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INTRODUCTION

This manuscript is a summary of my talk “Constant terms of Eisenstein series over a,
totally real field” at RIMS workshop “Modular Forms and Automorphic Representations,”
which was held from February 2 to 6, 2015. In his paper [Oh] published in 2003, M. Ohta
computed the constant terms of Eisenstein series of weight 2 over the field Q of rationals,
at all equivalence classes of cusps. S. Dasgupta, H. Darmon and R. Pollack calculated the
constant terms of Eisenstein series defined over a totally real field at particular (not all)
equivalence classes of cusps in 2011 [DDP]. In my talk at the conference, I presented a
computation of constant terms of Eisenstein series defined over a general totally real field
at all equivalence classes of cusps, and explicitly described the constant terms by Hecke
L-values.

This investigation is motivated by Ohta’s work |Oh] on congruence modules related to
Eisenstein series defined over Q. The notion of congruence modules was first introduced
by Hida in the 1980s. Congruence modules measure congruences of Fourier coeflicients
modulo a prime number between newforms (also called primitive forms). Ohta reformu-
lated the notion of congruence modules introduced by Hida in a broader context, and
then defined and computed the congruence modules related to Eisenstein series. In his
computation, the constant terms of Eisenstein series over Q at all equivalence classes of
cusps are necessary.

It is expected to extend Ohta’s work to the case of totally real fields. Ohta himself
used his result to give a finer proof of Iwasawa main conjecture over Q, which was first
shown by Mazur-Wiles. His theory of congruence modules has been applied to several
other important problems in Iwasawa theory.

Such circumstances concerning Ohta’s congruence modules motivated me to conduct
this computation. It must be mentioned, nevertheless, that Ohta’s congruence modules
have not even been defined in the case of totally real fields, and this investigation does
not benefit formulating congruence modules.

Layout. Section 1 is devoted to a brief explanation of Ohta’s congruence modules, by
which this investigation was motivated. In Section 2, we review basics of Hilbert modular
forms and give a precise definition of the Eisenstein series we are going to treat. In the last
section, we investigate the equivalence classes of cusps of certain congruence subgroups,
and compute the constant terms of Eisenstein series at all equivalence classes of cusps.



NOTATION 0.1. Throughout this paper we use the following notation:

e i € C: a fixed square root of —1;
e $: the upper half plane $) = {z € C | Im(z) > 0};
e oo = lim ¢t: the point at infinity;
t—+00
e GL,y(R): the group of all 2 x 2 invertible matrices whose entries are real,

e GL}(R): the subgroup of GLy(R) consisting of v € GLy(R) with det(y) > 0.

Acknowledgements. 1 would like to express my hearty thanks to the organizers Professor H.
Narita and Professor S. Hayashida, for giving me an opportunity to talk at the conference.
I am also grateful to my supervisor, Professor Nobuo Tsuzuki, for his helpful advice and
unceasing encouragement.

1. MOTIVATION: OHTA’S CONGRUENCE MODULES

In this section, we briefly explain the relation of the congruence modules in the sense
of Ohta [Oh] to Eisenstein series. Let k¥ > 2 be an integer, I' a congruence subgroup of
SLy(Z), and M(T') (resp. Sk(T')) the C-vector space of elliptic modular forms (resp. cusp
forms) of weight k and level I'. We let

M(T;Z) = {f(z) = Za(n, f) exp(2minz)|a(n, ) € Z,¥n > 0}
n=0

and put Si(I',Z) = Sk(T") N M(T",Z). We shall first see a toy case of Ohta’s congruence
modules. Let I' = SLy(Z) and k& > 4 be an even integer. We choose a prime number p > 5
so that k # Omod (p — 1). Z, (resp. Q,) denotes the ring of p-adic integers (resp. the
field of p-adic numbers). Hereafter we fix two field embeddings Q@ < C and Q — @p. We
put Mi(T',Z,) = My(T',Z) ®z Z, and Sk(T',Z,) = Sk(I',Z) ®z Z,. We have the following
exact sequence of flat Z,-modules:

(1.1) 0 —> S(T,Z,) — M(,Z,) —>— Z, — 0.

Here A is defined by A(f) = a(0, f). X is surjective because the constant term of the
Eisenstein series

Eu(z) =2"¢(1 - k) + Z Z d*1 | exp(2minz)

n=1 \0<djn

is p-integral and non-zero by our assumption on k and p (von Staudt-Clausen’s theorem).
We give a splitting s : Q, = My(T, Q) = My(T',Z,) ®z, Q, of (1.1) defined over Q, by
s(1) = 2¢(1 — k)" 'E;. Then the congruence module attached to the pair (1.1) and s is
ZP/C(]' - k)Zp-

In order to explain what we need to compute Ohta’s congruence modules, let us have a
closer look at the case where the weight k is 2. For a congruence subgroup I' of SL,(Z),
we let C(T') be the set of representatives of P1(Q) modulo I For each f € M,y(T),
wy = 2mif(z)dz is a well-defined differential form on the compact modular curve X (I')
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associated to T', and hence it makes sense to consider Res,(wy), the residue of wy at the
cusp s € C(T). A residue mapping Resr is defined as follows:

Resy : My(T) = C[C(D)]; f— > Res,(wy)-s.
seC(I)

Here C[C(T')] denotes the C-vector space spanned by the set C(I'). The main point is
that Resr(FE2(n,)) for various Eisenstein series Ey(n, 1) € My(T") are essentially used to
compute Ohta’s congruence modules (here 7, are suitable Dirichlet characters).

2. HILBERT MODULAR FORMS

In Section 2, we first recall the definitions and basic properties of Hilbert modular
forms, and the Eisenstein series constructed by Shimura in [S]. Section 2 is based on
[DDP] Section 2, [H1] Chapter 9, and [S].

NOTATION 2.1. Throughout Sections 2 and 3, we use the following notation:

e F: a totally real number field of degree g;

e O: the ring of integers of F;

e J: the set of the embeddings of F into R;

e F.: the set of the totally positive elements of F;

e GLy(F): the group of all 2 x 2 invertible matrices whose entries are in F;

e GL(F): the subgroup of GLy(F) consisting of 7 € GL2(F) with det(y) € Fy;
e SLy(F): the subgroup of GLj (F) consisting of v € GL} (F) with det(y) = 1;
e 0: the different of F/Q;

e N = Np/q: the norm of F/Q;

e For a € F and o € I, a° is the image of a in R under o;

e For a € F and a vector r = (r,)se1 € (Z/22)9, sgn(a)” =[], ,sgn(a’)™.

2.1. Narrow ray class groups and characters. We begin by recalling the definition
of narrow ray class characters of F. Let m be a non-zero integral ideal of F. We put

) = {7
P+={CLO|GEF+}, and
Pi(m) =P, N{a0 | a=1mod *m},

n and [ are integral ideals and prime to m} ,

where a = 1 mod *m if and only if aO € I(m) and there exists an element b € F
such that bO € I(m), b € O, ab € O and ab = bmod m. We call the quotient group
Cl(m) = I(m)/P,(m) the narrow ray class group modulo m. When m = O, we write
Cl} rather than Cl(O), and we call this group the narrow ideal class group of F. We let
h = #Cl}. denote the narrow class number of F.

DEFINITION 2.2. A narrow ray class character modulo an integral ideal m is a group
homomorphism ¢ : Cl(m) — C*.
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We let cond(%)) denote the conductor of 1. It is known that there exists a unique vector
r € (Z/27)9 such that

¥(a0) = sgn(a)" for all a € O with a = 1 mod m.

We call r the signature of ). Then we have a well-defined character ¢ : (O/m)* — C*
associated to ¢ given by ¢s(a) = ¥(aO)sgn(a)”. We will always regard the right-hand
side as a character on (O/m)*, without any notice.

2.2. Hilbert modular forms. We now describe the definition of (parallel weight) Hilbert
modular forms over F. First we choose a representative fractional ideal t, of A for each
X € Clf, and define a subgroup I'y(m) of GL} (F) by

Ty(m) = {( : ! ) & GLi(F)

DEFINITION 2.3 (cf. [S] Sections 1 and 2). Let k > 0 be an integer, and m, as above.
The space My (m, ) of Hilbert modular forms of (parallel) weight k, level m and character
1) consists of elements f such that

a,d € O,be (0ty) "}, c € mdty, ad —bc € Ox} .

i) f=(f») xecrs 1s an h-tuple of holomorphic functions f, : $! — C;
(ii) for each A € CIf, f) satisfies the following modularity property:

1) Pl = (@ frall = (&) ) € Ty(m).

Here

- - - a’zy + b7
det(y) = Hdet('y) , cz+d= H(c 2o +d%), vz = (m)aa

o€l o€l

and fy|zy is a function on $’ defined by

(Hrli)(2) = det(7)% (cz + d) 7 fa(v2),

Since each fy is a function on $, we regard z a g-tuple of variables z,. We also note
that vz € 7 for any v € GLJ(F). We often omit the subscript k of fy|xy when
there is no ambiguity concerning weight.

(i) when F' = Q, we also impose the holomorphy condition around each cusp; that is,
for any v € SLy(Z), we have

(flem)(2) = fj (57 ) exp (2mi7)

n=

where M is the positive integer uniquely determined by MZ = m.

REMARK 2.4. The definition of the subgroup I'y(m) depends on the choice of a represen-
tative fractional ideal t,. We take two representative ideals t,; (i = 1,2) of A € Cl} and
consider the C-vector space My (m,); consisting of modular forms satisfying the modu-
larity property (2.1) with respect to I'y, ,(m) for each i. By definition we have tj 2 = uty,
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for some u € F;. Then there is an isomorphism

Mi(m,¢)1 = Mi(m,¥)2; (fa)recrt — (f,\|k ( w0 )) -
F 01 AeClE

However we can define Fourier coefficients of f independent of the choice of a representa-
tive ideal t) (see Definition 2.6 and Remark 2.7 for details).

2.3. Fourier expansion of a Hilbert modular forms. We define Fourier expansion
of a Hilbert modular form.

PROPOSITION 2.5. A Hilbert modular form f = (f,\),\em; € Mi(m,v) has a Fourier
ezpansion (at the cusp 0o = (00,00, ...,00)) of the following form:

(2.2) AE) =ax0)+ > as(ber(bz) for each X € Cl}.

bet\NFy

Here a(0), ax(b) are complex numbers and ep(x) = exp(2mi ) ., z,) (we use this nota-
tion both for x € F and for a g-tuple of variables = (z4)qer)-

PROOF. The assertion is well known when F' = Q. When F # Q, ideas of the proof are
basically the same as that for F' = Q. Namely, the modularity property (2.1) implies that
fr(2) is invariant under the translation by elements of (0t,)~!, and since f) is holomorphic
in z we conclude that f is of the form

hH(z) = Z ax(b)er(bz).

We need to show that ax(b) = 0 for all b € t, with b ¢ F, and b # 0. This is so-called
“Koecher’s principle” (see [G] Theorem 3.3 of Chapter 2, Section 3). Note that Koecher’s -
principle does not hold when F = Q. a

We call the coefficients ay(b) the unnormalized Fourier coefficients of f. We also define
the normalized one as follows.

DEFINITION 2.6. Let f be as in Proposition 2.5 with the Fourier expansion (2.2). We
define the normalized constant term c¢,(0, f) of f by

cx(0, f) = ax(O)N(ty) %

for each A € Cl}. For each non-zero integral ideal n of F, there exists a unique A € Cl},
and b € F, unique up to multiplication by totally positive units, such that n = bt;l.
Then b € t, N F; and the normalized Fourier coefficient c(n, f) associated to n is

c(n, f) = ax(BN(ty) 3.

REMARK 2.7. The following two facts show why ¢, (0, f) and c(n, f) are called “nor-
malized” coefficients. These facts can be deduced from the modularity property (2.1).

(1) ¢x(0, f) and c(n, f) are independent of the choice of a representative ideal ty.
(ii) c(n, f) is independent of the choice of b € t, N F such that n = bt;'.
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2.4. Eisenstein series. In this subsection we introduce Eisenstein series, which is one of
the most basic example of Hilbert modular forms. Let 5 (resp. ¢) be a primitive narrow
ray class character of conductor a (resp. b) and signature g € (Z/2Z)9 (resp. ). Actually
we can define Eisenstein series for non-primitive characters, but for simplicity, we content
ourselves only with primitive case here. When we consider Eisenstein series, we always
impose the following assumption on the weight k:

(2.3) q+r=(kk,... k)mod (2Z)°.

PROPOSITION 2.8 ([S] Proposition 3.4). Under the above condition, there exists a unique
Hilbert modular form Ey(n,v) of weight k, level m = ab and character n with the
normalized coefficients

(2.4) c(n, Ex(n,¢)) = Z n (%) $(n)N(ny k2

n1|n
for each non-zero integral ideal n and
8,1279L(, 1 — k) if k > 2
2.5 cx(0, Ex(n,v)) = r N
25) A0, Bi(n,¥)) { 279(8,1 L(1,0) + 84,1 L(n, 0)) if k=1
for each X € Clf:. The sum in (2.4) runs over all integral ideals ny dividing n. In (2.5),
Sp1 =1 ifn =1 (i.e., a = O) and 0 otherwise. L(n,s) denotes the Hecke L-function

attached to the character n (we use the same notation for other characters). We call
Ei(n,y) the Eisenstein series of weight k assoctated with characters (n, ).

PROOF. (Outline of the proof of Proposition 2.8) The Eisenstein series Ex(n,%) in
Proposition 2.8 is explicitly given in [S] Proposition 3.2 and [DDP] Proposition 2.1. We
recall the definition. For s € C, the series

Bl W(z,9) = Cr9) 0 3 NP
ceClp
sgn(a)n(ac™)sgn(—b) =1 (—bbotyc 1)
<2 (az + b)F|az + b>*

ace,

be(bdty) " Le,

(a,b) mod U,

(a,6)#(0,0)
is convergent on the right half plane Re(k + 2s) > 2. Here Clp is the (wide) ideal class
group of F,

@)= Y,  sen(a)p(zbd)er(s)
ze(bd)~1/o-1
is the Gauss sum of v, U is the subgroup of finite index of O defined by
U={ue€O*|Nu)*=1u=1modm}

which acts on {(a,b) | a € ¢, b € (b0ty) "¢, (a,b) # (0,0)} by u- (a,b) = (ua, ub), and

VdrpL'(k)?

¢= [0% : UIN(0)(—2mi)~
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where dr denotes the discriminant of F. The definition of Ex(n,v)x(z,s) here looks
slightly different from that in [DDP], but in fact the two definitions are exactly the
same. We have already computed some terms of Fy(n,%)x(z,s) in [DDP] by using the
assumption that 1 is primitive.

It suffices to show that Ex(n,1)a(2, s) has a meromorphic continuation in s to the whole
complex plane and is holomorphic at s = 0, and that the A-tuple (Ex(n,v¥)(2,0))ecit, 18
a Hilbert modular form of prescribed weight, level and character, with the desired Fourier
coefficients. This is done in a parallel manner with Hecke’s technique (later developed
by Shimura) for obtaining holomorphic Eisenstein series via meromorphic continuation of
real analytic Eisenstein series. One can find the details of this argument in [H2] Sections
9.2 and 9.3. O

3. EQUIVALENCE CLASSES OF CUSPS AND THE MAIN THEOREM

Section 3 is devoted to a formulation and a proof of our main theorem. We keep using
the notation at the beginning of Section 2.

3.1. Constant terms of Eisenstein series under slash operators. In this subsection,
we present a detailed computation of the normalized constant term of Ex(n, ) under the
slash operators defined below. First we introduce some congruence subgroups of GLj (F)
and SLy(F). The notation in the following definition is basically in accordance with [H2]
Chapter 4, Section 1.3.

DEFINITION 3.1. Let n be an integral ideal and j a fractional ideal of F. I'(n; O,j) is a
subgroup of GL] (F) defined by

a,d € O,b€ (j0)7, c € njo, ad—chO"}.

D(r;0,)) = {( o ) € GL; (F)
Hereafter we mainly consider the subgroup I'}(n; O,j) = SLo(F) NT(n; O,j) of SLy(F).
REMARK 3.2. (i) When F =Q, n= NZ (N € Zs) and j = Z, we have
L(n;0,j) =T'(n;0,j) = To(N).

(i) When n = m and j = t, for A € Clf, ['(m; O, t,) = T'\(m), which was defined just
before Definition 2.3.

From now on, we write I'}(n) for I™*(n; O, t,) (* = 1 or empty). We define the slash
operator on the space of Hilbert modular forms.

DEFINITION 3.3. Recall that h = #Cl}. Let f = (f) AeCl be a Hilbert modular form
and A = (A)) recit € SLy(F)* an h-tuple of matrices. The slash operator is defined by

FIA = (HAlAN)secrt-

The main result of this subsection is as follows:



PROPOSITION 3.4. For an integer k > 2, let n and 1 be as in Section 2.4 (in particular
satisfying (2.3)), and let A = (A))secip be a slash operator with

for each X € Clf.. Then
(0, Ex(n, ¥)|4) =0
unless vy € boty. If this is the case, we have
cx(0, Ex(n, ¥)|4)

_ 10y (N(b)
2 @) \NG)

) sgn(—) (7 (60) Lsgn(an) 9 (ax0)

x Ln7',1—k) J] (1 =ny (a)N(a)™*),
qlm, aff
where f = cond(n~14) and the last product runs over all prime ideals q dividing m = ab
but not dividing f.

REMARK 3.5. Here we make two remarks on previously known results.

(i) Ohta computed the constant terms of Eisenstein series of weight 2 and level I'y (Np")
over Q, at all equivalence classes of cusps (Proposition 2.5.5 of [Oh]). Here p > 5
is a prime number, N is a positive integer prime to p, and r > 1 is an integer.
Proposition 3.4 is a generalization of his result. Indeed we have I'}(O) = SLy(Z)
when F' = Q and the condition y € bdty here corresponds to u | ¢ in [Oh].

(ii) This proposition also implies Proposition 2.3 of [DDP], where Dasgupta, Darmon
and Pollack computed ¢, (0, Ex(n, )| A) for particular form of A. It should be noticed
that they carried out the computation in order to express a product of two Eisenstein
series of weight 1 as a linear combination of Eisenstein series and cusp forms of weight
2, and constant terms for such A will do for that purpose.

PROOF. Hereafter we fix A € ClE. We write down (Ex(n,¥)a|Ax)(2, s) according to
the definition:

(Ee(n, ¥)xlAx)(z, )

N(t))~% k
= O7(¢) —>— N(c)
NG 2
y Z sgn(a)in(ac)sgn(—b) = (—bbdtyc™1)[ynz + 05%
2 ((aar +bn)z + (aBy + bdx))*|(acr + bya)z + (afix + box) >

be(boty) e,

(a,b) mod U,

(a,b)#(0,0)

We note that the constant term arises from terms with aay + b7y, = 0. This ‘condition is
equivalent to by, = —aa), which implies by, € ¢. On the other hand the condition v, € 0t,
implies that there exists an integral ideal n with 7,0 = ndt, and hence by, € nb~lc. Our
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strategy is to focus on the ideal (nb~!¢c) N ¢ = (nNb)b~c. We divide the argument into
two cases:

Case 1: b{n. There exists a prime factor p of b which satisfies
n=pn, b=p/t' (e €Zso, fE€Zso, ptn'b) and e < f.

Then by, € nb~lcne¢ = (b')"}(n' Nb')c. Thus b € n~}(b')~1(n' N b )01t c and
bbotye~! C p/~e(n')"1 (W' Nb’) C pfe. Since f — e > 0, bbOtyc~! is not prime to b
and thus sgn(—b)"y~1(—bbdtyc~!) = 0.
Case 2: b | n. In this case, we know that vy € bdt,. Then the matrix A, induces an
isomorphism
{(a, b) l aecc, be (th,\)‘lc, aoy + b’y,\ = 0} /U — (bat,\)_1C/U;
(a,b) — aBy + bdy

(the inverse map is given by d — (—dv),da,)). Then
cx(0, Ex(n, ¥)|A4)

_ cf(leS(*g)_ S N

ceClp

X Z sgn(—dyy ) (—dyae ™ )sgn(—day )~ (—daybdtyc )N (b) ~F

de(bdty )™ L,

d mod U,
d#0
_ CT(lp)N(ba)ksgn(%\)qn(’YAO)Sgn(a,\)rw‘l(a,\O)[OX : U]
(=1)kN(b)n(bdt,)
(3.1) x Lmy™ k) T] (0= ng"(@N(@@)™).

qlm, gff
We use the functional equation for L(ny~1,s) (see [M] Chapter 3, Section 3):
(dr) 3 FN(f)!*(2mi)ke
29T (k)7 (1)
We obtain the desired result by combining equalities (3.1) and (3.2).

(3-2) Ln™'y,1 — k) = L(my ™" k).

O

3.2. The equivalence classes of cusps of congruence subgroups. The purpose of
this subsection is to investigate the equivalence classes of cusps by the action of the
subgroup I'}(0). First we describe the set of cusps P!(F) of £/ in terms of a quotient of
SLy(F). Let B*(F) denote the subgroup of GL3 (F) consisting of all upper triangular
matrices in GL} (F), and BY(F) = B*(F) N SLy(F) its intersection with SLy(F). The
following bijection is well known.

LEMMA 3.6. There is a bijection

SLy(F)/B'(F) = PY(F); 7+ v(c0).



Let j be a fractional ideal of F. Thanks to Lemma 3.6 we know that the set of equiva-
lence classes of cusps by the action of I''(0;0,j7!) is

[Y(0; 0,5 \SLy(F)/B\(F).
We describe this set explicitly (here we consider [''(0;O,j™!) instead of I''(0;0,j), in
order to be consistent with the notation used in [H2] Chapter 4, Section 1). To a matrix
m = (2%) € SLy(F), we associate a fractional ideal il;(m) = ¢jo~! 4+ aO. If v = (; 1)
is an element of I''(0; 0,j!), we have il;(ym) = il;(m). Moreover, for upper triangular
b= (}*) € B'(F) we have il;(gb) =b-il(g). Hence we obtain a map

le . Fl(an’]_l)\SLZ(F)/Bl(F) — C]-Fa ( Z : ) — cjb_l + aO.

PROPOSITION 3.7 ([G] Proposition 2.22). The map il; is a bijection.

One can find a detailed proof of the proposition in [G]. However we need a slightly
refined version of the surjectivity of il; later on so as to compute the constant terms, so
we will review the proof of the surjectivity in Proposition 3.8.

Now we apply Proposition 3.7 for j = t;!. Note that T'y(0) = [''(0; O, 1,) by definition.
In the light of Proposition 3.7, what we have computed in the previous subsection is
a constant term of Fjx(n,%) at one equivalence class of cusps of I'}(0), that is, the
equivalence class of co. We will compute the constant terms at all equivalence classes of
cusps of I'} (O) in the next subsection.

3.3. Constant terms of Eisenstein series under slash operators II. Hereafter we
fix A € CIf. As declared at the end of the previous subsection, we compute the constant
terms of Ey(n,) at all equivalence classes of cusps of I';(0). We choose an element in
Clr and fix its representative integral ideal ¢g. We may assume that ¢ is prime to m = ab.
We shall prove a slightly refined version of the surjectivity of the map ilj, with j = ;.

PROPOSITION 3.8. We can choose a matriz

_{ ax B
Ay = ( o ) € SLy(F)

with iltil(A)\) = ¢y S0 that
axO = nycy, By € (Df)\Co)_l, Y0 = n 0t ¢y and 6y € Cal.

Here n; (1 = 1,2) are mutually prime integral ideals. Furthermore, the ideal ny can be
chosen so that ny is prime to b = cond(v).

PROOF. Let ¢ be as above and b = []i_; pi the prime ideal factorization of b. We
can take a non-zero element v, € 0tyco so that 7y ¢ p;dtyco for all i = 1,2,...,w. This
can be proved as follows: we let [ = p1ps---p,dtaco and [; = Ip;! for each i = 1,2,...,w.

Since [ C [; there exists ¢; € [; \ I for each i. Then vy = ¢; +¢c2 + -+ + ¢, does the
job. We write v,0O = n 0t\cy with n; integral and prime to b. In a similar manner we
see that there exists an element a) € ¢y such that a,O = ny¢y with n, integral and
prime to n;. Then we have v, (0ty) ™! + a,O = njcp + n2cg = ¢p. Since this condition is
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equivalent to v (dtyco) ™t + axey! = O, there exist By € (9tycp)~! and dy € ¢;* such that
ax0x — By = 1. This proves
Ay = ( o O ) € SLy(F) and il,-1(Ay) = co.
Y O A
O

In consideration of Proposition 3.7, it is sufficient to compute the constant term of
Ex(n,v)al Ay for Ay as in Proposition 3.8. We recall the definition of (Ex(n, )| Ar)(z, s):

(Ex(n,¥)xlAx)(z2, 5)
N(t,)~2

= 0r() e % N(e)*

Z sgn(a)in(ac™)sgn(—b) =1 (—bbdtyc™1)|yaz + 62]%
((ao + b12)z + (aBx + b63))*|(acr + bya)z + (aBx + bdy) [

X
ace,
bE(bDb\)_lc,
(a,b) mod U,
(a,b)#(0,0)
As in the proof of Proposition 3.4, we need to consider terms with aay + by, = 0. For each
¢ € Clg, we have aa) € nycoc and by, € b~Injcoc. Noting that n; is prime to b, we see
that byy = —aay € (nacoe) N (b~ Inycoc) = nynacoc and hence b € ny(dty)~1c. Consequently
we have 1~ (—bbdtyc™!) = 0 unless b = O. If this is the case, we use an isomorphism

{(a,b) |a€c, be (dty)7 e, aar +byr =0} /U = (dtreo) '¢/U;
(a, b) — aﬂ)‘ + b6,\

to compute (the inverse map is given by d — (—dv,,da,)). The normalized constant
term of Ex(n,v)x|Ax is equal to

CN(t)™* Y N(e* > sgn(—dys)n(—dye™)N(d)~*
ceClp dE(Df)‘Co)_IC,
d mod U,
d#0
= CN(0co)*sgn(=m) (1 (dtrco) )N (dtrco)
X Z Z n(—dotycoe  )N(ddtycoe™) 7%,

¢€Clp de(vtrco)~ e,
d mod U,
d£0
Combining this and the functional equation
(dr)3FN(a)!~*(2mi)*e
200 (k)or(n~1)
for L(n, s) (see [M], Chapter 3, Section 3), we see that the constant term is equal to
1 N(eo)\*
570 (R ) sz, 1 - b

We give a summary of our computation as a theorem.

L(n™"1—k) = L(n,k)




THEOREM 3.9. (i) For a matric

A,\=(a>‘ ?i)er}\(o)a

we write v»O = ny0ty. Then the bonstant term of N(t,\)_gEk(n, Y)a| Ay is equal to
0 unless b | ny. If this is the case, the constant term is equal to

-1 k
s (R sel=m)non (6ot) egn(an) ™ (@,0)

29 (1) \N(f)
x Lip ', 1= k) J[ Q=m(@N(@)™*).

qlm, off

(ii) Let

o, Ay = ( o ?)\ ) S SLQ(F), n; (l = 1,2)
2 A

be as in Proposition 3.8. Then the constant term of N(t,\)"gEk‘(n,w)AlA,\ 18

bangsm) () sea(—mPum) 201~ )
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