion follows.

(26)

Then
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4 Some consequences of Theorem 10
Proposition 11. Assume that estimate (17) is fulfilled. Then the linear operator
p € Cy(H) = (—A)"'Dy € Cy(H; H),
is closable in L*(H,v).
Proof. Step 1. For any h € H the linear operator
¢ € Cy(H) = ((—A)"' Dy(a), h) € Cy(H)

is closable in L*(H, v).
In fact, let (p,) C C}(H) and f € L*(H,v) be such that

{ ¢on — 0 in L*(H,v),
(=A)" Dy, (x),h) — f in L*(H,v).

We claim that f = 0.
Take ¢ € C{(H), then replacing in (17) ¢ by ¢, yields

/H[w(x)((—A)‘lDwn(:v) +h) + @n(2)((—A) ' Di(z) - h)] v(dz)

< |lentllL2p) |ble < [¥lloo [lenllL2(a) [R]a-
Letting n — oo, we have
| @@ viaz) =0
which yields f = 0 by the arbitrariness of 1, thereby proving the claim.
Step 2. Conclusion.

Let (¢n) C CH(H) and F € C,(H; H) such that
on — 0 in L*(H,v),
{ (=A)"'Dy, — F in L*(H,v; H).
We claim that F' = 0.

Let (ex) be an orthonormal basis on H consisting of eigenvectors of A and let
(o) such that
Ae, = —ager, k€N



Then for any k € N we have
((=A) ' Dypn(z), ex) — ag(F(z),ex) in L*(H,v).

By Step 1 taking h = ey, we see that Dy = D, is a closable operator on L%(H,v)
for any k € N.
So,
(F(-),ex) =0, VkeN
which yields F' = 0 as required.
O

4.1 The Sobolev space and the integration by parts formula

Let us denote by W;?(H, v) the domain of the closure of (—A)~!D. Denoting by M*
the adjoint of (—A)~1D we have

/H((—A)‘IDSO(HS)-F(CU))V(M) =/ p(z) M*(F)(z) v(dz). (27)

H

Let now h € H, set F*(z) = h, Vz € H. By Theorem 10 we obtain
(A7 Dpt@) - F*(@) vlde) < Cllplizgnar | 4R,
so that F" belongs to the domain of M*.

Setting M*(F") = v", we obtain the following integration by part formula.

Proposition 12. For any h € H and any ¢ € Wy*(H,v) there exists a function
v" € L?(H,v) such that

/H (~A4)" Dg(z), h) v(dz) = /H o(z) v"(2) v(dz). (28)

Therefore if h € H there exists the Fomin derivative of v in the direction of A~ th.

Remark 13. Assume that p = 0. Then u = Ng, where Q = —3 A™!. Setting
vM(z) = v2(Q2x, h) (27) reduces to the usual integration by parts formula for the
Gaussian measure y. Notice, however, that in this case we can take h € D((—A)Y?)
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A Convergence of v, to v

Proposition 14. For all ¢ € C,(H) we have

a—0

lim | pdv, = / pdv. (29)
H H

Proof. Let p € Cy(H). Fix a € (0,1], z € H and write

/<pdu—/godua
H H

+|Pp(z) — Fro(e)| +

<

/wW—BWQ
H
(30)

Pro(z) — / pdvy|.
H
Now choosing § such that % <7 < 20 < 1, and taking into account (13), we have
T
/ |(—=A)?ni(t,z)[Pdt < KCOr,gT'~*|hf’, « € H, (31)
0

where K is defined in (21). It follows by Bismut-Elworthy formula that for a suitable
constant C > 0 we have

= ‘ /H [PPe(z) — Pro(y)] Va(dy)l

Pta(p(x)_/ @dl/a
H

(32)
< CtPlglen /H 12— 9l valdy) < CtPlolle (<|z|+ /[ |y|ua<dy>).
Claim. There exists M > 0 such that
/ Wl valdy) < M, Vae(0,1] (33)
H

Once the claim is proved the conclusion follows easily from (30) and (32) and [Da04,
Theorem 4.16]. ()

To prove the claim it is enough to show

E|Xq(t,z)| < M, Vae(01]. (34)

() Since pq is dissipative the proof that lim,—,0 PXp(z) = f g P dva is exactly the same as that in
[Da04, Theorem 4.16].



This can be proved as the estimate (4.13) in [Da04] taking into account that for any
m € N there is K,, > 0 such that

E / (Walt, €)[de < Koy V30, (35)
O

Here is finally the proof of (35). We start from the identity

Wat,6) = 3 / e =) (2| k]2) =%, (£)d Wi (s),

keNn

where
ex(€) = (2m)"2sin(k1&1) - - - sin(knén), k= (k1, ..., kn)-

Therefore for each (¢,£) € [0,400) x €, Wa(t,§) is a real Gaussian variable with
mean 0 and covariance ¢(¢,€) given by

6.= 3 [ D ) e ©)ds (36)
kenn Y0
Since [ex(€)[2 < (2/m)" and y > © — 1, we find
0,6 < 0n) 3 T = Cilny) <o, ¥i20. (37)
Therefore
E(Wa(t, €)™ < Cy(n,y,m), Vt>0. (38)

Finally, integrating in & over €, yields
IE/(WA(t,g))zmdg < Cy(n,y,m) meas. (€), Vt>0,
%

and the conclusion follows.

Remark 15. We have used p' < 0 in (32). If we assume only that p’ is bounded
above, the differential of the transition semigroup may grow in time. However, using
classical arguments (see for instance [Del3]), convergence to the invariant measure
can be proved under this more general assumption.

a
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