New Forms for GU(2,2)

TAKEO OKAZAKI,

Department of Mathematics, Faculty of Science, Nara Woman University, Kitauoyahigashi-machi, Nara 630-8506, Japan okazaki@cc.nara-wu.ac.jp

1 Introduction

In 2007 [5], Roberts and Schmidt established local New form theory for irreducible admissible generic representation of PGSp(4) (\simeq SO(3,2)) over nonarchimedean field. Following their result, we establish local New form theory for irreducible admissible generic *supercuspidal* representation of PGU(2,2) (\simeq SO(4,2)) over nonarchimedean local field. To begin with, we recall Roberts-Schmidt's theory for PGSp(4). Let **F** be a nonarchimedean local field with ring of integers $\mathfrak o$. Let

$$GSp_4(\mathbf{F}) = \{g \in GL_4(\mathbf{F}) \mid {}^t gJg = aJ, \text{ for some } a \in \mathbf{F}^{\times}\},$$

where

$$J = \begin{bmatrix} & & -1 \\ & -1 & \\ 1 & & \end{bmatrix}.$$

The mapping $g \to a$ defines a homomorphism to \mathbf{F}^{\times} , called similitude character, and we will write $a = \mu(g)$. Let ψ be a nontrivial additive character on \mathbf{F} . The Whittaker functions W on $GSp_4(\mathbf{F})$ with respect to ψ are smooth functions such that

$$W(\begin{bmatrix} 1 & x & * & * \\ & 1 & y & * \\ & & 1 & -x \\ & & & 1 \end{bmatrix} g) = \psi(x+y)W(g).$$

We denote by \mathcal{W}_{ψ} the space of these W. Let $(\pi, V) \subset \mathcal{W}_{\psi}$ be an irreducible admissible representation of $GSp_4(F)$ with trivial central character. For $W \in V$,

define the Novodovorsky zeta integral

$$Z_N(s,W) = \int_{\mathbf{F}^{\times}} \int_{\mathbf{F}} W(\begin{bmatrix} a & & & \\ & a & & \\ & x & 1 & \\ & & & 1 \end{bmatrix}) dx d^{\times} a$$

with $s \in \mathbb{C}$, where dx and $d^{\times}a$ are Haar measures such that $\operatorname{vol}(\mathfrak{o}) = 1$ and $\operatorname{vol}(\mathfrak{o}^{\times})$, respectively. Let \mathfrak{p} denote the prime ideal of \mathfrak{o} and $q = |\mathfrak{o}/\mathfrak{p}|$. Let $I(\pi)$ be the \mathbb{C} -subspace of $\mathbb{C}[X,X^{-1}]$ spanned by these $Z_N(s,W)$ with $X=q^{-s}$. Since $\mathbb{C}[X,X^{-1}]$ is a principal ideal domain, $I(\pi)$ admits a generator P(X) such that P(1)=1. Denote by $L(s,\pi)$ the generator. Then, there exists $\varepsilon(s,\pi,\psi)=\varepsilon q^{-N_{\pi}(s-\frac{1}{2})}$ with $N_{\pi} \in \mathbb{Z}$, $\varepsilon \in \{\pm 1\}$ such that for arbitrary $W \in V$, it holds that

$$\frac{Z_N(1-s,\pi(u)W)}{L(1-s,\pi)} = \varepsilon(s,\pi,\psi)\frac{Z_N(s,W)}{L(s,\pi)},\tag{1.1}$$

where

$$u = \begin{bmatrix} & & -1 \\ 1 & & & -1 \\ 1 & & & \end{bmatrix}.$$

(1.1) is the functional equation of π . The monomial $\varepsilon(s, \pi, \psi)$ of X is called ε -factor of π , and varies according to ψ . For a positive integer n, define the compact subgroup of $\mathrm{GSp}_4(\mathbf{F})$ by

$$K(n) = \{ g \in \begin{bmatrix} 0 & 0 & 0 & \mathfrak{p}^{-n} \\ \mathfrak{p}^n & 0 & 0 & 0 \\ \mathfrak{p}^n & 0 & 0 & 0 \\ \mathfrak{p}^n & \mathfrak{p}^n & \mathfrak{p}^n & 0 \end{bmatrix} \mid \mu(g) \in \mathfrak{o}^{\times} \},$$

and call the paramodular group of level n. Now, suppose that $Ker(\psi) = \mathfrak{o}$. Then, N_{π} is positive. Roberts and Schmidt's *generic main theory* says that there exists uniquely $W \in V$ such that

- W is $K(N_{\pi})$ -fixed.
- W(1) = 1 and $Z(s, W) = (1 q^{-1})L(s, \pi)$.

Inspired by their theory, we obtained a similar result for GU(2, 2).

2 Functional equation

Let **F** be a field and $\mathbf{E} = \mathbf{F}(\sqrt{d})$ be a quadratic extension of **F** with $d \in \mathfrak{o}^{\times} \setminus (\mathfrak{o}^{\times})^2$. Let ψ be a nontrivial additive character on **F** and define the additive character $\psi_{\mathbf{E}}$ on **E** by $\psi_{\mathbf{E}}(a+b\sqrt{d})=\psi(b)$. Let $\mathsf{Gal}(\mathbf{E}/\mathbf{F})=\{1,c\}$, and

$$\mathbf{G} = \mathrm{GU}_{2,2}(\mathbf{E}) = \{ g \in \mathrm{GL}_4(\mathbf{E}) \mid {}^t g^c J g = \mu(g) J, \mu(g) \in \mathbf{F}^{\times} \}.$$

We say a smooth function W on **G** is a Whittaker functions with respect to ψ , if

$$W(\begin{bmatrix} 1 & x & * & * \\ & 1 & y & * \\ & & 1 & -x^{c} \\ & & & 1 \end{bmatrix} g) = \psi_{E}(x)\psi(y)W(g),$$

and denote by \mathcal{W}_{ψ} the space of such functions. First of all, we should give a functional equation of irreducible admissible generic representation of **G** over a local nonarchimedena filed. However, before that, let us consider the global situation. Let **F** be a global number field and **E** be a quadratic extension of **F**. Furusawa and Morimoto [3] defined a zeta integral for global Whittaker function W with respect to ψ_E (here ψ_E is an additive character on A_E), and Schwartz-Bruhat function ϕ of A_E^2 by

$$Z(s, W, \phi) = \int_{GL_2(\mathbb{A}_F)} \int_{\mathbb{A}_F} W(\begin{bmatrix} 1 & & & \\ & 1 & & \\ & x & 1 & \\ & & & 1 \end{bmatrix} i(h))\phi([0, 1]h)|\det(h)|^s dx dh$$

where i is the embedding such that

$$i(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = \begin{bmatrix} a & b & b \\ a & b \\ c & d \\ c & d \end{bmatrix}.$$

When the global Whittaker function W is obtained by taking a integral of an automorphic cusp form, the zeta integral is written by this cusp form and the Eisenstein series $E(h, \phi, s)$ (defined in the standard way). Therefore, by using the well-known formula $E(h, \phi, s) = E({}^th^{-1}, \phi^{\sharp}, 1-s)$, we obtain a imcomplete global functional equation

$$Z(s, W, \phi) = Z(1 - s, W', \phi^{\sharp})$$
 (2.1)

where ϕ^{\sharp} is the Fourier transformation of ϕ with respect to ψ , and

$$W'(g) = W(\begin{bmatrix} & & & 1 \\ & & 1 & \\ & 1 & & \end{bmatrix}^t g^{-1} \begin{bmatrix} & 1 & & \\ 1 & & & \\ & & 1 & \end{bmatrix}).$$

Now, let **F** be a local nonarchimedean field. Let (π, V) be an irreducible, admissible generic representation of **G**, i.e., $V \subset \mathcal{W}_{\psi}$. For $x, y \in E$, and $z \in F$, let

$$\mathbf{n}(x,y,z) = \begin{bmatrix} 1 & x & & & \\ & 1 & & & \\ & & 1 & -x^c \\ & & & 1 \end{bmatrix} \begin{bmatrix} 1 & & y & z \\ & 1 & & y^c \\ & & 1 & \\ & & & 1 \end{bmatrix}.$$

This is an element of **G**. Let *U* denote the subgroup consisting of these elements. Let $U_F = \{\mathbf{n}(x, y, z) \mid x, y, z \in F\}$. We define 'Klingen type' parabolic?? subgroup

$$Q' = \mathbf{E}^{\times} \{ \begin{bmatrix} \det(g) & & \\ & g & \\ & & 1 \end{bmatrix} | g \in \mathrm{GL}_2(\mathbf{F}) \} U \subset \mathbf{G}.$$

Then $U_{\mathbf{F}}$ is a normal subgroup of Q'. The following sets U_3 , P_3 are subgroups of $GL_3(\mathbf{F})$:

$$U_3 = \{ \begin{bmatrix} 1 & * & * \\ & 1 & * \\ & & 1 \end{bmatrix} \in GL_3(\mathbf{F}) \} \subset P_3 = \{ \begin{bmatrix} * & * & * \\ * & * & * \\ & & 1 \end{bmatrix} \in GL_3(\mathbf{F}) \}.$$

Then, we have

$$Q'/U_F \simeq \mathbf{E}^{\times} \times P_3(\mathbf{F})$$

via the homomorphism $i: Q' \rightarrow P_3$ defined by

$$i\left(t\begin{bmatrix} \det(g) & & \\ & g & \\ & & 1\end{bmatrix}\mathbf{n}(x,y,z)\right) = \left(t,\begin{bmatrix} g & \\ & 1\end{bmatrix}\begin{bmatrix} 1 & \frac{y-y^2}{2\sqrt{d}} \\ & 1 & \frac{x-x^2}{2\sqrt{d}} \\ & & 1 \end{bmatrix}\right). \tag{2.2}$$

Put

$$\overline{V} = V/\langle \pi(u)v - v \mid u \in U_F \rangle.$$

Via (2.2), \overline{V} is a $E^{\times} \times P_3$ -module. Denote by $\overline{\pi}$ the action of $E^{\times} \times P_3$ and by \overline{v} vectors of \overline{V} . For $t \in E^{\times}$,

$$\overline{\pi}(t)\overline{v} = \omega_{\pi}(t)\overline{v}.$$

According to the P_n -theory of Bernstein-Zelevinskii [1], \overline{V} has the following filtration of P_3 -subspaces:

$$V_2 \subset V_1 \subset \overline{V}. \tag{2.3}$$

Define the character ψ_{U_3} on U_3 by

$$\psi_{U_3}(\begin{bmatrix} 1 & x_1 & x_2 \\ & 1 & x_3 \\ & & 1 \end{bmatrix}) = \psi(x_1 + x_3).$$

Put

$$\overline{V}_{\psi_{U_3}} = \overline{V}/\left\langle \psi_{U_3}(u')\overline{v} - \overline{\pi}(u')\overline{v} \mid u' \in U_3 \right\rangle.$$

Then, V_2 is a direct sum of dim_C $\overline{V}_{\psi_{u_3}}$ copies of an irreducible representation (c.f. p. 49 of loc. cite., this irreducible representation is denoted by τ_p^0 .). However,

 $\dim_{\mathbb{C}} \overline{V}_{\psi_{u_3}} = 1$ by the uniqueness of Whittaker models of V (c.f. Shalika [6]). Thus, V_2 is irreducible.

Now, we are going to give a functional equation of π . Set

$$\mathbf{S} = \{g = \begin{bmatrix} h \\ h' \end{bmatrix} \begin{bmatrix} 1 & X \\ & 1 \end{bmatrix} \in \mathbf{G} \mid h \in \mathrm{GL}_2(\mathbf{F}) \},$$

$$\mathbf{T} = \{g \in \mathbf{S} \mid h \in P_2 \},$$

$$(2.4)$$

where

$$h' = \det(h) \begin{bmatrix} 1 \\ 1 \end{bmatrix}^t h^{-1} \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

These sets are subgroup of **G**, and **S** is called Shalika subgroup. For $s \in \mathbb{C}$, define the 1-dimensional representation $v_s \psi$ of **S** by

$$\nu_s \psi(\begin{bmatrix} h & \\ & h' \end{bmatrix} \begin{bmatrix} 1 & X \\ & 1 \end{bmatrix}) = |\det(h)|^{2s} \psi_{\mathbf{E}}(\frac{1}{2} \operatorname{tr}(\begin{bmatrix} 1 & \\ & -1 \end{bmatrix} X)).$$

Let **S** act on $\phi \in \mathcal{S}(\mathbf{F}^2)$ by

$$\begin{bmatrix} h & x \\ & h' \end{bmatrix} \cdot \phi(z) = \phi(zh).$$

Lemma 2.1. Except for finitely many $s \in \mathbb{C}$,

$$\dim_{\mathbb{C}} \operatorname{Hom}_{\mathbf{S}}(\pi \otimes_{\mathbb{C}} \mathscr{S}_0(\mathbf{F}^2), \nu_s \psi) \leq \dim_{\mathbb{C}} \operatorname{Hom}_{\mathbf{T}}(\pi, \nu_{s-1} \psi).$$

Proof. It suffices to construct a homomorphism $J: \operatorname{Hom}_{S}(\pi \otimes_{\mathbb{C}} \mathscr{S}(\mathbf{F}^{2}), \nu_{s}\psi) \to \operatorname{Hom}_{T}(\pi, \nu_{s-1}\psi)$ so that J is injective except for finitely many $s \in \mathbb{C}$. Take $\sigma \in \operatorname{Hom}_{S}(\pi, \nu_{s}\psi)$. By the definition of $\nu_{s}\psi$,

$$\sigma(\pi(t)v) = \omega_{\pi}(t)\sigma(v) = |t|^{4s}\sigma(v)$$

for $t \in \mathbf{F}^{\times}$ and $v \in V$. Hence, except for finitely many $s \in \mathbb{C}$,

$$\text{Hom}_{S}(\pi, \nu_{s}\psi) = \{0\}.$$
 (2.5)

By restriction of $\mathscr{S}(\mathbf{F}^2)$ to its **S**-subspace $\mathscr{S}_0(\mathbf{F}^2) = \{ \phi \in \mathscr{S}(\mathbf{F}^2) \mid \phi([0,0]) = 0 \}$, we have a homomorphism

$$J': \operatorname{Hom}_{\mathbf{S}}(\pi \otimes_{\mathbb{C}} \mathscr{S}(\mathbf{F}^2), \nu_s \psi) \to \operatorname{Hom}_{\mathbf{S}}(\pi \otimes_{\mathbb{C}} \mathscr{S}_0(\mathbf{F}^2), \nu_s \psi).$$

However, the kernel of J' is embedded into $\text{Hom}_S(\pi, \nu_s \psi)$ since

$$\pi \otimes_{\mathbb{C}} \mathscr{S}(\mathbf{F}^2)/\pi \otimes_{\mathbb{C}} \mathscr{S}_0(\mathbf{F}^2) \simeq \pi$$

as **S**-modules via the mapping: $v \otimes \phi \to \phi([0,0])v \in \pi$. Therefore, by (2.5), except for finitely many s, the kernel of J' is $\{0\}$ and J' is injective. The quotient $P_2 \backslash GL_2(\mathbf{F})$ acts on $\mathbf{F}^2 \backslash \{[0,0]\}$ faithfully, and $\mathbf{T} \backslash \mathbf{S} \simeq P_2 \backslash GL_2(\mathbf{F})$. So, the

S-space $\mathscr{S}_0(\mathbf{F}^2)$ is isomorphic to $\operatorname{ind}_{\mathbf{T}}^{\mathbf{S}}(\mathbf{1})$, the compactly supported induced representation from the trivial representation $\mathbf{1}$ of \mathbf{T} , via the correspondence: $\phi \mapsto \phi([0,1]h) \in \operatorname{ind}_{\mathbf{T}}^{\mathbf{S}}(\mathbf{1})$ where we write we write an element of \mathbf{S} as in (2.4). So,

$$\operatorname{Hom}_{\mathbf{S}}(\pi \otimes_{\mathbb{C}} \mathscr{S}_0(\mathbf{F}^2), \nu_s \psi) \simeq \operatorname{Hom}_{\mathbf{S}}(\pi \otimes_{\mathbb{C}} \operatorname{ind}_{\mathbf{T}}^{\mathbf{S}}(\mathbf{1}), \nu_s \psi).$$

However, in general, for representations τ , ξ of a group G, and one-dimensional representation χ , it holds that

$$\operatorname{Hom}_{G}(\tau \otimes_{\mathbb{C}} \xi, \chi) \simeq \operatorname{Hom}_{G}(\tau, \operatorname{Hom}_{\mathbb{C}}(\xi, \chi))$$

 $\simeq \operatorname{Hom}_{G}(\tau, \operatorname{Hom}_{\mathbb{C}}(\chi^{-1}\xi, \mathbb{C})),$

where $g \in G$ acts on $f \in \operatorname{Hom}_{\mathbb{C}}(\xi, \chi)$ by $g \cdot f(t) = \chi(g) f(\xi(g^{-1})t)$. Therefore,

$$\operatorname{Hom}_{S}(\pi \otimes_{\mathbb{C}} \operatorname{ind}_{T}^{S}(1), \nu_{s} \psi) \simeq \operatorname{Hom}_{S}(\pi, \operatorname{Hom}_{\mathbb{C}} \left(\operatorname{ind}_{T}^{S}((\nu_{s} \psi)^{-1}), \mathbb{C} \right))$$

$$\simeq \operatorname{Hom}_{S}(\pi, \operatorname{Ind}_{T}^{S}(\nu_{s-1} \psi))$$

$$\simeq \operatorname{Hom}_{T}(\pi, \nu_{s-1} \psi).$$

The second isomorphism is by 2.25 c) of [1], and the last is by the Frobenius reciprocity law 2.29 of loc. cite.. This completes the proof.

Let

$$\pi^{\vee}(g) = \pi(\mu(g)^t g^{-1}).$$

Proposition 2.2. π is equivalent to π^{\vee} .

Proof. Consider the action γ of G on G defined by $\gamma(g)g_1 = g^{-1}g_1g$, and the homeomorphism $\sigma: g \to \mu(g)^t g^{-1}$ in G. Then, all the conditions of the second Theorem in p.91 of [4] are satisfied. Indeed, $\gamma(g)\sigma = \sigma\gamma(^tg^{-1})$, σ^2 is identity, and $\sigma(g) = J^{-1}gJ$. Therefore, the character $tr(\pi)$ of π (see 2.17 of [1] for the definition of $tr(\pi)$) coincides with $tr(\pi^\vee)$. By Corollary 2.20 of loc. cite, π is equivalent to π^\vee .

For a local Whittaker function $W \in \mathcal{W}_{\psi}$, and $\phi \in \mathcal{S}(\mathbf{F}^2)$, we define the zeta integral by

$$Z(s,W,\phi) = \int_{N_2\backslash \mathrm{GL}_2(\mathbf{F})} \int_{\mathbf{F}} W(\begin{bmatrix} 1 & & & \\ & 1 & & \\ & x & 1 & \\ & & & 1 \end{bmatrix} i(h))\phi([0,1]h)|\det(h)|^s dxdh.$$

A common argument shows this integral is absolutely convergent when $\Re(s)$ is sufficiently large. Define $L(s,\pi)$ in the same way as in the GSp(4) case. Let \mathbf{S}' (resp. \mathbf{T}') be the conjugation of \mathbf{S} (resp. \mathbf{T}) by

$$\begin{bmatrix} 1 & & & \\ & & -1 & \\ & 1 & & \\ & & & 1 \end{bmatrix}.$$

Theorem 2.3. There exists a function $\varepsilon(s, \pi, \psi)$ such that

$$\frac{Z(1-s,W',\phi^{\sharp})}{L(1-s,\pi)} = \varepsilon(s,\pi,\psi)\frac{Z(s,W,\phi)}{L(s,\pi)}$$
 (2.6)

for arbitrary $W \in V$ and $\phi \in \mathcal{S}(\mathbf{F}^2)$. $\varepsilon(s, \pi, \psi)$ is in a form of $\varepsilon q^{-N_{\pi}(s-1/2)}$ with $\varepsilon \in \{\pm 1\}, N_{\pi} \in \mathbb{Z}$.

Proof. Consider the functionals on $\pi \otimes_{\mathbb{C}} \mathscr{S}(\mathbf{F}^2)$ sending $W \otimes \phi$ to $\frac{Z(s,W,\phi)}{L(s,\pi)}$ and to $\frac{Z(1-s,W',\phi^{\sharp})}{L(1-s,\pi)}$. Both these functionals belong to $\mathrm{Hom}_{\mathbf{S}'}(\pi \otimes_{\mathbb{C}} \mathscr{S}(\mathbf{F}^2),\nu_s\psi)$. First, we will show that, except for finitely many s,

$$\dim_{\mathbb{C}} \operatorname{Hom}_{S'}(\pi \otimes_{\mathbb{C}} \mathscr{S}(\mathbf{F}^2), \nu_s \psi) \le 1. \tag{2.7}$$

By Lemma 2.1, it suffices to show $\dim_{\mathbb{C}} \operatorname{Hom}_{\mathbf{T}'}(\pi, \nu_s \psi) \leq 1$, except for finitely many s. Take a $\Lambda \in \operatorname{Hom}_{\mathbf{T}'}(\pi, \nu_s \psi)$. For $t \in \mathbf{F}^{\times}, x \in \mathbf{E}, z \in \mathbf{F}$,

$$\Lambda(\pi(\mathbf{n}(x,y,z))v) = \psi_E(x)\Lambda(v),$$

$$\Lambda(\pi(\begin{bmatrix} t & & & \\ & t & & \\ & * & 1 & \\ & & & 1 \end{bmatrix})v) = v_s(t)\Lambda(v).$$

Via (2.2), Λ corresponds to the functional λ on the P_3 -space \overline{V} , such that

$$\lambda(\begin{bmatrix} 1 & z \\ & 1 & z \\ & & 1 \end{bmatrix} v) = \psi(z)\lambda(v),$$

$$\lambda(\begin{bmatrix} t & & \\ * & 1 & \\ & & 1 \end{bmatrix} v) = \nu_s(t)\lambda(v).$$

The proof for Proposition 2.5.7.of [5] says that, except for finitely many s, the space $\{\lambda\}$ is at most one-dimensional. (see also Lemma 2.5.4., 2.5.5., and 2.5.6.of loc.cite.) Thus, (2.7) is showed. Therefore, there is a function $\varepsilon(s,\pi,\psi)$ depending only on s,π,ψ such that (2.6) holds except for finitely many s. By definition, there is a finite set of pairs $\{(W_i,\phi_i)\}$ such that $L(s,\pi)=\sum_i Z(s,W_i,\phi_i)$. By (2.6),

$$\varepsilon(s,\pi,\psi) = \frac{\sum_i Z(1-s,W_i',\phi_i^{\sharp})}{L(1-s,\pi)} \in \mathbb{C}[q^{-s},q^s].$$

(Each W_i' belongs to V.) Therefore, we may write $\varepsilon(s, \pi, \psi) = R(q^{-s})q^{-Ms}$ by some $R[X] \in \mathbb{C}[X]$ and $M \in \mathbb{Z}$. From (2.6) and the fact that $(W')' = W, (\phi^{\sharp})^{\sharp}(z) = \phi(-z)$, it follows that

$$\varepsilon(s,\pi,\psi)\varepsilon(1-s,\pi,\psi)=1.$$

Therefore, R has no zeros, and is a monomial. Now the assertion follows immediately.

3 D-paramodular vectors

For a nonnegative integer m, set

$$\mathfrak{D}_m = \mathfrak{o} + \mathfrak{p}^m \sqrt{d}$$

and

$$K_{d}(2m) = \{g \in \mathbf{G} \cap \begin{bmatrix} \mathcal{D}_{m} & \mathfrak{p}^{-m}\mathcal{D}_{m} & \mathfrak{p}^{-m}\mathcal{D}_{m} & \mathfrak{p}^{-2m}\mathcal{D}_{m} \\ \mathfrak{p}^{m}\mathcal{D}_{m} & \mathcal{D}_{m} & \mathcal{D}_{m} & \mathfrak{p}^{-m}\mathcal{D}_{m} \\ \mathfrak{p}^{2m}\mathcal{D}_{m} & \mathfrak{p}^{m}\mathcal{D}_{m} & \mathfrak{p}^{m}\mathcal{D}_{m} & \mathfrak{p}^{-m}\mathcal{D}_{m} \end{bmatrix} | \mu(g) \in \mathfrak{o}^{\times}\},$$

$$K_{d}(2m+1) = \{g \in \mathbf{G} \cap \begin{bmatrix} \mathcal{D}_{m} & \mathfrak{p}^{-m}\mathcal{D}_{m} & \mathfrak{p}^{-m}\mathcal{D}_{m} & \mathfrak{p}^{-m}\mathcal{D}_{m} \\ \mathfrak{p}^{m+1}\mathcal{D}_{m} & \mathcal{D}_{m} & \mathcal{D}_{m} & \mathfrak{p}^{-m}\mathcal{D}_{m} \\ \mathfrak{p}^{2m+1}\mathcal{D}_{m} & \mathcal{D}_{m} & \mathcal{D}_{m} & \mathfrak{p}^{-m}\mathcal{D}_{m} \\ \mathfrak{p}^{2m+1}\mathcal{D}_{m} & \mathfrak{p}^{m+1}\mathcal{D}_{m} & \mathfrak{p}^{m+1}\mathcal{D}_{m} & \mathfrak{p}^{m}\mathcal{D}_{m} \end{bmatrix} | \mu(g) \in \mathfrak{o}^{\times}\}.$$

 \mathfrak{D}_m is a subring of the ring of integers of E, and $K_d(n)$ is a compact subgroup of G. We call $K_d(n)$ the D-paramodular group of level n. Let ω be a generator of \mathfrak{p} . The followings are elements of G:

Note that $t_{2m}, u_{2m}, v_{2m} \in K_d(n)$. Note that $t_{2m+1} \in K_d(2m+1), u_{2m+1}, v_{2m+1} \notin K_d(2m+1)$, however, u_{2m+1}, v_{2m+1} are normalizers of $K_d(2m+1)$. We call $v \in V$ a D-paramodular vector if v is invariant under some $K_d(n)$, and denote by V(n) the subspace consisting of $K_d(n)$ -invariant vectors. Similar to the argument of [5], we may find a $W \in V$ fixed by a 'Klingen-type' compact subgroup such that $W(1) \neq 0$, and construct a D-paramodular form $W' = \int_{K_d(n)} \pi(k) W dk$ for some n, such that $W'(1) \neq 0$. So,

$$V(n) \neq \{0\}$$

for some n. When n = 2m + 1, the subspace V(2m + 1) is decomposed to the direct sum $V(2m + 1)_+ + V(2m + 1)_-$ with

$$V(2m+1)_{\varepsilon} = \{v \in V(2m+1) \mid \pi(u_{2m+1})v = \varepsilon v\}.$$

Note that $\pi(v_{2m+1})v = \pi(u_{2m+1})v$ since $t_{2m+1}^{-1}u_{2m+1}t_{2m+1} = v_{2m+1}$. Set

$$\eta = \begin{bmatrix} \varpi^{-1} & & & \\ & 1 & & \\ & & 1 & \\ & & & \varpi \end{bmatrix}.$$

It is easy to see that

$$\pi(\eta): V(n) \to V(n+2), V(2m+1)_{\varepsilon} \to V(2m+3)_{\varepsilon}.$$

Define

$$Z_d(s,W) = \int_{\mathbb{F}^{\times}} W(i(\begin{bmatrix} a & \\ & 1 \end{bmatrix}))|a|^{s-2}d^{\times}a.$$

Similar to the GSp(4)-case, we have

Proposition 3.1 (η -principle). Let $m \ge 1$. Suppose that $W \in V(2m)$ (resp. $W \in V(2m+1)_{\varepsilon}$). If $Z_d(s,W) = 0$, then there exists a $W' \in V(2m-2)$ (resp. $W \in V(2m-1)_{\varepsilon}$) such that $\pi(\eta)W' = W$.

4 New forms

Suppose that (π, V) is supercuspidal. The argument of [2] for L-function of a representation of $GL(2) \times GL(2)$ works for the GU(2,2) case, and we conclude $L(s,\pi)$ is one of following forms.

- i) $L(s, \pi) = (1 q^{-s})^{-1}$. We say π is distinguished.
- ii) $L(s, \pi) = (1 + q^{-s})^{-1}$. We say π is quasi-distinguished.
- iii) $L(s, \pi) = (1 q^{-2s})^{-1}$. We say π is dual-distinguished.
- iv) $L(s, \pi) = 1$. We say π is nondistinguished.

Define two Hecke operators for V(n) by

$$T_{1,0} = \pi(K_d(n)\eta^{-1}K_d(n)), \ T_{0,1} = \pi(K_d(n)i(\begin{bmatrix} \varpi & \\ & 1 \end{bmatrix})K_d(n)),$$

which are self-adjoint. But, note that $T_{1,0}$ does not act on $V(2m+1)_{\varepsilon}$. If $V(M_{\pi}) \neq \{0\}$ and $V(n) = \{0\}$ for all $n < M_{\pi}$, then we say M_{π} is the minimal level of

 π . For $W \in V(M_{\pi})$, we obtain a recursion formula of $W(i(\begin{bmatrix} \varpi^n \\ 1 \end{bmatrix}))$ by using

the Hecke operators. The η -principle, and this recursion formula, give rough one-dimensionality of $V(M_{\pi})$ (in case that M_{π} is odd, the one-dimensionality may lost as below). Let

$$\phi_m = \operatorname{Ch}(\mathfrak{p}^m \oplus \mathfrak{o}) \in \mathscr{S}(\mathbf{F}^2).$$

Observing the form of $L(s, \pi)$ and the functional equation, we obtain

Theorem 4.1. Suppose that (π, V) is supercuspidal. Then M_{π} is odd and $N_{\pi} = M_{\pi} + 1$.

i) When π is distinguished, the subspace $V(M_{\pi})_+$ is one dimensional, and $V(M_{\pi})_- = \{0\}$. For the unique $W \in V(M_{\pi})_+$ such that W(1) = 1,

$$Z(s,W,\phi_{\frac{N_{\pi}}{2}})=\frac{q-1}{q+1}L(s,\pi).$$

ii) When π is quasi-distinguished, the subspace $V(M_{\pi})_{-}$ is one dimensional, and $V(M_{\pi})_{+} = \{0\}$. For the unique $W \in V(M_{\pi})_{-}$ such that W(1) = 1,

$$Z(s,W,\phi_{\frac{N_{\pi}}{2}})=\frac{q-1}{q+1}L(s,\pi).$$

iii) When π is dual-distinguished, both of the subspaces $V(M_{\pi})_+, V(M_{\pi})_-$ are one dimensional. For each unique $W_{\pm} \in V(M_{\pi})_{\pm}$ such that $W_{\pm}(1) = 1$,

$$Z(s, W_+ + W_-, \phi_{\frac{N_{\pi}}{2}}) = 2\frac{q-1}{q+1}L(s, \pi).$$

iv) When π is nondistinguished, both of the subspaces $V(M_{\pi})_+, V(M_{\pi})_-$ are one dimensional. For each unique $W_{\pm} \in V(M_{\pi})_{\pm}$ such that $W_{\pm}(1) = 1$,

$$Z(s, W_{\pm}, \phi_{\frac{N_{\pi}}{2}}) = \frac{q-1}{q+1}L(s, \pi).$$

References

- [1] I. N. Bernstein, and A.N.Zelevinskii, Representations of the group GL(n,F) where F is a nonarchimdean local field, Russian Math. Survay 31 (1976), 1-68.
- [2] S. Gelbert, and H. Jacquet, A relation between automorphic representation of GL(2) and GL(3), Ann. Sci. de E.N.S. No. 4, (1978), 471-542.
- [3] M. Furusawa, and K. Morimoto, Shalika periods on *GU*(2, 2), Proc. of AMS, (2013)
- [4] C. Moeglin, M-F. VIgneras, and J-L. Waldspurger, Correspondence de Howe sur un courps p-adique, L.N.M. 1291 (1987), Springer.
- [5] B. Roberts and R. Schmidt, Local newforms for GSp(4), L.N.M. 1918 (2007), Springer.
- [6] J.A. Shalika, The Multiplicity One Theorem for GL_n , Ann. of Math., 2nd Series, Vol. 100, No. 2, (1974), 171-193.