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IKEDA TYPE CONSTRUCTION OF CUSP FORMS
HENRY H. KIM AND TAKUYA YAMAUCHI

ABSTRACT. This is a survey of results on the construction of holomorphic cusp forms on
tube domains originally initiated by Ikeda [9]. Besides a survey it includes conjectures and

possible applications of our work [19].

1. INTRODUCTION

There are five simple tube domains (cf. [6]). They are of the form D = {Z = X +iY|X €
R™, Y € C}, where C is a self-adjoint homogeneous cone in R™. Let G be (the real points of)
the simply connected, simple real algebraic group which acts transitively on ®. We list the

group G and the cone C:

(1) Sp2n (rank n); n x n positive definite matrices over R;

(2) SU(n,n); n x n positive definite hermitian matrices over C;

(3) SU(2n, H) = Spin*(4n); n x n positive definite hermitian matrices over H (quater-
nions);

(4) SO(2,n)%; the cone in R™*! of (zg, ..., xn) with zg > (2 +--- + x%)%,

(5) E73; 3 x 3 positive definite hermitian matrices over € (Cayley numbers).

It is an important problem to explicitly construct holomorphic cusp forms on ® with
respect to G(Z) (we will call such a modular form on ® “a level one form”). In particular, we
focus on the lifting from normalized Hecke cusp eigenforms on the complex upper half-plane
H with respect to SL2(Z) to holomorphic cusp forms on D.

Ikeda [9] (see also [8]) gave a (functorial) construction of Siegel cusp forms of weight
n+k, n =k mod 2 (so that n + k is even) for Sps, from normalized Hecke eigenforms in
Sok(SL2(Z)) which has been conjectured by Duke and Imamoglu (Independently Ibukiyama
formulated a conjecture in terms of Koecher-Maass series). He made use of the uniform
property of the Fourier coefficients of Siegel Eisenstein series for Sps, and together with
various deep facts established in [9] to prove Duke-Imamoglu conjecture. When n =1, it is

nothing but a Saito-Kurokawa lift. Since then, his construction was generalized to unitary
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groups U(n,n)(K/Q) or SU(n,n) for an imaginary quadratic field K/Q ([10]), quaternion
unitary groups SU(2n, H) for a definite quaternion algebra H over Q ([25]), symplectic groups
Span, over totally real fields ([11],[12] including some levels), and the exceptional group of type
E73 with Q-rank 3 [19].

In this note we explain main ideas of Ikeda and how they generalize to above cases. We
do not discuss a further development by Ikeda [11] though it is important because his new
ideas will work beyond “level one” case. We can give a uniform treatment except the case
(4), which we will omit since it has been studied thoroughly by Oda [21] and Sugano [22].

Let G be Span, SUsnt1 := SU(2n + 1,2n + 1)(K/Q) (to ease the notation, we restrict
ourselves to this case), SU(2n,H), or Ey3, and P = MN the Siegel parabolic subgroup
of G with the Levi subgroup M and the abelian unipotent radical N. For any ring R, let
Trg : N(R) — R be the trace on N, which is defined as:

‘B = B}

tB=

( Tr(B) if G = Span, N = {n(B) - ( lm B )

O2n, 12n

5
2R
2
3

Il
Nol—=

— l2n B
Tr(B + B) if G = SUspns1, N = {n(B) :=< it
O2n+1 lo2n+1

IT(B +7(B)) if G=SU(2n,H),N = {n(B) = ( (1)" f )

where ‘¢ = xg — ix1 — joo — ks for x = o + iz, + jxro + ka3 € H, and 7(z) = z + 'z.
For E 3, see [19].

Set K = Q if G = Spsp or E73, and K = H if G = SU(2n,H). Let O be the ring of
integers of K if G # SU(2n, H), and a maximal order of H if G = SU(2n, H). An element T'
of N(K) is semi-integral if Trg(TX) € Z for any N(O). We denote by L the set of all semi-
integral elements in N(K) and denote by L1 the subset of L consisting of positive definite
elements. Here the positivity has the usual meaning as matrices for G # E7 3, and see [19]
for E73. For instance, if G = Spyn, L consists of matrices (j)1<ij<2n s0 that z;; € Z and
Tij =T € %Z for ¢ # j.

For the integers k and d, we denote by 04 the discriminant of Q ( \/—(T)kd) /Q and x4 the
Dirichlet character associated to Q (\/(:—IW) /Q. Let fg be the positive rational number so
that d = Ddfg. Let L(s, x4) be the Dirichlet L-function of x4. For T € L*, put Dy = det(2T)
(resp. 7v(T) = (—Dg)™det(T) where —Dg stands for the fundamental discriminant of K/Q)
if G = Spyn (resp. if G = SUapy1). For G = SU(2n, H), put Dr = (DH)%Paf(T) where
Dp is the product of rational primes p so that H ®g Qy is a skew field and Paf is defined in

’

9-3),
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Section 1 of [25). When
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G = E73, det(T) is as in [19]. Set

k+n if G = Spy4p,

2k + 2 if G = SUsn+1,
o(k) = +2n 1 2n+1

2k+2n-2 if G=SU(2n,H),

2% +8 if G = Eq3.

For each v € G(R) and Z € D, one can associate the automorphic factor j(v,Z) € C so
that j(v, Z)* is used to define modular forms on © of weight k for any integer k > 0. For

(

B
D ) € Spon(R), then j(v,Z) = det(CZ + D). Put I' := G(Z) and

I =N N(Q). Let us consider the Siegel Eisenstein series of weight £(k):

Then we have the Fouri

Eyr)(2) = Z iy, Z)™4R).
Y€l \I'

er expansion

Ex\Z) = = Fyy(2) = 3 A(T) exp(2mv/=1 - Tra(T2)),

Cek) 2

for a constant C(¢(k)), and for T € L*, A(T) is given as follows:

1

1 ~
(L1 -k xpp)fe ? [[ B(Tip*)  if G = Span
plor
WDF-3 [ BT 1) if G = SUsni1
_ p|v(T)
AT =1 Dr*1 [[ for@*7) if G = SU(2n, H)
p|Dr
det(T)*~3 1T Fp*2) if G = Erg3,
k pl det(T)

where FP(T; X)), E,,T(X ) and fg(X } are Laurent polynomials over Q with one variable X
which are depending only on T,p and both are identically 1 for all but finitely many p.

Introducing multi-variables {X,}, indexed by rational primes p, we may consider

A({Xp}p) ==

1 ~
[ L1~k xp)fp * [] BT Xp) i G = Spun
plor
@)=t ] BT Xy) if G = SUpni1
ph(T)
D3 I for(Xp) if G = SU(2n, H)
p|Dr

det(D)*7 [ 72X if G = Ey3.

\ p| det(T)
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Then A({Xp},) can be regarded as an element of ®/,C[X,, X,!]. For each normalized Hecke

(e o]
eigenform f = Za(n)q", g =exp(2rv—17), 7 € Hin Sy(SL2(Z)) and each rational prime
n=1

p, we define the Satake p-parameter ap by a(p) = pk‘%(ap +a, 1), For such f, consider the
following formal series on D:
F(Z):= ) Ap,(T)exp(2nV~1Trg(TZ)), Z€D, Ap,(T) = A({ap}p)-
TeL+
Then

Theorem 1.1. Assume that H is the Hurwitz quaternion when G = SU(2n,H). Then Ff
is a non-zero Hecke eigen cusp form on D of weight £(k) with respect to G(Z).

Of course, we have to specify what kind of Hecke theory we use for each case. At any late,
the issue is only on the normalization factor of a Hecke action and it does not matter as long
as we deal with the adelic form attached to Fy on G(Ag) because since G is semi-simple,
it does not contain the central torus. By virtue of Theorem 1.1, Fy gives rise to a cuspidal
automorphic representation 7p = T ® ®;,7rp of G(Ag). Here 7, is a holomorphic discrete
series of G(R) of the lowest weight £(k), and for each prime p, 7, is unramified at every finite
place (but a few exception when G = SU(2n, H)), since Ffy is of “level one”. In fact, 7, turns

out to be a degenerate principal series mp ~ I(sp), where s, € C so that p*» = a, and

Indp(or) [(9)l;  if G = Span

G .
g | G0 6=

Indgo?) [v(9)l;  if G = SU(2n, H) and pt D,

(Qp
md%&) v(g)lZ if G = Erg,
tB = B}
B = B}

P(Qp)
where v : P(Qp) — Q) is defined as follows:
A B
detA ifG=Sp4,P= g=
(4) " { o
For SU(2n, H) and E73, see [25] and [19], resp. The relationship between I(s) and the
Eisenstein series is explained in [18]: Let ®(g,s) = ®oo(9,3) ® ®p®Pp(g,s) be a standard
section in I(s) such that ®og(k,s) = v(k)*®), and ®,(g,s) = (g, s) is the normalized
spherical section for all p. Then one can define the adelic and classical Eisenstein series

E(g,58) = Y. (19,9, Eus(Z)=det(Y)F > j(v,2)""®|j(v,2)~".
YeP(Q\G(Q) YET o\

v(g) ==

A B
|det(A)? if G=SUspy1,P=<g= =
Ogny1 AL
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Then we have

det(Y)!® By, +1-k(2), if G # Er3,

E(ga S, q>) = s
det(Y)Jz-_9+e(k)EZ(k),s+1—2k(Z)a if G = Eq3,

Hence the degenerate principal series I(k — %) corresponds to Eyy(Z) if G # Er3, and
I(2k — 1) corresponds to Eyyy(Z) if G = Er3.

In terms of representation theory, Theorem 1.1 can be reformulated as follows: Let 7o, be
the holomorphic discrete series of G(R) of the lowest weight £(k), and let m, be the above
degenerate principal series which is irreducible. Then we can form an irreducible admissible
representation of G(Ag): 7 = Teo ® ®,m,. Then Theorem 1.1 is equivalent to the fact that
7 is a cuspidal automorphic representation of G(A). In this formulation, at least for Spsn,
Arthur’s trace formula [1] may give a more general result as follows: By Adams-Johnson’s
result on A-packets, 7o belongs to a packet with the local character (—1)". Since 7 is
unramified at every finite place, by the multiplicity formula, 7 is a cuspidal automorphic
representation if and only if the global character (—1)" is equal to the root number of L(s, f)
which is (—1)*. Hence we have the parity condition k = n (mod 2). We have similar results
for SUsn+1 and SU(2n, H). However, the advantage of Theorem 1.1 is that one can write
down the modular form explicitly. Let L(s,7f) = [[,((1 — app™®)(1 — a;'p™*))~! be the
(normalized) automorphic L-function of the cuspidal representation s attached to f. In
the case of SUszny1, let x(p) = (:%i) be the quadratic character attached to K/Q, and
L(s, f,x) =L, ((1 — apx(p)p~*)(1 - a;lx(p)p_s))‘l. For each local component 7p, one can
associate the local L-factor L(s,7p, St) of the standard L-function of mp. Set L(s,np,St) =

HL(s,ﬂp,S’t):
P

Theorem 1.2.

( 2n
1 .
C(s)ilillL(s+n+§—z,f) if G = Spyp,
41
Il LGs+n+1-4,f)L(s+n+1—1i, f,x) if G = SUzpiy
L(s,mp,St) = { &1 1

HL(s+n+§—i,f) if G =SU(2n,H)
= 4 8
L(s,Sym3ms)L(s, f)? HL(S +1, f)? HL(S +i,f) if G=Eqg3,

\ i=1 =5

where L(s, Sym37rf) is the symmetric cube L-function.

166



HENRY H. KIM AND TAKUYA YAMAUCHI

Notice that m, for G = Ey7 3 is slightly different from other cases (Note 2s, rather than
sp) and the third symmetric power L-function appears in the standard L-function. Note also
that in the case G = SUapn+1, L(s, f)L(s, f, x) = L(s, 7k ), the L-function of the base change
nx of my to K.

In Section 2, we review the tube domains. In Section 3, we review the Jacobi group, Jacobi
forms, and a key property of the Fourier-Jacobi expansion of Siegel Eisenstein series, namely,
the Fourier-Jacobi coefficients of Eisenstein series are a sum of products of theta functions and
Eisenstein series. In Section 4, we will give a sketch of proof of the main theorem. Except for
G = Span, the situations are similar, in that we do not need to consider half-integral modular

forms. Finally in Section 5, we discuss conjectures and problems related to the results in [19].

Acknowledgments. We would like to thank H. Narita and S. Hayashida for their invi-
tation to participate in the RIMS workshop on Modular Forms and Automorphic Represen-

tations on February 2-6, 2015.

2. DESCRIPTION OF TUBE DOMAINS

2.1. Spa,. The tube domain is given by

H, := {Z € Ma(C) | *Z = Z, Im(Z) > 0} c C*5

A B
and v = ( c D ) € Span(R) acts on Hy, as v(Z) = (AZ + B)(CZ + D)~ L. Put j(v,2) =
det(CZ + D).

2.2. SUzp41. The tube domain is given by

1 _
Hont1 = {Z € M2,41(C) | 2—‘/—1‘(Z ~1Z) > 0} c C@nt1)’

A B
and v = ( c D ) € SUzn+1(R) acts on Hony1 as ¥(Z) = (AZ + B)(CZ + D)~'. Put
i(v, Z2) = det(CZ + D).
2.3. SU(2n,H). Let H be a definite quaternion algebra with basis 1,1, j, k = ¢j over Q. By
Lemma 1.1 of [25], there exists a unique polynomial map (with 4n variables) P : Mp,(H) — Q

such that v(X) = P(X)? and P(I,) = 1. Put Paf(X) = P(X) for any X € M,(H). The

tube domain is given by

Hn:={Z € My(H®qC) | *Z = Z, Im(Z) > 0} c C*(n+D)
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A B
and v = ( c D ) € SU(2n, H)(R) acts on $, as v(Z) = (AZ + B)(CZ + D)"!. Put
i(v,2) =v(CZ + D)3.

2.4. E73. This group is defined by using Cayley numbers and the structure is rather com-
plicated than previous cases. We refer [2],[4], [15], and Section 2 of [19]. For any field K
whose characteristic is different from 2 and 3, the Cayley numbers €x over K is an eight-
dimensional vector space over K with basis {eg = 1, e, e2, €3, €4, €5, €6, €7} satisfying certain

rules of multiplication. Let Jx be the exceptional Jordan algebra consisting of the element:

a Ty
X = (zijhicij<s=| Z b z |,
Yy Z c

where a,b,c € Keg = K and z,y, 2z € €x. We also define

{(:0)

Then the exceptional domain is

a,be K, mECK}.

D:={Z=X+YV-1€3c| X, Y€, Y >0}
which is a complex analytic subspace of C27 . We also define
Dy :={X+YV-1€3(C) | X,Y € }2(R), Y > 0}

which is the tube domain of Spin(2,10), i.e., Spin(2,10) acts on Z € Ds.

3. JACOBI GROUPS AND JACOBI FORMS
In this section we review Jacobi groups and Jacobi forms with a matrix index.

3.1. Jacobi groups. We are concerned with the Jacobi group J realized in G, which is a
semi-direct product J ~ V x H of a semisimple group H and a Heisenberg group V with a
2 step unipotency which has a form V = X - Y - Z, where each factor is an additive group
(scheme), dim(X) = dim(Y’), and the center of V is Z. We further require that the action of
H on Z is trivial.

In our case, H = SLq if G # SUsp+1, and H = SU; if G = SUsy1. If we write an element
as v = v(z,y, z), then by definition, an alternating form (,«) is furnished on X &Y such

that the multiplication of two elements in V is given by

1
’U(:E, Ys Z) : ’U(.TI’, y/9 Z/) = U(x + J"lv y+ ylv z+2 + §<($a y), ((L‘,, y’)))
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and further SLs or Uy acts on V as

a
7'U(x»yaz) = U(a$+cy7bm+dy’z)a Y= (
C

b
J ) € SLy or U;.

We shall give a table of the dimension dim(X) of X as a vector scheme over Z which will be

related to the difference of the weights between the original form and the lift.

G Span | SUany1 | SU(2n, H) | Eq3

dim(X) | 2n -1 4n 4(n—1) | 16

TABLE 1

The difference between 4(k) and 2k is given by %dim(X ) except for Spsn. For Span,
we first obtain a cusp form of the half-integral weight k + % via Shimura correspondence
Sox(SL2(Z)) ~ S, +1 (To(4))* from the cusp form f € Sgx(SL2(Z)). Then the difference
should: be understood as £(k) — (k + 1) = n — §, which is nothing but 3dim(X) for Spay.

For Spsn,

o1 ¢z 2y
0 1 t 0
Vz{v(ac,y,z): . y 0 € Span tz~y(tx)=z—:c(ty)}=X-Y-Z,
2n—1
~tr 1

where X = {v(«,0,0) € V}, Y = {v(z,0,0) € V}, and Z = {v(0,0,2) € V}, and

lop—1 0 O2n—1 0
0 a 0 b
(3.1) SLy ~ H := € Sp4n}.
O2ny 0 1251 O
0 c 0 d
For SU2Y'L+17
lo, = =z

€ SUznt1

tz—y.(ti)zz—x(tg)} =X-Y. Z,

o

—

<
- o o w
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where X = {v(z,0,0) € V}, Y = {v(«,0,0) € V}, and Z = {v(0,0,2) € V}, and
lon 0 0O2p

(=TS N =]

02n012n
0 ¢ 0 d

0 a O
(3.2) Uy~H .= { € SU2n+1}.

We omit details for SU(2n, H) or E;3. Instead we refer Section 5 of [25], and Section 3
and 4 of [19].

Recall L in the introduction. This is the parameter space of Fourier expansion of a modular
form on D. Let Z’ be a subgroup of the unipotent radical N of the Siegel parabolic subgroup
consisting of matrices whose last low and last column are zero. Then Z’ is naturally identified
with Z. We denote by L’ (resp. L) the subset of Z’(Q) consisting of semi-positive (resp.
positive), semi-integral matrices. For any T € L™, there exists S € L', such that T =

ta, if G = Spon

S « .

( 5 2 ) with z € Z4 and 8= ¢ ta, if G = SUspyy or SU(2n, H)
ta, if G = Erg3.

Henceforth we fix S € L/ . We define the map Ag on Z by z — %Trg(Sz) if G # Er3
and z — %(S’,z) for E73. Then for any domain ring R with characteristic zero, the map
V(R) — X @Y &R, v(z,y,2) — (z,y,As(2)) gives rise to the Heisenberg structure on
X @Y @ R. Hence for any two elements (z,y,a),(z/,y,b) € X ®Y & R, the multiplication

is given by
1
(@,9,0) * (.9, 0) = (@ + 2",y + ¢, a+ b+ 2((2,9), (@', 1)s)
where ((z,y), (¢/,¢))s = os(z,y’) — os(¢’,y). Here og(*,*) on X @Y is given by
txSy if G = Spap,
os(z,y) = ti'Sy if G = SUap41 or SU(2n, H)
(S,2("9) +y('T)) if G=Ens
Put X := X(R) ®& C and ®; := H x X. The group J(R) acts on D; by
s = (

u
Ter+d

+ z(y7) + y) , B=v(z,y,2)h, v(z,y,2) € V(R), h=h(y) € H(R)

b b
where v = ( . P ) € SLy(R). Here y7 = :77: + and put j(v,7) := cr + d for simplicity.

¢ +d
For each positive half integer k, the automorphy factor on J(R) x D; is defined by
_ 205(z,u)

i os(z,z)(y7) — os(x,y)),

] = j(v,7)*e(— 2) + ———os(u,u
Jk,S(IB?(T’u)) '—.7(77 ) ( 2)‘3( )+](,Y’7_) S( i )
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where e(x) = exp(2mv/—1x). When k is not an integer, (v, 2)* = (j(7, z)%)Q’c is defined by
the automorphy factor j(v, z)% of the metaplectic covering SLy(R) of SLa(R).
For each function f : ©; — C and 8 € V(R), we define the “slash” operator flx s{f] :
D; — C by
Flis1B](w) = jk,s(B; (1, u)) " F(B(7, u)).

3.2. Jacobi forms with a matrix index. We define and study Jacobi forms of matrix

index on ©; = H x X in the classical setting. Set
Ly:=J(Q)NG(Z).

Definition 3.1. Let k be a positive even integer if G # Sp4yn, a positive half-integral integer
if G = Span, and S be an element of L’,. We say a holomorphic function ¢ : ®; — C is
a Jacobi form (resp. Jacobi cusp form) of weight k¥ and index S if ¢ satisfies the following
conditions:

(1) @lk,s[B] = ¢ for any g € 'y

(2) ¢ has a Fourier expansion of the form

g(ou)= Y, c(N,§e(NT+0s(¢,u),

£eX(Q), NeZ

*
(&S N
stands for t¢ if G = Spyp, 1€ if G = SUap 1 or SU(2n, H), and ¥¢ if G = E73.

S S
where c(NV,£) = 0 unless S¢ y := ( ¢ ) belongs to L’ (resp. L',) where *¢§

‘We denote by Jk,s(T'y) (resp. Ji'¢" (L)) the space of Jacobi forms (resp. Jacobi cusp forms)
of weight &k and index S.

Let us extend the quadratic form og linearly to that on X. We denote by S(X(Ay)) the
space of Schwartz functions on X (A¢). For each ¢ € S(X(Ay)), the classical theta function
on ®; := H x X is given by

Oy (r,u) = Y @(€)e(os(£,6)T +205(€,w)).
£eX(Q)

Define the dual of the lattice A := X (Z) with respect to the quadratic form og by
A(S) ={z € X(Q) | os(z,y) € Z for all y € A}.

If § € L, then the quotient K(S) /A is a finite group. Fix a complete representative Z(5)

of A(S)/A and denote by ¢ the characteristic function £ + H X(Zp) € S(X(Af)). Any
p<oo
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Jacobi form turns to be the linear combination of products of elliptic modular forms and

theta functions by the following lemma.

Lemma 3.2. Assume S € L,. Let Z(S) be a complete representative of K(S)/A Then any
Jacobi form ¢ € Ji 5(L'y) can be written as
p(ru)= Y ¢se(MB(ru), dse(r)= D c(N,Qe((N - 0s(&8)7).
£€=(S) NeZ

N-og(£,4)20

Furthermore, for each § € Z(S), ¢s¢(7) is an elliptic modular form of weight k — %dim(X ). .

Proof. See example (iv) at Section 2 of [17] and also the argument at p.656 of [9]. O
Let k be a positive integer and F' be a modular form of weight k¥ on ©. We rewrite the

W u

v T
D,. Note that v is determined by u. Then we have the Fourier-Jacobi expansion

(3.3) F( W ) = 3 Fs(r,u)e((S,W)).

voT SeL

variable Z on D as ( ) where 7 € H, u € X(R) ®& C, and W € Ha,—1, Hon, Hn—1,0r

Lemma 3.3. Keep the notation as above. Assume S € L',. Then Fs(t,u) € Ji s(TJ).

w
Remark 3.4. Consider any holomorphic function F(Z) with Z = ( “ ) on ® which

voT
is invariant under P(Z). Then one has the Fourier and the Fourier-Jacobi ezpansion

F(2) =) Ap(T)e((T,2)) = Y, Fs(r,uwe((S,W)),
Tel SeLt
as in (8.3). By Lemma 8.2,

Fs(r,u)= Y Fse()p(r,u), Fse(r)= > Ar(Sen)e((N —as(6,6)7),

= Nez
£€E(S) N—as(ee,e)zo

S St

where S¢ N = ( s N

). The function Fg¢ will be called (S, §)-component of F.

Recall the following definition from [9, 10] .

Definition 3.5. For a sufficiently large ko, a compatible family of Eisenstein series is a family
of elliptic modular forms, for even integer k' > ko,
k-1
ge(r) =be(0)+ Y N 7 bu(N)g", g=e(r),
NeQso

satisfying the following three conditions:
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(1) g € V(EL) for all k' > ko

(2) for each N € QF, there exists ®x € R such that by (N) = @N({p%}p).

(3) there exists a congruence subgroup I' C SLs(Z) such that gi € My (T) for all k' > ko.
Here My (') stands for the space of elliptic modular forms of weight k£ with respect
toT.

The following theorem plays a key role in the proof of Theorem 1.1:

Theorem 3.6. Keep the notations above. Let Eyy) be the Siegel Eisenstein series in Section
1. Assume S € L',. Then any (S,£)-component of Eyy is an Eisenstein series of weight
— Ldim(X).

This theorem was first proved by Bocherer [3] for G = Spsy in the classical language.
However the proof there involves many complicated terms and seems difficult to read off
what we need. More sophisticated proof was given by lkeda [7]. He made a good use of Weil
representation and worked over the adelic language. In [25], [19], the authors followed his
method. However in case E73, the group structure is much more complicated than others.
So the proof is not a routine at all.

The following Lemma 10.2 of [10] is a crucial ingredient.

oo

Theorem 3.7. Let f(1) = Zc(n)q” be a Hecke eigenform of weight k with respect to
n=1

SL2(Z) with c(p) = plc;_l(ap—i—a;l). Assume that there is a finite dimensional representation

(u,C?) of SLy(Z) and
Sy =t @1N, .., Ban) € RY, N € Qs

satisfying the following two conditions:
(1) ‘there ezists a vector valued modular form Gx = *(g1.k,- - -, 9a k) which has
- Iy L o
Ge(r) =bw(0)+ Y N°Z bp(N)g", (bw(N) = (breV),...,bax(N)), N € Qo)
NeQxo
of weight k' with type u for each sufficiently large even integers k', hence this means

that

G (D] =YarwleD], - gawle ) = w(y)Ge(r) for any v € SLy(Z),

(2) each component g; jr, (1 <i<d) of Giw(7) is a compatible family of Eisenstein series
such that

k-1

biw(N) =0 nv({p 2 }p)
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Then h Z N 5151\[ {ap}p)q is a vector valued modular form of weight k with

NeQso
type u, hence it satisfies

R(7)Ik[n] = u(7)k for any v € SLa(Z).
4. PROOF OF THEOREM 1.1 AND 1.2

oo
Recall that for each normalized Hecke eigenform f = Z a(n)q" € Sak(SLy(Z)), we have
n=1
considered the following formal series on ®:

Fi(2) =Y Ap(T)exp(2rV-1Tr(TZ)), Z€D, Ap;(T)=A({op}p)-
TeL+

The first task is to check the absolute convergence for Fy: This is done by using explicit
formula of Fourier coefficients of Siegel Eisenstein series and Ramanujan bound |a(p)| <
2pk_%.
Next, we use the fact that I' = G(Z) is generated by P(Z) and H(Z), where H is in (3.1)
or (3.2). We can easily check, by property of Fourier coefficients of Siegel Eisenstein series,
that F is invariant under the action of P(Z). Therefore to prove the automorphy of Fy, we
have to check only the invariance of Fy under the action of H(Z). For this, we need to use
the Fourier-Jacobi expansion.

To unify notation we write the Fourier coefficient of Fy as Ar,(T) = C; (T)Cz(T)k_% I, E,(T; op)
for T € Lt where C,(T") = L(1 — k,xr) if G = Span, C1(T) = 1 otherwise, and other terms
should be clear from the definition as in the introduction. Since F(Z) := F¢(Z) is invariant

under P(Z), by Remark 3.4, one has the Fourier-Jacobi expansion:

PV ) S mwematsw), o= T Fos o

voT SeL!, €€E(S)
and
S S
Fse(r) = Nze; Ar(Se.n)e((N — 05(£,€))T), Sen = ( S ]\f )
N-0g(E.6)>0
= Y Ci(Sen)Ca(Sen)t HFp(Sa Ny op)e((N — as(€,€))T)
N-o0g 620
=D S Ci(Sen)(N - os(€,6) HF (Se.ns ap)e((N — as(£,6))7)
NwZ(Eez.e)zo

where there exists the constant D(S) depending only on S such that C3(S¢ n) = D(S)(N —
05(£€,€)). The invariance under H(Z) is equivalent to claiming that Fs(7,u) € Ji,s(Is) for
any S e L.
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By (2,1), p.124 of [23], for each v € SL2(Z), there exists a unitary matrix ug(y) =
(US('Y)En)g,neE(s) such that

Opclks(ru) = > us(v)enbs, (1,u).
nEE(S)

Further there exists a positive integer Ag depending on S such that ug is trivial on ['(Ag) C
SLy(Z). Since {955 | € € E(S)} are linearly independent over C, it suffices to prove that
{Fse}ees(s) is a vector valued modular form with type ug.

For a sufficiently large positive integer k', we now turn to consider (.S,£)-component

(Ee(kry)s,¢ of the classical Eisenstein series

Eqn(Z) =D A(T)exp(2nvV/—1-Trg(TZ)), A(T) = C1(T)Co(T HF,, p¥-3),
TeL

Then one has

k4L
D(S) ™% F2(Ejpr))s,¢(7)
a1l ~ /1
= ) CuSen) (N —os(g,€)F 3 I  E(Senir™ 2)e((N - os(£,€))7)
N—og(et)>0 p|det(Se,n)
Then by Theorem 3.6, {D(S)_k/“L% (E¢(k)) 5,6 } k>0 makes up a compatible family of Eisenstein
series in the sense of Ikeda (see Section 10 of [9] for G = Sps, and Section 7 of [10] for other

cases). Applying Lemma 3.7, one can conclude that

Fs¢ = D(S)F3 > C1(Se.n)nk~3 1T Fp(Sen; 0¥~ 2)g",

neZsg det(S
n=N-0g(£,£), NEZ 7l ( S’N)

is a vector valued modular form with type us. The non-vanishing is easy to check except for
Span. In this case, a bit of careful study was needed (see p.651 of [9]). At any late one can
prove the non-vanishing of Fy.

Since we know Satake parameters of 7, it is easy to compute L(s, 7, St). For G = Er3,

we can use the Langlands-Shahidi method for the case GE7 C Eg (cf. [16], section 2.7.8).

5. SOME CONJECTURES AND PROBLEMS

In this section we are concerning with some conjectures and problems related to the results

in [19].
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5.1. Conjectural Arthur parameter. It is worth considering the compatibility with Arthur

conjecture in the case E73: We write the degree 56 standard L-function of F' := Fy as

4
L(s,7F,St) = L(s, Sym3my) H L(s +1i,my) ﬁ L(s +1i,7y).
i=—4 i=—8
This suggests the following parametrization of 7wp:

Let £ be the (hypothetical) Langlands group over Q, and let ps : L — SLy(C) be the 2-
dimensional irreducible representation of £ corresponding to 7¢. Let Sym™ be the irreducible
(n + 1)-dimensional representation of SLy(C). Note that if n = 2m — 1, Im(Sym") C
Spem(C), and if n = 2m, Im(Sym™) C SO2m+1(C). We have the tensor product maps
SLy(C) x Spam(C) — Spsm(C) and SL2(C) x SO2m+1(C) —> Spam+2(C). Hence

pf ® Sym!®: £ x SLy(C) — Sp3a(C), and ps ® Sym® : L x SLa(C) — Sp1s(C).

Let Sym3ps : £ x SLa(C) — Spa(C) be the parameter of Sym3ny, where it is trivial on
SLy(C). Consider the parameter

p= Sym3pf®(pf®8ym16)eB(pf®Sym8) : EXSLQ(C) —> Sp4(C)XSp34(C)XSp13(C) - Sp56(C)

Note that E7(C) C Spse(C). We expect that p will factor through E7(C), and give rise to

a parameter p: £ x SLz(C) — E7(C), which parametrizes 7p.

5.2. Ikeda lift as CAP form. If G = Spy,, the Ikeda lift Ff is a CAP form. Namely, 7p

is nearly equivalent to the quotient of the induced representation
I Span n—-1% n—3 1
ndpt mildet|" 2 @ my|det|""2 @ - - @ my|det|?,

where P, o is the standard parabolic subgroup of Sps, with the Levi subgroup GLg X - - - x
GL; (n factors) (see also p.114 of [§]).

If G = Ey3, mp cannot be a CAP form in a usual sense since there are not many Q-
parabolic subgroups of E73. We expect that 7 will be a CAP form in a more general
sense: Namely, there exists a parabolic subgroup Q = M’N’ of the split E7, and a cuspidal
representation 7 = ®,7, of M’, and a parameter Aq such that for all finite prime p, 7, is a

quotient of Indg"(’é?i’)’) 7p ® exp(Ao, Ho( ).

5.3. Miyawaki type lift to GSpin(2,10). This work is in progress [20]. For Z € D3, let

0
weight 2k + 8 on D. For h € Sor8(SL2(Z)), consider the integral

Z 0
( ) € D. For f € Sox(SLa(Z)), let F be the Ikeda lift of f, which is a cusp form of
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Z 0\ ——
Fin(2) =/ F ( ) h,('r)(lm'r)zk+6 dr.
'SLo(Z)\H 0 7

When F7y 1, is not zero, it is a cusp form of weight 2k + 8 on D3. It is expected that Fyp, is
a Hecke eigen form, and it would give rise to a cuspidal representation TF;, ON GSpin(2,10}):
Let mr, ), = Too ® @p7p. Let {ay, a;l} and {fp, ﬁp‘l} be the Satake parameter of f and h at

the prime p, resp. Then for each prime p, it is expected that the Satake parameter of 7, is
{(Bpop)®?, (Bpay 1)*, 1,1, p*1, p*2, p*3}.
Then the standard L-function of 7z, , is
L(s,mr; ,, St) = L(s,h x £)¢(s)*¢(s £1)¢(s £ 2){(s £ 3),

where the first factor is the Rankin-Selberg L-function. This can be explained by Arthur
parameter as follows: Let ¢, ¢, : L — SLo(C) be the hypothetical Langlands paramerter.
Then due to the tensor product map SLy(C) x SLy(C) — SO4(C), we have ¢f ® ¢ :
L — SO4(C). The distinguished unipotent orbit (7,1) of SOg(C) gives rise to the map
SLy(C) —> SOg(C). It defines the map ¢y, : L x SL2(C) — SO(8,C). Then consider

¢ = (¢n ® df) ® by : L x SLy(C) — SO4(C) x SOs(T) € GSO12(C).
We expect that ¢ parametrizes mx, .

5.4. Pertersson formula and its possible application. In case E7 3, it may be interesting
to give an explicit formula of the Petersson inner product formula for Fy. (See [5] for its
importance.) Since L(s, 7r, St) involves the third symmetric power L-function L(s, Sym3my),

we expect to somehow figure out an “algebraic part” of L(s, Sym3ny).
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