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ABSTRACT. In this semi-expository note, we give a new proof of a structure theorem
due to Shimura for nearly holomorphic modular forms on the complex upper half
plane. Roughly speak\’ing, the theorem says that the space of all nearly holomorphic
modular forms is the direct sum of the subspaces obtained by applying appropri-
ate weight-raising operators on the spaces of holomorphic modular forms and on
the one-dimensional space spanned by the weight 2 nearly holomorphic Eisenstein
series.

While Shimura’s proof was classical, ours is representation-theoretic. We deduce
the structure theorem from a decomposition for the space of $\mathfrak{n}$-finite automorphic
forms on $SL_{2}(\mathbb{R})$ . To prove this decomposition, we use the mechanism of category
$0$ and a careful analysis of the various possible indecomposable submodules. It
is possible to achieve the same end by more direct methods, but we prefer this
approach as it generalizes to other groups.

This note may be viewed as the degree 1 version of our paper $[く\}]$ , where we
prove an analogous structure theorem for vector-valued nearly holomorphic Siegel
modular forms of degree two. The first author presented the results in the de-
gree 2 case in his talk at RIMS conference on Modular Forms and Automorphic
Representations (Feb 2-6, 2015)

1. NEARLY HOLOMORPHIC FUNCTIONS

Let $\mathbb{H}_{1}$ be the complex upper half plane. Let $N^{p}(\mathbb{H}_{1})$ be the space of functions
$f$ : $\mathbb{H}_{1}arrow \mathbb{C}$ of the form

$f( \tau)=\sum_{j=0}^{p}f_{j}(\tau)y^{-j}, \tau=x+iy,$

where $f_{0}$ , . . . , $f_{p}$ are holomorphic functions on $\mathbb{H}_{1}$ . Any element of the space $N(\mathbb{H}_{1})=$

$\bigcup_{p=0}^{\infty}N^{p}(\mathbb{H}_{1})$ is called a nearly holomorphic function on $\mathbb{H}_{1}$ . It is an exercise to show
that

$\sum_{j=0}^{p}f_{j}(\tau)y^{-j}=0$ $\Leftrightarrow$ $f_{j}=0$ for all $j=0$ , . . . , $p$ . (1)

Hence, the holomorphic coefficients of a nearly holomorphic function are uniquely de-
termined.

If $f$ is a nearly holomorphic function, and if there exists a non-zero real number $r$ such
that $f(\tau+r)=f(\tau)$ for all $\tau\in \mathbb{H}_{1}$ , then the holomorphic coefficients $f_{j}$ of $f$ exhibit the
same translation invariance; this follows from (1). Each $f_{j}$ therefore admits a Fourier
expansion $f_{j}( \tau)=\sum a_{j}(n)e^{2\pi in\tau/r}$ . It follows that $f$ admits a Fourier expansion whose
coeffcients are polynomials in $y^{-1}.$
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For an integer $k$ , we define the weight $k$ slash operator on functions $f$ : $\mathbb{H}_{1}arrow \mathbb{C}$ in
the usual way:

$(f|_{k}g)( \tau)=(c\tau+d)^{-k}f(\frac{a\tau+b}{c\tau+d}) , g=\{\begin{array}{l}bacd\end{array}\}\in SL_{2}(\mathbb{R})$ .

Let $\Gamma$ be a congruence subgroup of $SL_{2}(\mathbb{Q})$ . Let $N_{k}^{p}(\Gamma)$ denote the space of functions
$F:\mathbb{H}_{1}arrow \mathbb{C}$ such that

(1) $F\in N^{p}(\mathbb{H}_{1})$ ;
(2) $F|_{k}\gamma=F$ for all $\gamma\in\Gamma$ ;
(3) $F$ satisfies the cusp condition. (This notion is defined in terms of Fourier

expansions just as in the case of holomorphic modular forms; see, e.g., \S 2.1 of
$[\check{\prime}].)$

We denote by $N_{k}^{p}(\Gamma)^{o}$ the subspace of functions that vanish at every cusp. The space
$N_{k}( \Gamma)=\bigcup_{p=0}^{\infty}N_{k}^{p}(\Gamma)$ is the space of nearly holomorphic modular forms with respect to $\Gamma,$

and $N_{k}( \Gamma)^{o}=\bigcup_{p=0}^{\infty}N_{k}^{p}(\Gamma)^{o}$ is the space of nearly holomorphic cusp forms. Evidently,
$M_{k}(\Gamma)$ $:=N_{k}^{0}(\Gamma)$ is the usual space of holomorphic modular forms of weight $k$ with
respect to $\Gamma$ , and $S_{k}(\Gamma)$ $:=N_{k}^{0}(\Gamma)^{o}$ is the subspace of cusp forms. Nearly holomorphic
modular forms occur naturally as special values of Eisenstein series and thus their
arithmetic properties imply arithmetic properties for various $L$-functions via the theory
of Rankin-Selberg type integrals. We refer the reader to the introduction of for
further remarks in this direction.

For an integer $k$ , we define the classical Maass weight raising and lowering operators
$R_{k},$ $L_{k}$ on the space of smooth functions on $\mathbb{H}_{1}$ by

$R_{k}= \frac{k}{y}+2i\frac{\partial}{\partial\tau}, L_{k}=-2iy^{2}\frac{\partial}{\partial\overline{\tau}}$ , (2)

where $\frac{\partial}{\partial\tau}=\frac{1}{2}$
$( \frac{\partial}{\partial x}-i\frac{\partial}{\partial y})$ and $\frac{\partial}{\partial\overline{\tau}}=\frac{1}{2}$

$( \frac{\partial}{\partial x}+i\frac{\partial}{\partial y})$ are the usual Wirtinger derivatives.
Also define an operator $\Omega_{k}$ by

$\Omega_{k}=\frac{1}{4}k^{2}+\frac{1}{2}R_{k-2}L_{k}+\frac{1}{2}L_{k+2}R_{k}$ . (3)

A calculation shows that

$\Omega_{k}=y^{2}(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}})-2iky\frac{\partial}{\partial\overline{\tau}}+\frac{k}{2}(\frac{k}{2}-1)$ . (4)

The following lemma is readily verified.

Lemma 1.1. Let $k$ be an integer, and $p$ be a non-negative integer. Let $\Gamma$ be a congruence
subgroup of $SL_{2}(\mathbb{Q})$ .

(1) $R_{k}$ induces maps $N_{k}^{p}(\Gamma)arrow N_{k+2}^{p+1}(\Gamma)$ and $N_{k}^{p}(\Gamma)^{o}arrow N_{k+2}^{p+1}(\Gamma)^{o}.$

(2) $L_{k}$ induces maps $N_{k}^{p}(\Gamma)arrow N_{k-2}^{p-1}(\Gamma)$ and $N_{k}^{p}(\Gamma)^{o}arrow N_{k-2}^{p-1}(\Gamma)^{o}.$

(3) $\Omega_{k}$ induces endomorphisms of $N_{k}^{p}(\Gamma)$ and of $N_{k}^{p}(\Gamma)^{o}.$

Here, we understand $N_{k}^{p}(\Gamma)=N_{k}^{p}(\Gamma)^{o}=0$ for $p<0.$

Henceforth, we drop the subscripts and let $R,$ $L$ , and $\Omega$ denote the operators on
$\oplus_{k}N_{k}(\Gamma)$ whose restrictions to $N_{k}(\Gamma)$ are given by $R_{k},$ $L_{k\}}$ and $\Omega_{k}$ , respectively.

Lemma 1.2. For any integer $k$ and non-negative integer $p$ , the space $N_{k}^{p}(\Gamma)$ is finite-
dimensional.

Proof. This is well known for $p=0$ , since $N_{k}^{0}(\Gamma)=M_{k}(\Gamma)$ is simply the space of
holomorphic modular forms of weight $k$ . For $p>0$ there is an exact sequence

$0arrow M_{k}(\Gamma)arrow N_{k}^{p}(\Gamma)arrow^{L}N_{k-2}^{p-1}(\Gamma)$ .
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Hence the assertion follows by induction on $p.$
$\square$

The following well-known fact will be important for our arguments further below.
$(For a$ proof, $see$ Theorem $2.5.2 of [:\tilde{)}].)$

Lemma 1.3. $S_{k}(\Gamma)=0$ if $k\leq 0$ , and $M_{k}(\Gamma)=0$ if $k<0$ . The space $M_{0}(\Gamma)$ consists
of the constant functions.

2. REPRESENTATIONS OF $SL_{2}(\mathbb{R})$ AND DIFFERENTIAL OPERATORS

To reinterpret elements of $N_{k}^{p}(\Gamma)$ as functions on $SL_{2}(\mathbb{R})$ , we recall the basic repre-
sentation theory of this group. Let $\mathfrak{g}=\mathfrak{s}\mathfrak{l}_{2}(\mathbb{R})$ be the Lie algebra of $SL_{2}(\mathbb{R})$ , consisting
of all $2\cross 2$ real matrices with trace zero. Let $\mathfrak{g}_{\mathbb{C}}=\mathfrak{s}\mathfrak{l}_{2}(\mathbb{C})$ be its complexification. The
elements

$H=-i \{\begin{array}{ll}0 1-10 \end{array}\}, R=\frac{1}{2}\{\begin{array}{l}ili-1\end{array}\}, L=\frac{1}{2}\{\begin{array}{l}1-i-i-1\end{array}\}$ (5)

of $\mathfrak{g}_{\mathbb{C}}$ satisfy the relations $[H, R]=2R,$ $[H, L]=-2L$ and $[R, L]=H$. The Casimir
element is the element in the universal enveloping algebra $U(\mathfrak{g}_{\mathbb{C}})$ given by

$\Omega=\frac{1}{4}H^{2}+\frac{1}{2}RL+\frac{1}{2}LR$ . (6)

Then $\Omega$ lies in the center $\mathcal{Z}$ of $1t(\mathfrak{g}_{\mathbb{C}})$ , and it is known that $\mathcal{Z}=\mathbb{C}[\Omega].$

Let $K=SO(2)$ be the standard maximal compact subgroup of $SL_{2}(\mathbb{R})$ , consisting

of all elements $r(\theta)=\{\begin{array}{ll}cos(\theta) sin(\theta)-sin(\theta)cos(\theta) \end{array}\}$ with $\theta\in \mathbb{R}$ . By “representation of $SL_{2}(\mathbb{R})$ we

mean $a(\mathfrak{g}, K)$-module. In such a module $(\pi, V)$ , we say a non-zero $v\in V$ has weight $k$

if

$\pi(r(\theta))v=e^{ik\theta}v$ for $\theta\in \mathbb{R},$

or equivalently, $\pi(H)v=kv$ . In an irreducible representation, all weights have the same
parity, and every weight occurs at most once. The operator $\pi(R)$ raises the weight by
2, and the operator $\pi(L)$ lowers the weight by 2. The weight structure of an irreducible
representation is the list of weights, written in order. The following is the complete list
of irreducible, admissible $(\mathfrak{g}, K)$-modules.

(1) Finite-dimensional representations. For a positive integer $p$ , let $\mathcal{F}_{p}$ be the
irreducible finite-dimensional representation of $SL_{2}(\mathbb{R})$ with weight structure
$[-p+1, -p+3, . . . , p-3,p-1]$ . Hence $\dim \mathcal{F}_{p}=p.$

(2) Discrete series representations. For a positive integer $p$ we denote by $\mathcal{D}_{p,+}$ the
discrete series representation of $SL_{2}(\mathbb{R})$ with weight structure $[p+1,$ $p+3$ , . .
Similarly, let $\mathcal{D}_{p}$,-be the discrete series representation of $SL_{2}(\mathbb{R})$ with weight
structure $[. . . , -p-3, -p-1]$ . Hence, $p$ is not the minimal weight of $\mathcal{D}_{p,+},$

but the Harish-Chandra parameter.
(3) Limits of discrete series. Let $\mathcal{D}_{0,+}$ be the irreducible representation of $SL_{2}(\mathbb{R})$

with weight structure [1, 3, 5, . . and let $\mathcal{D}_{0}$ ,-be the irreducible representation
of $SL_{2}(\mathbb{R})$ with weight structure $[. . . , -5, -3, -1]$ . Formally these representa-
tions look like members of the discrete series, but they are not square-integrable.

(4) Principal series representations. Their weight structure is either $2\mathbb{Z}$ or $2\mathbb{Z}+1.$

For our purposes, all we need to know about principal series representations is
that the operators $R$ and $L$ act injectively on such $a(\mathfrak{g}, K)$-module.
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Functions on $SL_{2}(\mathbb{R})$ and functions on $\mathbb{H}_{1}$ . Let $W(k)$ be the space of smooth
functions $\Phi$ : $SL_{2}(\mathbb{R})arrow \mathbb{C}$ with the property $\Phi(gr(\theta))=e^{ik\theta}\Phi(g)$ for all $\theta\in \mathbb{R}$ and
$g\in SL_{2}(\mathbb{R})$ . These are the vectors of weight $k$ under the right translation action on the
space of smooth functions. The operator $R$ induces a map $W(k)arrow W(k+2)$ , and $L$

induces a map $W(k)arrow W(k-2)$ . Let $W$ be the space of smooth functions on $\mathbb{H}_{1}$ . For
$\Phi\in W(k)$ we define an element $\tilde{\Phi}\in W$ by

$\tilde{\Phi}(x+iy)=y^{-k/2}\Phi(\{1 x1\}\{y^{1/2} y^{-1/2}\})$ . (7)

It is straightforward to verify that

$(\tilde{\Phi}|_{k}g)(i)=\Phi(9)$ for all $g\in SL_{2}(\mathbb{R})$ . (8)

The map $\Phi\mapsto\tilde{\Phi}$ establishes an isomorphism $W(k)\cong W.$

Lemma 2.1. Let $R,$ $L,$ $\Omega$ be the operators on $W$ defined in (2) and (4). Then the
diagrams

$W(k) arrow^{\sim}W W(k) arrow^{\sim}W W(k)arrow^{\sim}W$

$L\downarrow \downarrow L R\downarrow \downarrow R \Omega\downarrow \downarrow\Omega$

$W(k-2)arrow^{\sim}W$ $W(k+2)arrow^{\sim}W$ $W(k)arrow^{\sim}W$

are commutative.

Proof. The assertions for $R$ and $L$ follow from straightforward calculations. The asser-
tion for $\Omega$ then follows from (3) and (6). $\square$

The previous lemma is about smooth functions only and does not involve any trans-
formation properties. If $\Phi\in W(k)$ satisfies $\Phi(\gamma g)=\Phi(g)$ for all $g\in SL_{2}(\mathbb{R})$ and all
elements $\gamma$ of a congruence subgroup $\Gamma$ , then it follows from (8) that $\tilde{\Phi}|_{k}\gamma=\tilde{\Phi}$ for
all $\gamma\in\Gamma$ . Conversely, given a smooth function $f$ on $\mathbb{H}_{1}$ satisfying $f|k\gamma=f$ for all
$\gamma\in\Gamma$ , we may consider the function $\Phi\in W(k)$ such that $\tilde{\Phi}=f$ . This function is then
left $\Gamma$-invariant. We will see in the next subsection that if $f\in N_{k}^{p}(\Gamma)$ , then $\Phi$ is an
automorphic form.

3. THE STRUCTURE THEOREM FOR CUSP FORMS

Let $\Gamma\subset SL_{2}(\mathbb{Q})$ be a congruence subgroup. Let $\mathcal{A}(\Gamma)$ be the space of automorphic
forms on $SL_{2}(\mathbb{R})$ , and let $\mathcal{A}(\Gamma)^{o}$ be the subspace of cusp forms. Recall that automor-
phic forms are required to be smooth, left $\Gamma$-invariant, K-finite, $\mathcal{Z}-$-finite, and slowly
increasing; we refer to [1] for the precise definitions. The spaces $\mathcal{A}(\Gamma)$ and $\mathcal{A}(\Gamma)^{o}$ are
$(\mathfrak{g}, K)$-modules with respect to right translation. Let $\mathcal{A}_{k}(\Gamma)$ (resp. $\mathcal{A}_{k}(\Gamma)^{o}$ ) be the
space of automorphic forms (resp. cusp forms) $\Phi$ satisfying $H.\Phi=k\Phi$ , or equivalently,
$\Phi(gr(\theta))=e^{ik\theta}\Phi(g)$ for all $\theta\in \mathbb{R}$ and $g\in SL_{2}(\mathbb{R})$ .

If $f\in \mathcal{A}(\Gamma)$ and $g\in \mathcal{A}(\Gamma)^{o}$ , then the function $|fg|$ is integrable over $\Gamma\backslash SL_{2}(\mathbb{R})$ . In
particular, $\mathcal{A}(\Gamma)^{o}\subset L^{2}(\Gamma\backslash SL_{2}(\mathbb{R}))$ . With respect to the $L^{2}$ inner product, the space
$\mathcal{A}$

$(\Gamma$ $)$

$\circ$ decomposes into an orthogonal direct sum of irreducible representations, each
occurring with finite multiplicity.

Let $\Phi\in \mathcal{A}(\Gamma)$ . We will say that $\Phi$ is n-finite if $L^{v}\Phi=0$ for large enough $v$ . Let
$\mathcal{A}(\Gamma)_{\mathfrak{n}-fin}$ be the space of $\mathfrak{n}$-finite automorphic forms, and let $\mathcal{A}(\Gamma)_{\mathring{\mathfrak{n}}-fin}$ be the subspace
of n-finite cusp forms. The following properties are easy to verify:

$\bullet$ $\mathcal{A}(\Gamma)_{\mathfrak{n}-fin}$ is $a(\mathfrak{g}, K)$-submodule of $\mathcal{A}(\Gamma)$ .

144



REPRESENTATIONS AND NEARLY HOLOMORPHIC FORMS

$\bullet$ $\mathcal{A}(\Gamma)_{\mathfrak{n}-fin}$ is the direct sum of its weight spaces, i.e.: If $\Phi\in \mathcal{A}(\Gamma)_{\mathfrak{n}-fin}$ and
$\Phi=\Phi_{1}+\ldots+\Phi_{m}$ with $\Phi_{i}\in \mathcal{A}_{k_{i}}(\Gamma)$ for different weights $k_{i}$ , then $\Phi_{i}\in \mathcal{A}(\Gamma)_{\mathfrak{n}-fin}$

for each $i.$

Analogous statements hold for cusp forms.

Lemma 3.1. Let $k$ be an integer, and $p$ a non-negative integer. Let $\Gamma$ be a congruence
subgroup of $SL_{2}(\mathbb{Q})$ . Let $f\in N_{k}^{p}(\Gamma)$ be non-zero. Define a function $\Phi$ on $SL_{2}(\mathbb{R})$ by
$\Phi(g)=(f|_{k}g)(i)$ . Then $\Phi\in \mathcal{A}_{k}(\Gamma)_{\mathfrak{n}-fin}$ . If $f$ is a cusp form, then $\Phi\in \mathcal{A}_{k}(\Gamma)_{\mathring{\mathfrak{n}}-fin}.$

Proof. Evidently, $\Phi$ is smooth, left $\Gamma$-invariant and has weight $k$ . Since $N_{k}^{p}(\Gamma)$ is finite-
dimensional (Lemma 1.2) and $\Omega$ acts on $N_{k}^{p}(\Gamma)$ (Lemma 1.1), the function $f$ is $\mathbb{C}[\Omega]-$

finite. Hence, by Lemma 2.1, the function $\Phi$ is $\mathcal{Z}$,-finite. The holomorphy of $f$ at
the cusps implies that $\Phi$ is slowly increasing. This proves $\Phi\in \mathcal{A}_{k}(\Gamma)$ . Cuspidality
of $f$ translates into cuspidality of $\Phi$ . To prove $\mathfrak{n}$-finiteness, observe that $L^{v}f=0$ for
large enough $v$ by Lemma 1.1. Hence $L^{v}\Phi=0$ for large enough $v$ by Lemma 2.1 and
Lemma 1.3. $\square$

The following result is sometimes called the “duality theorem see Theorem 2.10 of
[2].

Proposition 3.2. As $(\mathfrak{g}, K)$ -modules, we have

$\mathcal{A}(\Gamma)_{\mathring{\mathfrak{n}}-fin}=\bigoplus_{\ell=1}^{\infty}n_{\ell}\mathcal{D}_{\ell-1,+}, n_{\ell}=\dim S_{\ell}(\Gamma)$ .

The lowest weight vectors in the isotypical component $n_{\ell}\mathcal{D}_{\ell-1,+}$ correspond to elements

of $S_{\ell}(\Gamma)$ via the map $\Phi\mapsto\tilde{\Phi}$ , where $(\tilde{\Phi}|_{k}g)(i)=\Phi(g)$ for $g\in SL_{2}(\mathbb{R})$ .

Proof Since $\mathcal{A}(\Gamma)_{\mathring{\mathfrak{n}}-fin}$ is $a(\mathfrak{g}, K)$-submodule of $\mathcal{A}(\Gamma)^{o}$ , it decomposes into an orthogonal
direct sum of irreducible $(\mathfrak{g}, K)$-modules. None of the.irreducible constituents can be
of the form $\mathcal{D}_{p}$,-or a principal series representation, since any non-zero vector in
such a constituent would not be n-finite. Neither can $\mathcal{A}(\Gamma)_{\mathring{\mathfrak{n}}-fin}$ contain any finite-
dimensional representations; the lowest weight vector in such a constituent would give
rise to a holomorphic cusp form of non-positive weight, which is not possible by Lemma
1.3. It follows that $\mathcal{A}(\Gamma)_{\mathring{\mathfrak{n}}-fin}$ can only contain constituents of the form $\mathcal{D}_{\ell-1,+}$ for
$\ell\geq 1$ . The fact that $\mathcal{D}_{\ell-1,+}$ occurs with multiplicity $\dim S_{\ell}(\Gamma)$ follows because a lowest
weight vector in a constituent of the form $\mathcal{D}_{\ell-1,+}$ gives rise to an element of $S_{\ell}(\Gamma)$ , and
conversely. $\square$

Remark 3.3. It follows from Proposition 3.2 that $\mathcal{A}(\Gamma)_{\mathring{\mathfrak{n}}-fin}$ is an admissible $(\mathfrak{g}, K)-$

module.

Knowing Proposition 3.2, it is now easy to derive the following Structure Theorem
for cuspidal nearly holomorphic modular forms.

Theorem 3.4 (Structure theorem for cusp forms). Fix non-negative integers $k,p$ and
a congruence subgroup $\Gamma$ of $SL_{2}(\mathbb{Q})$ . There is an orthogonal direct sum decomposition

$N_{k}^{p}(\Gamma)^{o}= \oplus R^{(k-\ell)/2}(S_{\ell}(\Gamma))$ . (9)
$\ell\geq 1$

$k-2p\leq\mathring{\ell}\leq k\ell\equiv kmd2$

In particular, $N_{0}^{p}(\Gamma)^{o}=0$ and $N_{1}^{p}(\Gamma)^{o}=S_{1}(\Gamma)$ .
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Proof. Let $f\in N_{k}^{p}(\Gamma)$ . Define a function $\Phi$ on $SL_{2}(\mathbb{R})$ by $\Phi(g)=(f|_{k}g)(i)$ . Then
$\Phi\in \mathcal{A}_{k}(\Gamma)_{\mathring{\mathfrak{n}}-fin}$ by Lemma 3.1. If $f$ has weight $0$ , then $f=0$ , since the weight $0$ does
not occur in $\mathcal{A}_{k}(\Gamma)_{\mathring{\mathfrak{n}}-fi\dot{n}}$ by Proposition 3 Assume in the following that $k\geq 1$ and
that $f$ is non-zero.

Write $\Phi=\sum\Phi_{i}$ , where each $\Phi_{i}\in \mathcal{A}_{k}(\Gamma)_{\mathfrak{n}-fin}^{o}$ generates an irreducible $(\mathfrak{g}, K)-\backslash$module
$V_{i}\cong \mathcal{D}_{\ell_{i}-1,+}$ with $\ell_{i}\geq 1$ ; this is possible by Proposition 3.2. Evidently, $f= \sum\tilde{\Phi}_{i},$

where $\tilde{\Phi}_{i}$ is the function on $\mathbb{H}_{1}$ corresponding to $\Phi_{i}$ via (7).

Since $f\in N_{k}^{p}(\Gamma)^{o}$ , it follows from (2) of Lemma 1.1 that $L^{p+1}f=0$ , thus $L^{p+1}\Phi=0$

by Lemma 2.1, and then also $L^{p+1}\Phi_{i}=0$ for all $i$ . The weight of $L^{p+1}\Phi_{i}$ being $k-2p-2,$

it follows that $V_{i}$ only contains weights greater or equal to $k-2p$. Hence $\ell_{i}\geq k-2p$

for all $i.$

Let $\Phi_{i,0}\in V_{i}$ be a lowest weight vector; thus $\Phi_{i,0}$ has weight $\ell_{i}\leq k$ , and $\ell_{i}\equiv k$ mod
2. The corresponding function $\tilde{\Phi}_{i,0}$ on $\mathbb{H}_{1}$ is an element of $S_{\ell_{:}}(\Gamma)$ . Since every weight

occurs only once in $V_{i}$ , we have $R^{(k-\ell.)/2}\Phi_{i,0}=c_{\iota}\Phi_{i}$ for some non-zero constant $c_{i}$ . By
Lemma 2.1, it follows that

$R^{(k-l_{i})/2}\tilde{\Phi}_{i,0}=c_{i}\tilde{\Phi}_{i},$

and hence

$f= \sum\tilde{\Phi}_{i}=\sum c_{i}^{-1}R^{(k-\ell_{:})/2}\tilde{\Phi}_{i,0}\in \sum R^{(k-\ell)/2}(S_{\ell}(\Gamma))$ .
$\ell\geq 1$

$\ell\equiv kmod 2$

$k-2p\leq\ell\leq k$

This proves that the left hand side of (9) is contained in the right hand side. The
orthogonality of the right hand side follows from the above construction and the fact
that the isotypical components in Proposition 3.2 are orthogonal; observe that the map
$\Phi\mapsto\tilde{\Phi}$ is isometric with respect to the $L^{2}$ -scalar product on the left hand side and the
Petersson inner product on the right hand side. $\square$

Remark 3.5. It is well known, or follows from an easy calculation, that $\Omega$ acts on $\mathcal{D}_{\ell-1,+}$

by the scalar $\frac{1}{2}\ell(\frac{1}{2}\ell-1)$ . Hence, by Lemma 2.1, $\Omega$ acts on the subspace $R^{(k-\ell)/2}(S_{\ell}(\Gamma))$

of $N_{k}^{p}(\Gamma)^{o}$ by $\frac{1}{2}\ell(\frac{1}{2}\ell-1 In$ particular, $\Omega$ acts diagonalizably $on N_{k}^{p}(\Gamma)^{o}$ , and the
pieces in the decomposition (9) can be intrinsically characterized as the eigenspaces
with respect to $\Omega.$

Petersson inner products. For $f,$ $g\in N_{k}(\Gamma)$ with at least one of them in $N_{k}(\Gamma)^{o},$

we define the Petersson inner product $\langle f,$ $g\rangle$ by the equation

$\langle f, g\rangle=vol(\Gamma\backslash \mathbb{H}_{1})^{-1}\int_{\Gamma\backslash \mathbb{H}_{1}}f(\tau)\overline{g(\tau)}\frac{dxdy}{y^{2}}.$

It can be easily checked that
$\langle f, g\rangle=\langle\Phi_{f}, \Phi_{g}\rangle$ , (10)

where $\Phi_{j}(h)=(f|_{k}h)(i)$ (and $\Phi_{9}$ is defined similarly) and the inner product of $\Phi_{f}$ and
$\Phi_{9}$ is defined by

$\langle\Phi_{f}, \Phi_{g}\rangle=\frac{1}{vo1(SL_{2}(\mathbb{Z})\backslash SL_{2}(\mathbb{R}))}\int_{SL_{2}(\mathbb{Z})\backslash SL_{2}(\mathbb{R})}\Phi_{f}(h)\overline{\Phi_{g}(h)}dh.$

We define the subspace $\mathcal{E}_{k}(\Gamma)$ to be the orthogonal complement of $N_{k}(\Gamma)^{o}$ in $N_{k}(\Gamma)$ .

Let $\mathcal{E}_{k}^{p}(\Gamma)=\mathcal{E}_{k}(\Gamma)\cap N_{k}^{p}(\Gamma)$ . We write $E_{k}(\Gamma)$ to mean $\mathcal{E}_{k}^{0}(\Gamma)$ . In Corollary 4.4 below
we will prove that $N_{k}^{p}(\Gamma)$ is the orthogonal direct sum of $N_{k}^{p}(\Gamma)^{o}$ and $\mathcal{E}_{k}^{p}(\Gamma)$ .
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Lemma 3.6. Let $k$ be a non-negative integer. Let $f\in \mathcal{E}_{k}(\Gamma)$ , and let $\Phi_{f}\in \mathcal{A}(\Gamma)_{\mathfrak{n}-fin}$

be the corresponding function on $SL_{2}(\mathbb{R})$ . Then $\Phi_{f}$ is orthogonal to $\mathcal{A}(\Gamma)_{\mathfrak{n}-fin}^{o}.$

Proof Let $\Psi\in \mathcal{A}(\Gamma)_{\mathring{\mathfrak{n}}-fin}$ ; we have to show that $\langle\Phi_{f},$ $\Psi\rangle=0$ . We may assume that $\Psi$

generates an irreducible module $\mathcal{D}_{\ell-1,+}$ for some $\ell\geq 1$ . Since $\Phi_{f}$ has weight $k$ , we may
assume that $\Psi$ does as well. But then $\Psi$ corresponds to an element $g$ of $N_{k}(\Gamma)^{o}$ . By
hypothesis $\langle f,$ $g\rangle=0$ . Hence $\langle\Phi_{f},$ $\Psi\rangle=0$ by (10). $\square$

Lemma 3.7. Let $k\geq 1$ and $v\geq 0$ be integers. Then $R^{v}$ takes $S_{k}(\Gamma)$ to $N_{k+2v}^{v}(\Gamma)^{o}$ and
$E_{k}(\Gamma)$ to $\mathcal{E}_{k+2v}^{v}(\Gamma)$ .

Proof. The fact that $R^{v}$ takes $S_{k}(\Gamma)$ to $N_{k+2v}^{v}(\Gamma)^{o}$ is an immediate consequence of
the fact that the differential operator $R$ commutes with the $|_{k}$ operator and does not
increase the support of the Fourier coefficients.

Let us show that $R^{v}$ takes $E_{k}(\Gamma)$ to $\epsilon_{k+2v}^{v}(\Gamma)$ . Let $f\in E_{k}(\Gamma)$ . In view of (10), it
suffices to show that $R^{v}(\Phi_{f})$ and $\Phi_{g}$ are orthogonal for all $g\in N_{k+2v}^{v}(\Gamma)^{o}$ . But note that
$\mathfrak{U}(\mathfrak{g}_{\mathbb{C}})\Phi_{f}$ and $u(\mathfrak{g}_{\mathbb{C}})\Phi_{g}$ are orthogonal submodules of $\mathcal{A}(\Gamma)$ (as $u(\mathfrak{g}_{\mathbb{C}})\Phi_{g}$ is completely
contained in $\mathcal{A}(\Gamma)^{o}$ and $u(\mathfrak{g}_{\mathbb{C}})\Phi_{f}$ is contained in the orthogonal complement of $\mathcal{A}(\Gamma)^{o}$

by Lemma 3.6). Hence $R^{v}(\Phi_{f})$ and $\Phi_{g}$ are orthogonal. $\square$

Lemma 3.8. Let $f\in S_{k}(\Gamma)$ . Then for all $v\geq 0$ , there exists a constant $c_{k,v}$ (depending
only on $k$ , v) such that

$\langle R^{v}(f) , R^{v}(f)\rangle=c_{k,v}\langle f, f\rangle.$

Proof. Consider the $(\mathfrak{g}_{\}}K)$ module $\mathcal{D}_{k-1,+}$ and let $v_{0}$ be a lowest-weight vector in it.
Note that $v_{0}$ is unique up to multiples. It is well-known that $\mathcal{D}_{k-1,+}$ is unitarizable;
let $\langle,$ $\rangle$ denote the (unique up to multiples) $\mathfrak{g}$-invariant inner product on it. Put $c_{k,v}=$

$\langle R^{v}(v_{0})$ , $R^{v}(v_{0})\rangle/\langle v_{0},$ $v_{0}\rangle$ . Note that $c_{k,v}$ does not depend on the choice of model for
$\mathcal{D}_{k-1,+}$ , the choice of $v_{0}$ or the normalization of inner products.

Now all we need to observe is that the automorphic form $\Phi_{f}\in \mathcal{A}(\Gamma)_{\mathfrak{n}-fin}^{o}$ correspond-
ing to $f$ generates a module isomorphic to $\mathcal{D}_{k-1,+}$ , that $\Phi_{f}$ is a lowest weight vector in
this module, and (IO). $\square$

Proposition 3.9. Let $f\in M_{k}(\Gamma)$ , $g.\in S_{k}(\Gamma)$ . Then

$\langle R^{v}(f) , R^{v}(g)\rangle=c_{k,v}\langle f, g\rangle,$

where the constant $c_{k,v}$ is as in the previous lemma.

Proof. Because of Lemma 3.7, we may assume that $f$ and $g$ both belong to $S_{k}(\Gamma)$ . Now
the Proposition follows by applying the previous lemma to $f+g.$ $\square$

4. THE NON-CUSPIDAL CASE

The obstruction in the non-cuspidal case. The Structure Theorem 3.4 cannot
hold without modifications for non-cuspidal nearly holomorphic modular forms. The
reason is the existence of the weight 2 Eisenstein series

$E_{2}( \tau)=-\frac{3}{\pi y}+1-24\sum_{n=1}^{\infty}\sigma_{1}(n)e^{2\pi in\tau}, \sigma_{1}(n)=\sum_{d|n}d$ . (11)

As is well known, $E_{2}$ is modular with respect to $SL_{2}(\mathbb{Z})$ ; thus, $E_{2}\in N_{2}^{1}(\Gamma)$ for any
congruence subgroup $\Gamma$ of $SL_{2}(\mathbb{Z})$ . But evidently $E_{2}$ cannot be obtained via raising
operators from holomorphic forms of lower weight, since the only modular forms of
weight $0$ are the constant functions.

147



AMEYA PITALE, ABHISHEK SAHA, AND RALF SCHMIDT

Let $\Phi_{2}\in \mathcal{A}_{2}(\Gamma)_{\mathfrak{n}-fin}$ be the automorphic form corresponding to $E_{2}$ via Lemma 3.1.
Let $V_{\Phi_{2}}$ be the $(\mathfrak{g}, K)$ -module generated by $\Phi_{2}$ . Since $L_{2} \Phi_{2}=\frac{3}{\pi}$ , we have $L\Phi_{2}\in \mathbb{C}$

by Lemma 2.1. The weight structure of $V_{\Phi_{2}}$ is therefore $[0$ , 2, 4, . . and the constant
functions are a submodule of $V_{\Phi_{2}}$ . More precisely, there is an exact sequence

$0arrow \mathbb{C}arrow V_{\Phi_{2}}arrow \mathcal{D}_{1,+}arrow 0$ ; (12)

recall that $\mathcal{D}_{1,+}$ is the lowest weight module with weight structure [2, 4, 6, . . Clearly,
this sequence does not split. Consequently, unlike in the cuspidal case, the space
$\mathcal{A}(\Gamma)_{\mathfrak{n}-fin}$ is not the direct of irreducible submodules. However, the following result
states that $V_{\Phi_{2}}$ represents the only obstruction:

Proposition 4.1. As $(\mathfrak{g}, K)$ -modules, we have

$\mathcal{A}(\Gamma)_{\mathfrak{n}-fin}=V_{\Phi_{2}}\oplus\bigoplus_{\ell=1}^{\infty}n_{\ell}\mathcal{D}_{\ell-1,+}, n_{\ell}=\dim M_{\ell}(\Gamma)$ .

The lowest weight vectors in the isotypical component $n_{\ell}\mathcal{D}_{\ell-1,+}$ correspond to elements

of $M_{\ell}(\Gamma)$ via the map $\Phi\mapsto\tilde{\Phi}$ , where $(\tilde{\Phi}|_{k}g)(i)=\Phi(g)$ for $g\in SL_{2}(\mathbb{R})$ . The module $V_{\Phi_{2}}$

sits in the exact sequence (12) and is generated by the function $\Phi_{2}$ such that $\tilde{\Phi}_{2}=E_{2}.$

To prove this result, we will set up a certain algebraic apparatus. It turns out that
the mechanism of category $(D$ is well suited toward our problem. In the $SL_{2}$ case this
mechanism could be replaced by more direct arguments, but we prefer to use category
$t9$ because this method generalizes to the $Sp_{4}$ case; see [6]. Our reference for category
$t9$ will be [.3].

Roots and weights. Let $H,$ $R,$ $L$ be the elements of $\mathfrak{g}_{\mathbb{C}}$ defined in (5). Then $\mathfrak{h}=\langle H\rangle$

is a Cartan subalgebra of $\mathfrak{g}_{\mathbb{C}}$ . Let $\Phi\subset \mathfrak{h}^{*}$ be the root system of $\mathfrak{g}_{\mathbb{C}}$ corresponding to
$\mathfrak{h}$ . Then $R$ and $L$ span the corresponding root spaces. We identify an element $\lambda$ of
$\mathfrak{h}^{*}$ with the element $\lambda(H)$ of $\mathbb{C}$ . Then $\Phi=\{\pm 2\}$ . Let $E$ be the $\mathbb{R}$-span of $\Phi$ . We
endow $E$ with the inner product ) given by the usual multiplication of real numbers.
Perhaps counterintuitively, we will declare $-2$ to be a positive (and simple) root, with
corresponding root vector $L$ , and $+2$ a negative root, with corresponding root vector
$R$ . The weight lattice $\Lambda$ is defined as

$\Lambda=\{\lambda\in E|2\frac{(\lambda,\alpha)}{(\alpha,\alpha)}\in \mathbb{Z}$ for all $\alpha\in\Phi\}$ . (13)

Evidently, $\Lambda=\mathbb{Z}\subset E$ . There is an ordering on A defined as follows:

$\mu\neg\prec\lambda \Leftrightarrow \lambda\in\mu+\Gamma$ , (14)

where $\Gamma$ is the set of all $\mathbb{Z}_{\geq 0}$-multiples of the positive root. Hence,

$\mu\backslash \prec\lambda$ $\Leftrightarrow$ $\lambda\leq\mu$ and $\lambda\equiv\mu$ mod2.

The fundamental weight is $-1$ , and the dominant integral weights are the $\mathbb{Z}_{\geq 0}$-multiples
of the fundamental weight. We write $\Lambda^{+}$ for the set of dominant integral weights.
Hence, $\Lambda^{+}=\{-1,$ $-2$ , . . We write $\rho=-1$ for half the sum of the positive roots.
As before, let $\mathcal{Z}$ denote the center of the universal enveloping algebra $U(\mathfrak{g}_{\mathbb{C}})$ . Via the
Harish-Chandra isomorphism, all possible characters of $\mathcal{Z}$ are indexed by elements of $\mathfrak{h}^{*}$

modulo Weyl group action; see equation (8.32) in $[l]$ . We denote by $\chi_{\lambda}$ the character of
$\mathcal{Z}$ corresponding to $\lambda\in \mathfrak{h}^{*}$ . Note that $\chi_{w\lambda}=\chi_{\lambda}$ for all $w\in W$ , where the Weyl group
acts by negation on $\mathfrak{h}^{*}\underline{\simeq}\mathbb{C}.$
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Verma modules. We recall the definition of the standard Verma modules. Let $\lambda$ be an
integer, considered as an element of the weight lattice $\Lambda$ . Let $\mathbb{C}_{\lambda}$ be the one-dimensional
space on which $\mathfrak{h}=\langle H\rangle$ acts via $\lambda$ . Let

$b=\mathfrak{h}+\langle L\rangle$

be the Borel algebra defined by our positive system. We consider $\mathbb{C}_{\lambda}$ a $b$-module with
the action of $L$ being trivial. Then the Verma module corresponding to $\lambda$ is defined as

$N(\lambda)=\mathfrak{U}(\mathfrak{g}_{\mathbb{C}})\otimes_{u(b)}\mathbb{C}_{\lambda}$ . (15)

Clearly, $N(\lambda)$ contains the weight $\lambda$ with multiplicity one. Any non-zero vector $v$ in
$N(\lambda)$ of weight $\lambda$ is called a highest weight vector. It is well known that $N(\lambda)$ has the
following properties:

(1) $N(\lambda)$ is a free module of rank 1 over $U(R)=\mathbb{C}[R].$

(2) The set of weights of $N(\lambda)$ is $\lambda-\Gamma=\{\lambda,$ $\lambda+2$ , . . Each weight occurs with
multiplicity one.

(3) The module $N(\lambda)$ is a universal highest weight module for the weight $\lambda$ , meaning
it satisfies this universal property: Let $M$ be a $\mathfrak{g}_{\mathbb{C}}$-module which contains a
vector $v$ with the following properties:

$\bullet M=u(\mathfrak{g}_{\mathbb{C}})v$ ;
$\bullet$ $v$ has weight $\lambda_{\rangle}$

$\bullet Lv=0.$

Then there exists a surjection $N(\lambda)arrow M$ mapping a highest weight vector in
$N(\lambda)$ to $v.$

(4) $N(\lambda)$ admits a unique irreducible submodule, and a unique irreducible quotient
$L(\lambda)$ . In particular, $N(\lambda)$ is indecomposable. See Theorem 1.2 of [3].

(5) $N(\lambda)$ has finite length. Each factor in a composition series is of the form $L(\mu)$

for some $\mu\leq\lambda.$

(6) $N(\lambda)$ admits the central character $\chi_{\lambda+\rho}$ , i.e., $\mathcal{Z}$ acts on $N(\lambda)$ via $\chi_{\lambda+\rho}$ . See
Sects. 1.7-1.10 of [:3]. Note that Humphrey’s $\chi_{\lambda}$ is our $\chi_{\lambda+\rho}.$

(7) $L(\lambda)$ is finite-dimensional if and only if $\lambda\in\Lambda^{+}=\{0,$ $-1,$ $-2$ , . . See Theorem
1.6 of [3].

(8) $N(\lambda)$ is simple if and only if $\lambda>0$ . See Theorem 4.4 of $[t\rangle l].$

Evidently, $L(O)$ is the trivial $\mathfrak{g}_{\mathbb{C}}$-module. It has central character $\chi_{\rho}.$

Category (D. We recall from Sect. 1.1 of [3] the definition of category $t9$ . This category
is defined with respect to a choice of Cartan subalgebra $\mathfrak{h}$ and a choice of simple roots,
and we make the choices specified above. Let $\mathfrak{n}$ be the space spanned by the positive
root vectors, hence, in our case, $\mathfrak{n}=\langle L\rangle.$ $A\mathfrak{g}_{\mathbb{C}}$-module $M$ is said to be in category (9

if it satisfies the following conditions:

$((91)M$ is a finitely generated $U(\mathfrak{g}_{\mathbb{C}})$-module.
$((92)M$ is the direct sum of its weight spaces, and all weights are integral.
(03) $M$ is locally $\mathfrak{n}$-finite. This means: For each $v\in M$ the subspace $U(n)v$ is

finite-dimensional.

Note that we are slightly varying the definition of category (9 by requiring that all
weights are integral; the relevant results in [3] still hold with this modification.

$(9 is an$ abelian category. Evidently, $(9$ contains $all$ Verma modules $N(\lambda)$ and their
irreducible quotients $L(\lambda)$ . The modules $M$ in $(D$ have many nice properties, as explained
in the first sections of [3]. For example:

$\bullet$ $M$ has finite length, and admits a filtration

$0=V_{0}\subset V_{1}\subset\ldots\subset V_{n}\subset M$ , (16)
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with $V_{i}/V_{i-1}\cong L(\lambda)$ for some $\lambda\in \mathfrak{h}^{*}.$

$\bullet$ $M$ can be written as a finite direct sum of indecomposable modules.
$\bullet$ If $M$ is an indecomposable module, then there exists a character $\chi$ of $\mathcal{Z}$ such
that $M=N(\chi)$ . Here,

$N(\chi)=$ {$v\in M|(z-\chi(z))^{n}v=0$ for some $n$ depending on $z$ }. (17)

For each $M$ in category $(D$ we may write

$M= \bigoplus_{\chi}N(\chi)$
, (18)

where $\chi$ runs over characters of $\mathcal{Z}$ , and $N(\chi)$ is defined as in (17); see Sect. 1.12 of [3].
The modules $N(\chi)$ may or may not be indecomposable.

Another feature of $(D$ is the existence of a duality functor $M\mapsto M^{\vee}$ , as explained in
Sect. 3.2 of [3]. In general, $M^{\vee}$ is not the contragredient of $M$ , as (9 is not closed under
taking contragredients. The duality functor in $t9$ has the following properties:

$\bullet$
$M\mapsto M^{\vee}$ is exact and contravariant.

$\bullet M^{\vee\vee}\cong M.$

$\bullet$ $(M_{\chi})^{\vee}\cong(M^{\vee})_{\chi}$ for a character $\chi$ of $\mathcal{Z}.$

$\bullet L(\lambda)^{\vee}\cong L(\lambda)$ .
$\bullet$ $Ext_{O}(M, N)\cong Ext_{(9}(N^{\vee}, M^{\vee})$ . See Sect. 3.1 of [3] for the d’efinition of the

$Ext$ groups.

Evidently, $L(O)$ is the trivial $\mathfrak{g}_{\mathbb{C}}$-module. It is easy to see that there is an exact sequence

$0arrow L(2)arrow N(0)arrow L(0)arrow 0$ . (19)

Since $N(O)$ is indecomposable, this sequence does not split. Applying the duality func-
tor, we get another non-split exact sequence

$0arrow L(0)arrow N(0)^{\vee}arrow L(2)arrow 0$ . (20)

It is an exercise to show that the sequence (19) is the only non-trivial extension of $L(O)$

by $L(2)$ ; similarly for (20). The fact that $Ext_{\mathcal{O}}(L(O), L(2))=1$ can also be seen by
applying the functor $Hom_{\mathcal{O}}$ $L(2)$ ) to (19) and considering the resulting long exact
sequence.

Proof of Proposition 4.1. Before starting the proof of Proposition 4.1, let us com-
ment on the relationship between $(\mathfrak{g}, K)$-modules and $\mathfrak{g}_{\mathbb{C}}$-modules. Clearly, every $(\mathfrak{g}, K)-$

module is also a $\mathfrak{g}_{\mathbb{C}}$-module. Conversely, let $(\pi, V)$ be a $\mathfrak{g}_{\mathbb{C}}$-module all of whose weights
are integral, and such that $V$ is the direct sum of its weight spaces. If $v\in V$ has weight
$k$ , i.e., if $\pi(H)v=kv$ , then we define a $K$-action on $\mathbb{C}v$ by $\pi(r(\theta))v=e^{ik\theta}v$ . Since $V$ is
the direct sum of its weight spaces, this defines a $K$-action on all of $V$ . One can verify
that, with this $K$-action, $V$ becomes $a(\mathfrak{g}, K)$-module. In particular, every module in
category $\mathcal{O}$ is naturally $a(\mathfrak{g}, K)$-module. The upshot is that in the following arguments
we do not have to worry about the distinction between $(\mathfrak{g}, K)$-modules and $\mathfrak{g}_{\mathbb{C}}$-modules.

With these comments in mind, it is clear that we have the following isomorphisms
of $(\mathfrak{g}, K)$-modules:

$\bullet$ $\mathcal{F}_{p}\cong L(-p+1)$ for $p\geq 1$ ;
$\bullet$ $\mathcal{D}_{p,+}\cong L(p+1)$ for $p\geq 0$ ;
$\bullet V_{\Phi_{2}}\cong N(0)^{\vee}.$

The third isomorphism follows by comparing the exact sequences (12) and (20), observ-
ing the uniqueness comment made after (20).
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We are now ready to prove Proposition 4.1. As we saw, the modular form $E_{2}$ gives
rise to the submodule $V_{\Phi_{2}}$ of $\mathcal{A}(\Gamma)_{\mathfrak{n}-fin}$ . Every non-zero $f\in M_{\ell}(\Gamma)$ gives rise to a copy
of $\mathcal{D}_{\ell-1,+}$ inside $\mathcal{A}(\Gamma)_{\mathfrak{n}-fin}$ . It is therefore clear that

$\mathcal{A}(\Gamma)_{\mathfrak{n}-fin}\supset V_{\Phi_{2}}\oplus\bigoplus_{l=1}^{\infty}n_{\ell}\mathcal{D}_{\ell-1,+}, n_{\ell}=\dim M_{\ell}(\Gamma)$ . (21)

To prove the converse, observe first that
$\bullet$ $\mathcal{A}(\Gamma)_{\mathfrak{n}-fin}$ contains no negative weights;
$\bullet$ $\mathcal{A}(\Gamma)_{\mathfrak{n}-fin}$ contains the weight $0$ exactly once, the corresponding weight space
consisting of the constant functions.

Both statements follow from Lemma 1.3. We define

$\mathcal{A}_{\leq k}(\Gamma)_{\mathfrak{n}-fin}=\sum_{\ell=0}^{k}\mathcal{A}_{\ell}(\Gamma)_{\mathfrak{n}-fin},$

and let $\mathcal{A}_{\langle\leq k\rangle}(\Gamma)_{\mathfrak{n}-fin}$ be the $(\mathfrak{g}, K)$-module generated by elements of $\mathcal{A}_{\leq k}(\Gamma)_{\mathfrak{n}-fin}$ . Evi-
dently,

$\mathcal{A}_{\langle\leq k\rangle}(\Gamma)_{\mathfrak{n}-fin}\supset V_{\Phi_{2}}\oplus\bigoplus_{\ell=1}^{k}n_{\ell}\mathcal{D}_{\ell-1,+}, n_{\ell}=\dim M_{\ell}(\Gamma)$ . (22)

To prove equality in (21), it is enough to prove equality in (22).
It follows from the finite-dimensionality of the spaces $M_{\ell}(\Gamma)$ that $\mathcal{A}_{\leq k}(\Gamma)_{\mathfrak{n}-fin}$ is finite-

dimensional. Hence $\mathcal{A}_{\langle\leq k\rangle}(\Gamma)_{\mathfrak{n}-fin}$ is finitely generated. This proves that $\mathcal{A}_{\langle\leq k\rangle}(\Gamma)_{\mathfrak{n}-fin}$

is in category (9. By properties of this category, we may write

$\mathcal{A}_{\langle\leq k\rangle}(\Gamma)_{\mathfrak{n}-fin}=V_{1}\oplus\ldots\oplus V_{n}$

with indecomposable submodules. Let

$0=V_{i,0}\subset V_{i,1}\subset\ldots\subset V_{i,n_{i}}=V_{i}$ (23)

be a filtration for $V_{i}$ such that $V_{i,j}/V_{i,j-1}\cong L(\lambda_{i,j})$ for some $\lambda_{i,j}\in \mathbb{Z}$ . Since there are
no negative weights, we have $\lambda_{i,j}\geq 0$ for all $i$ and $j.$

Let $\chi_{i}$ be the character of $\mathcal{Z}$ such that $V_{i}=V_{i}(\chi_{i})$ ; see (17). We think of $\chi_{i}$ as
a non-negative integer. Assume that $\chi_{i}>1$ or $\chi_{i}=$ O. Then $\lambda_{i,j}=\chi_{i}+1$ for all
$j$ , since, among the $L(\lambda)$ with $\lambda\geq 0$ , only $L(\chi_{i}+1)$ has central character $\chi_{i}$ . Now
$Ext_{O}(L(\lambda), L(\lambda))=0$ for all $\lambda$ by Proposition 3.1 d) of It follows that $V_{i}$ is a direct
sum of copies of $L(\lambda_{i})$ , where $\lambda_{i}$ $:=\chi_{i}+1$ . Since $V_{i}$ is indecomposable, we must have
$V_{i}=L(\lambda_{i})$ .

Now consider a $V_{i}$ with $\chi_{i}=1$ $(i.e., \chi_{i}=\chi_{\rho})$ . The only $L(\lambda)$ with $\lambda\geq 0$ and
this central character are $L(O)$ and $L(2)$ . If $L(O)$ does not occur in $V_{\iota’}$ , then the same
argument as above applies, and we see that $V_{i}=L(2)$ . Assume that $L(O)$ does occur
in $V_{i}$ . Since the weight $0$ occurs exactly once in the entire space, there is exactly one
$V_{i}$ with this property, and this $V_{i}$ contains $L(O)$ exactly once. Since the weight $0$ space
consists of the constant functions, it appears as a subrepresentation in $V_{i}$ . Hence, we
may assume it occurs at the bottom of the filtration, i.e., $V_{i,1}=L(O)$ . If $V_{i}$ would not
contain any $L(2)$ subquotients, then $\mathcal{A}_{\langle\leq k\rangle}(\Gamma)_{\mathfrak{n}-fin}$ would be completely reducible, which
we know is not the case. Hence there is at least one $L(2)$ subquotient sitting on top of
the $L(O)$ . By (20) and the remark following it, $V_{i,2}\cong N(0)^{\vee}$ . Now

$Ext_{(D}(L(2), N(0)^{\vee})\cong Ext_{\mathcal{O}}(N(O), L(2))=0$

by Proposition 1.3 b) of [3]. This means that there can be no further $L(2)$ ’s on top of
the $N(O)^{\vee}$ , and it follows that $V_{i}=N(0)^{\vee}.$

151



AMEYA PITALE, ABHISHEK SAHA, AND RALF SCHMIDT

To summarize, we proved that, abstractly,

$\mathcal{A}_{\langle\leq k\rangle}(\Gamma)_{\mathfrak{n}-fin}=N(0)^{\vee}\oplus\bigoplus_{\lambda=1}^{\infty}m_{\lambda}L(\lambda)$

with non-negative integers $m_{\lambda}$ almost all of which are zero. A moment’s consideration
shows that $m_{\lambda}=0$ for $\lambda>k$ . Since $L(\lambda)\underline{\simeq}\mathcal{D}_{\lambda-1,+}$ and $N(O)^{\vee}\underline{\simeq}V_{\Phi_{2}}$ , and since we
know $\mathcal{D}_{\lambda-1,+}$ cannot occur more than $\dim M_{\lambda}(\Gamma)$ times, comparison with (22) shows
that we must have equality in (22). This concludes the proof of Proposition 4.1. $\square$

The Structure Theorem for all modular forms. We can now provide an alterna-
tive proof of Theorem 5.2 of [7].

Theorem 4.2 (Structure theorem for all modular forms). Fix non-negative integers
$k,p$ and a congruence subgroup $\Gamma$ of $SL_{2}(\mathbb{Z})$ . Then:

(1) $N_{0}^{p}(\Gamma)=\mathbb{C}.$

(2) If $k$ is even and $2\leq k<2+2p$ , then

$N_{k}^{p}( \Gamma)=R^{(k-2)/2}(\mathbb{C}E_{2})\oplus \bigoplus_{\ell\geq 1,\ell\equiv kmod 2}R^{(k-\ell)/2}(M_{\ell}(\Gamma))k-2p\leq\ell\leq k$

. (24)

(3) If $k$ is odd, or if $k$ is even and $k\geq 2+2p$ , then

$N_{k}^{p}( \Gamma)= \bigoplus_{\ell\geq 1} R^{(k-\ell)/2}(M_{\ell}(\Gamma))$
. (25)

$k-2p\leq\ell\leq k\ell\equiv kmod 2$

Proof. The proof is analogous to that of Theorem 3.4. Instead of Proposition 3.2, we
use Proposition 4.1. Observe that $R^{(k-2)/2}E_{2}$ is in $N_{k}^{k/2}(\Gamma)$ , but not in $N_{k}^{k/2-1}(\Gamma)$ , so
in order for $E_{2}$ to contribute to $N_{k}^{p}(\Gamma)$ (for $k$ even) we must have $\frac{k}{2}\leq p$ , or equivalently,
$k<2+2p.$ $\square$

A simplified version of the Structure Theorem for all modular forms would be this:
If $p< \frac{k-2}{2}$ , then

$N_{k}^{p}(\Gamma)= \oplus R^{(k-\ell)/2}(M_{\ell}(\Gamma))$ . (26)

$k-2p\leq\ell\leq k\ell\equiv kmod 2\ell\geq 1$

never reachdownThehypothesis p
$<,$ $\frac{k-2}{t_{0}^{2}}imp1iesthat,inthea$

rguments i$nthep$roof o$fthet$heorem,weweight2$.$ Hence, $thec$omponent Vappearing i$nP$roposition
4.1 can be ignored.

Corollary 4.3 (Structure theorem for non-cusp forms). Fix non-negative integers $k,p$

and a congruence subgroup $\Gamma$ of $SL_{2}(\mathbb{Z})$ . Then:

(1) $\mathcal{E}_{0}^{p}(\Gamma)=\mathbb{C}.$

(2) If $k$ is even and $2\leq k<2+2p$ , then

$\mathcal{E}_{k}^{p}(\Gamma)=R^{(k-2)/2}(\mathbb{C}E_{2})\oplus \oplus R^{(k-l)/2}(E_{\ell}(\Gamma))$ . (27)

$k-2p\leq\ell\leq k\ell\equiv kmod 2\ell\geq 1$

(3) If $k$ is odd, or if $k$ is even and $k\geq 2+2p$ , then

$\mathcal{E}_{k}^{p}(\Gamma)= \oplus R^{(k-\ell)/2}(E_{\ell}(\Gamma))$ . (28)
$\ell\geq 1$

$k-2p\leq\mathring{\ell}\leq k\ell\equiv kmd2$
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Proof. That the right side of each equation is contained in the left side is immediate
from Lemma 3.7 and the fact that $\Phi_{2}$ (the automorphic form corresponding to $E_{2}$ ) lies
in the orthogonal complement of the cusp forms. That the left side is contained in the
right side follows from Theorem 4.2, the fact that $M_{\ell}(\Gamma)$ is the orthogonal sum of $S_{\ell}(\Gamma)$

and $E_{\ell}(\Gamma)$ , and the fact that the $R^{v}$ maps preserve inner products up to a constant. $\square$

Corollary 4.4. Let $k$ and $p$ be non-negative integers. The space $N_{k}^{p}(\Gamma)$ is the orthogonal
direct sum of $N_{k}^{p}(\Gamma)^{o}$ and $\mathcal{E}_{k}^{p}(\Gamma)$ .

Proof. By the structure theorems, it is enough to prove the assertion for $p=0$ . In this
case the claim is that $M_{k}(\Gamma)$ is the orthogonal direct sum of $S_{k}(\Gamma)$ and $E_{k}(\Gamma)$ . Clearly,

$M_{k}(\Gamma)=S_{k}(\Gamma)\oplus S_{k}(\Gamma)^{\perp}$ and $E_{k}(\Gamma)\subset S_{k}(\Gamma)^{\perp}.$

Hence, our task is to show that a non-zero element $f$ of $S_{k}(\Gamma)^{\perp}$ is orthogonal to all
of $N_{k}(\Gamma)^{o}$ . Let $\Phi_{f}$ be the function on $SL_{2}(\mathbb{R})$ corresponding to $f$ . We will in fact
show that $\Phi_{f}$ is orthogonal to any cusp form $\Psi$ . We may assume that $\Psi$ generates an
irreducible representation $\mathcal{D}_{\ell-1,+}$ . Assume first that $\Psi$ has weight $\ell$ , i.e., $\Psi$ is the lowest
weight vector in $\mathcal{D}_{\ell-1,+}$ . If $\ell\neq k$ , then $\langle\Phi,$ $\Psi\rangle=0$ since the weights do not match. If
$\ell=k$ , then $\langle\Phi,$ $\Psi\rangle=0$ since $\Psi$ corresponds to an element of $S_{k}(\Gamma)$ . Now assume that
$\Psi$ has weight greater than $\ell$ . Then $\Psi=R\Psi’$ for some $\Psi’\in \mathcal{D}_{\ell-1,+}$ , and the general
formula

$\langle\Phi, R\Psi’\rangle+\langle L\Phi, \Psi’\rangle=0$

shows that $\langle\Phi,$ $R\Psi’\rangle=0$ , because $\Phi$ is a lowest weight vector. This concludes the
proof. $\square$

Remark 4.5. It is well-known that $E_{k}(\Gamma)=S_{k}(\Gamma)^{\perp}$ is spanned by the various weight $k$

holomorphic Eisenstein series on F.
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