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1 Introduction

In 2007 [5], Roberts and Schmidt established local New form theory for irre-
ducible admissible generic representation of PGSp(4) (=~ SO(3,2)) over nonar-
chimedean field. Following their result, we establish local New form the-
ory for irreducible admissible generic supercuspidal representation of PGU(2, 2)
(= SO(4, 2)) over nonarchimedean local field. To begin with, we recall Roberts-
Schmidt’s theory for PGSp(4). Let F be a nonarchimedean local field with ring
of integers o. Let

GSp,(F) = {g € GL4(F) | 'gJg = aJ, for some a € F*},

where

-1

The mapping ¢ — a defines a homomorphism to F*, called similitude character,
and we will write a = u(g). Let 1 be a nontrivial additive character on F. The
Whittaker functions W on GSp, (F) with respect to 1 are smooth functions such
that

*

1

X *
wl 'Y =g W,
1

We denote by #;, the space of these W. Let (n,V) c #, be an irreducible
admissible representation of GSp,(F) with trivial central character. For We V,
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define the Novodovorsky zeta integral

a

Zn(s, W) = f f W( fc | paxd<a
F< JF 1

with s € C, where dx and d*a are Haar measures such that vol(o) = 1 and vol(0*),
respectively. Let p denote the prime ideal of 0 and g = |o/p|. Let I(7t) be the C-
subspace of C[X, X~!] spanned by these Zy(s, W) with X = g7°. Since C[X, X™!]
is a principal ideal domain, I(7) admits a generator P(X) such that P(1) = 1.
Denote by L(s, ) the generator. Then, there exists (s, 7, 1) = eq N<6~1 with
N € Z, € € {1} such that for arbitrary W € V, it holds that

Zn( -5, Tw)W) _ Zn(s, W)
Ld-sn) &I

(1.1)

where

(1.1) is the functional equation of n. The monomial (s, 77, ¢) of X is called
e-factor of n, and varies according to y. For a positive integer n, define the
compact subgroup of GSp,(F) by

p—n
| u(g) € 0™},

o D D
P o D
Km=lgeln o ,
propt Pt o
and call the paramodular group of level n. Now, suppose that Ker(1)) = o. Then,
N is positive. Roberts and Schmidt’s generic main theory says that there exists
uniquely W € V such that

e W is K(N,)-fixed.
e W(1) =1and Z(s, W) = (1 - g7 V)L(s, 7).
Inspired by their theory, we obtained a similar result for GU(2, 2).

2 Functional equation

Let Fbe a field and E = F(Vd) be a quadratic extension of F with d € 0% \ (0¥)2.
Let ¢ be a nontrivial additive character on F and define the additive character

Vg on E by Ye(a + b Vd) = (b). Let Gal(E/F) = {1,c}, and
G = GU>.(E) = {g € GL4(E) | '¢°Jg = p()], u(g) € F*}.



We say a smooth function W on G is a Whittaker functions with respect to 1), if
1 x =
1 y *
w(l Y 9= e W),
1

*

and denote by #, the space of such functions. First of all, we should give a
functional equation of irreducible admissible generic representation of G over
a local nonarchimedena filed. However, before that, let us consider the global
situation. Let F be a global number field and E be a quadratic extension of
F. Furusawa and Morimoto [3] defined a zeta integral for global Whittaker
function W with respect to g (here g is an additive character on Ag), and
Schwartz-Bruhat function ¢ of AZ by

1
Z(s, W, ¢) = f f W( 1 1 i(h))o ([0, 1]h)| det(h)*dxdh
GLa(Ar) JAr X |
1
where i is the embedding such that
a b
la bl _ a b
l([c dl) e d |
c d

When the global Whittaker function W is obtained by taking a integral of an
automorphic cusp form, the zeta integral is written by this cusp form and the
Eisenstein series E(h, ¢, s) (defined in the standard way). Therefore, by using

the well-known formula E(h, ¢,s) = E(h™?, ¢¥,1 — s), we obtain a imcomplete
global functional equation

Z(s,W,¢) = Z(1 -5, W', ) (2.1)
where qb” is the Fourier transformation of ¢ with respect to ¢, and

1 1

we=w( , = || D

1 1

Now), let F be a local nonarchimedean field. Let (n, V) be an irreducible, ad-
missible generic representation of G, i.e, V C #,. For x,y € E,and z € F,
let

1 x 1 y z
1
n(xr y;z) = 1 _xC 1
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This is an element of G. Let U denote the subgroup consisting of these elements.
Let Ur = {n(x, y,2) | x,y,z € F}. We define ‘Klingen type’ parabolic?? subgroup

[det(g)

Q' =EX{ g |lgeGL(FUcCG.

1

Then Uf is a normal subgroup of Q’. The following sets U3, P5 are subgroups
of GL3(F):

1 * = * % ¥
U; = { 1 +|eGL3(F)}cP;={* * =|eGL3(F).
1 1
Then, we have
Q'/UFr = E* x P3(F)

via the homomorphism i : Q" — P; defined by

[, [det® (1 1Y 2|
it g : n(x,y,2)| = t,[ 1] 1 2‘2-:1\7% i (2.2)

QL

Put
V = Vi {n(u) —v | u € Ug).

Via (2.2), V is a EX x P3-module. Denote by 7 the action of E* X P3 and by v

vectors of V. For t € EX,
()0 = wy(t)v.

According to the P,-theory of Bernstein-Zelevinskii [1], V has the following
filtration of P3-subspaces:

V,cV,cV. (2.3)

Define the character {y;, on U3z by

1 X1 X2
Pus( 1 3513])=1P(x1 + X3).

Put . .
Vi, =V/ Yu,(W)o —7(W')o | u' € Us).

Then, V; is a direct sum of dim¢ 7¢u3 copies of an irreducible representation (c.f.
p- 49 of loc. cite., this irreducible representation is denoted by 'r?,.). However,
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dim¢ I_/l;,ua = 1 by the uniqueness of Whittaker models of V (c.f. Shalika [6]).
Thus, V; 1s irreducible.
Now, we are going to give a functional equation of 7. Set

S

(g = [k h,] [1 )1(] € G| h € GLy(F)), (2.4)
(geSIhePy),

h’:det(h)[l 1]%-1 [1 1].

These sets are subgroup of G, and S is called Shalika subgroup. For s € C,
define the 1-dimensional representation vt of S by

T

where

vsw([h h,} [1 ﬂ) = |det(h)|23wg(%tr([l _1] X).
Let S act on ¢ € #(F?) by

" | o= s

Lemma 2.1. Except for finitely many s € C,
dim¢ Homs(nv®c S (F?), vsy) < dime Homr(m, vs-19).

Proof. It suffices to construct a homomorphism | : Homg(n ®¢ % (F?), V) —
Homr(m, vs-19) so that | is injective except for finitely many s € C. Take
o € Homg(m, vs1). By the definition of vs1,

a(n(tyo) = wr(H)o(v) = [H*a(v)
for t € F< and v € V. Hence, except for finitely many s € C,
Homg (7, vsy) = {0} (2.5)

By restriction of .#(F?) to its S-subspace #(F?) = {¢ € #(F) | ¢([0,0]) = 0},
we have a homomorphism

J' : Homg(n ®c #(F?), vs1p) — Homs(n ®c F(F2), vsth).
However, the kernel of ]’ is embedded into Homg(m, vs1p) since
n®c S (F)/n ®c FH(F) =
as S-modules via the mapping: v ® ¢ — ¢([0,0])v € . Therefore, by (2.5),

except for finitely many s, the kernel of J’ is {0} and ]’ is injective. The quo-
tient P,\GL,(F) acts on F? \ {[0,0]} faithfully, and T\S = P>\GL,(F). So, the
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S-space #(F?) is isomorphic to ind3(1), the compactly supported induced
representation from the trivial representation 1 of T, via the correspondence:
¢ - ¢([0,1]h) € ind%(l) where we write we write an element of S as in (2.4).
So,

Homs(n ®&c S(F?), vsp) = Homg(n @ ind3(1), vs1h).

However, in general, for representations 7, £ of a group G, and one-dimensional
representation x, it holds that

Homg(1®c &, x) =~ Homg(r, Home(E, x))
~  Homg(t, Home(x7'¢, 0)),

where g € G acts on f € Home(¢, x) by g- f(t) = x(£) f(E(g™1)?). Therefore,
Homs(n ® ind3(1),vsy) = Homs(m, Home (ind3((vsy) ™), C))

~  Homg(n, Ind3(vs_11)))
HOm'r(Tl, Vs—1 '7[’)

R

The second isomorphism is by 2.25 ¢) of [1], and the last is by the Frobenius
reciprocity law 2.29 of loc. cite.. This completes the proof. 0

Let
" (g) = n(u(g)'g™).
Proposition 2.2. 7 is equivalent to mt".

Proof. Consider the action y of G on G defined by y(g)g1 = 7414, and the
homeomorphism o : g — u(g)'g™! in G. Then, all the conditions of the second
Theorem in p.91 of [4] are satisfied. Indeed, y(g)o = oy(*g™!), 02 is identity, and
a(g) = J71g]J. Therefore, the character tr(n) of 7t (see 2.17 of [1] for the definition
of tr(m)) coincides with tr(n"). By Corollary 2.20 of loc. cite, 7 is equivalent to
nv. |

For a local Whittaker function W € #), and ¢ € % (F?), we define the zeta
integral by

1

1
W, ) = W i(h , 1]h)| det(h) dxdh.
zewe=[ [wl 3, | oo pceire

A common argument shows this integral is absolutely convergent when R(s)
is sufficiently large. Define L(s, ) in the same way as in the GSp(4) case. Let S’
(resp. T’) be the conjugation of S (resp. T) by

1
-1



Theorem 2.3. There exists a function (s, 7, y) such that
Z(1-s,W,¢h) Z(s, W, ¢)
s &V

for arbitrary W € V and ¢ € F(F2). &(s,m, ) is in a form of eq N=6~12 with
€ €{xl},N, € Z.
sWd))

Proof. Consider the functionals on 7 ®¢ . (F?) sending W ® ¢ to T and to

Z(I{%VSVT&) Both these functionals belong to Homg (1 ®¢ #(F?), vsy). First, we

will show that, except for finitely many s,
dim¢ Homg: (7 ®c S(F2), vsh) < 1. (2.7

By Lemma 2.1, it suffices to show dime¢ Homy (7, v51p) < 1, except for finitely
many s. Take a A € Homy/(mt,vsy). Fort e F,x € E,z € F,

A(n(n(x, y,2))v) = Pe(x)A(v),
t

Ar( L o) =vtaw).
1

(2.6)

Via (2.2), A corresponds to the functional A on the P3-space V, such that

1
A([ 1 z]v)=1,b(z)/\(v),
1

t
A([* 1 ]v):vs(t)A(v).
1

The proof for Proposition 2.5.7.of [5] says that, except for finitely many s,
the space {1} is at most one-dimensional. (see also Lemma 2.5.4., 2.5.5., and
2.5.6.0f loc.cite.) Thus, (2.7) is showed. Therefore, there is a function &(s, 7, {)
depending only on s, 77,1 such that (2.6) holds except for finitely many s. By
definition, there is a finite set of pairs {(W;, ¢;)} such that L(s,m) = X; Z(s, Wi, ).
By (2.6),

T Z(1—s, W, ¢
L(1-s,m)
(Each W! belongs to V) Therefore, we may write &(s, 7, ) = R(g7%)9 ™ by some

R[X] € C[X]and M € Z. From (2.6) and the fact that (W)’ = W, (¢"*(z) = ¢(-2),
it follows that

&(s, T, ) = eClg~, 7]

es,mP)e(l—s,m,p) =1.
Therefore, R has no zeros, and is a monomial. Now the assertion follows
immediately. a

137
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3 D-paramodular vectors
For a nonnegative integer m, set
Om =0+ p" \/‘;

and

[ O POy PO, PO
pm Drn Dm Dm p_"l Dﬂl X

E .
P"Op  Op  On  pO, | FEOET)
Lp2m Om ?"Opn  P"Op Om

Ki(2m) = {geGn

Om p"Ow PO, p LD,
_ P10y Om Om " On X
Ki2m+1) = {geGn g 0. o, PO | u(g) € o*}.

_p2m+1 Dm pm+1 ‘Dm pm+l Dm Dm

Oy, is a subring of the ring of integers of E, and K;(n) is a compact subgroup of
G. We call K;(n) the D-paramodular group of level n. Let @ be a generator of p.
The followings are elements of G:

L
1
tn = 1 7
(Dn
r - —™
_ om _ —™M

Uy = o OUom = oM ’
‘ oM o™
[ ..(D""l — ™
(Dm+1 -

Uym+l = e Vom+1 = oMl .
—m*! ias

Note that tom, Usm, Vam € Ky(n). Note that trny1 € Ky(2m + 1), Uzmsr, Voms1 €
K;(2m + 1), however, 41, V241 are normalizers of K;(2m + 1). Wecallv e V
a D-paramodular vector if v is invariant under some K;(n), and denote by V(n)
the subspace consisting of K;(n)-invariant vectors. Similar to the argument of
[5], we may find a W € V fixed by a ‘Klingen-type’ compact subgroup such that
W(1) # 0, and construct a D-paramodular form W’ = de - nt(k)Wdk for some n,

such that W’(1) # 0. So,
V(n) # {0}

for some n. When n = 2m + 1, the subspace V(2m + 1) is decomposed to the
direct sum V(2m + 1), + V(2m + 1)- with

V2m+1). ={ve V@2m+1) | n(uzm+1)v = €v}.
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— : -1 —
Note that T((Uzm+1)0 = Tc(u2m+1)v smce t2m+1u2m+l tom+1 = Vom+1- Set
w_l

n= 1

It is easy to see that
() : V(n) - V(in +2),V2m + 1), — V(2m + 3),.

Define
Zy(s, W) = f W(i([a 1]))Ial5"zd"a-
FX

Similar to the GSp(4)-case, we have

Proposition 3.1 (n-principle). Let m > 1. Suppose that W € V(2m) (resp. W €
V(2m+1),). If Z4(s, W) = 0, then thereexistsa W’ € V(2m-2) (resp. W € V(2m—-1),)
such that (MW’ = W. '

4 New forms

Suppose that (7, V) is supercuspidal. The argument of [2] for L-function of a
representation of GL(2) x GL(2) works for the GU(2, 2) case, and we conclude
L(s, m) is one of following forms.

i) L(s, ) = (1 —4~°)"1. We say = is distinguished.

ii) L(s, ) = (1 +4~°)"1. We say n is quasi-distinguished.
iii) L(s, ) = (1 —¢~%)"!. We say 7 is dual-distinguished.
iv) L(s, m) = 1. We say 7 is nondistinguished. |

Define two Hecke operators for V(1) by

_ )
T10 = (Ky(m)n ' Ka(n)), Tox = ﬂ(Kd‘(n)l([ 1])Kd(n)),
which are self-adjoint. But, note that T g doesnot act on V(2m + 1). If V(M5) #
{0} and V(n) = {0} for all n < M,, then we say M, is the minimal level of
n
n. For W € V(M,;), we obtain a recursion formula of W(i([CD 1])) by using

the Hecke operators. The 7-principle, and this recursion formula, give rough
one-dimensionality of V(M) (in case that M, is odd, the one-dimensionality
may lost as below). Let |

Om = Ch(»" @) € y(FZ)

Observing the form of L(s, ) and the functional equation, we obtain
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Theorem 4.1. Suppose that (n, V) is supercuspidal. Then M, is odd and N, = M, +1.

i) When m is distinguished, the subspace V(M) is one dimensional, and V(M)- =
{0}. For the unique W € V(M) such that W(1) =1,

_q-1
206, Wdxp) = L6

i) When m is quasi-distinguished, the subspace V(My)- is one dimensional, and
V(Mz), = {0}. For the unique W € V(My)- such that W(1) = 1,

_1-1
205, W) = L6 ).

iti) When n is dual-distinguished, both of the subspaces V(My)., V(M,)- are one
dimensional. For each unique W, € V(M) such that W.(1) = 1,

_,9-1
Z(s, Wy + W_,(Pl_vin) = 2mL(S, 7).

iv) When n is nondistinguished, both of the subspaces V(Mg)., V(Mg)- are one
dimensional. For each unique W, € V(My). such that W.(1) =1,

- iL(s, 7).

Z(Sl WiI(PNZIL) = q+
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