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On the fine behaviors of the eigenvalues of
the linearized Gel’fand problem and its applications!
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Kanazawa University

Abstract

The purpose of this note is to overview our recent results concern-
ing the linearlized eigenvalue problem for the Gel’fand problem. The
main result is a second order estimate for the first m eigenvalues of
the linearized Gel’fand problem associated to solutions which blow-up
at m points. From this information, we determine some qualitative
properties of the first m eigenfunctions.

This is based on a joint work with Francesca Gladiali (Univ. Sas-
sari) and Massimo Grossi (Univ. Roma “La Sapienza”).

1 The Gel’fand problem

The Gel’fand problem is the following semilinear elliptic problem with expo-
nential nonlinearity:

—Au = Xe* in Q, u=0 on 09, (1.1)

where 0 C IR? is a bounded domain with smooth boundary % and A > 0
is a real parameter. This problem appears in a wide variety of areas of
mathematics such as the conformal embedding of a flat domain into a sphere,
self-dual gauge field theories, equilibrium states of large number of vortices,
stationary states of chemotaxis motion, and so forth. See [7, 8] for more
about our motivation and further references.

Especially the asymptotic behavior of the solutions as A | 0 was studied
in detail. Let G(z,y) be the Green function of —A in Q with Dirichlet
boundary condition. We divide the Green function into two parts as usual:

1 _ v

K (z,y) is called the regular part of G(z,y) and R(z) = K(z,z) is the Robin
function. Using these functions we introduce a function over Q™, which is
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know as the Hamiltonian function of m vortices with equal intensities in the
theory of 2-dimensional incompressible non-viscous fluid:

Hm(xl,...,.’l,‘m) =%ZR(LEJ)+% Z G(.’IJj,.’Bh).

Concerning the Gel'fand problem, the following result now seems to be
classical:

Theorem 1.1 ([11]). Let {\,}nen be a sequence of positive values such that
A = 0 as n — oo and let u, = u,(z) be a sequence of solutions of (1.1)
for A = \,. Then there exists some m = 0,1,2,--- ,+00 and, along a sub-
sequence,

)\n/ e’ dz — 8rm. (1.3)

)

Moreover, the following behaviors of solutions appear in the limit n — oo:
(i) If m =0, the sequence {u,} converges to 0 uniformly in Q.

(ii) If m = 400 the entire blow-up occurs, i.e. infxu, — 400 for any
K e Q.

(i) If 0 < m < oo the solutions {u,} blow-up at m-points, that is, there is
aset S ={K1, - ,6m} C Q of m distinct points and a subsequence of
{un} such that ||uy| L) = O(1) for anyw € Q\ S,

Unls = +00  asn — oo,

and .
Un(T) — Uoo(z) 1= ) _ 87G(z, ;) (1.4)
j=1
locally uniformly in Q\ {k1,...,K&m}. Furthermore the blow-up points
S ={K1, "+ ,km} satisfy
VH™(k1,. .., Hkm) =0. (1.5)

We note that a blow-up sequence of solutions for given S satisfying (1.5)
really exists under appropriate assumptions on S, see [1, 4, 5].

In this note we are concerned with more details about the case (iii) of
Theorem 1.1. In the following we always assume that {u,} is a sequence of
solutions to (1.1) with m blow-up points in the limit n — oo.



2 The linealized eigenvalue problem of the
Gel’fand problem

Our object in this note is the following eigenvalue problem:
—Av = prze* v in Q, v=0 on 09, (2.1)

where {u,} is a m-points blow-up sequence of solutions to (1.1). We are able
to assume that there exists a sequence of eigenvalues pl < p2 < u < ...,
We denote k-th eigenfunction of (2.1) corresponding to the eigenvalue uf as
k
vy
We define a diagonal matrix D := diag[di, d1,ds,d2, - , dm, dp], Where
d; is a constant given by

1

dj = g exp {47TR(KJJ') + 47 Z G(K?j, K%)} (> 0) (22)
1<i<m, i#j

Previously we get the following behavior of uF:

Theorem 2.1 ([8]). For A\, — 0, it holds that

1 1 :
ko 2 1<k< 2.
th= 5+ () (O for 1<k <m, 23)

pE =1 —48anPmti=9) 4+, (An) (= 1), form+1<k (= m+s)<3m,
pE>1, fork>3m+1

where n* (k = 1,--- ,2m) is the k-th eigenvalue of the matriz D(HessH™)D
at (K'll, ce ,Klm).

We use these to calculate the Morse index of u, for n > 1. Actually
we are able to get the following estimate easily from the above behaviors of

{uk}:

m + indy{—H™ (K1, , km)} < indps(un), (2.4)
ind), (un) < m+indy{—H™(k1,"+ , Km)}- (2.5)

where
indp(un) = #{k € N; pf <1}, ind} (u,) = #{k e N; puF <1}.
are the Morse index and the augmented Morse index of u,,, respectively.

indy{—H™(k1, -+ ,km)}, indy{—H™(K1, -, km)}

5153
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are the Morse index and the augmented Morse index of the —H™, that is,
the numbers of the negative and non-positive eigenvalues of Hessian of — H™
at (K1,--- , Km), respectively. These results are a generalization of the results
in [6] obtained for the case m = 1.

Recently we have refined the case 1 < k < m as follows:

(Theorem 2.2 ([7]). For each k € {1,...,m}, the followings hold:
(i) Let (hi;) be the matrix given by

R(Kn,,) +2 lel;;m G(K;l, K;i); for i = ja
v —G(K}i, Hj), for ¢ 7é j> .

and A* be the k-th eigenvalue of (h;;), assuming A! < ... < A™,

Then
1 1 3log2 -1 1 1
k k
= —— + [ 2nA° — + —
Hn = T log M (“ 2 )<1ogxn>2 "((logxn)z)
(2.6)

as n — +00.

(i) Suppose vk is normalized as
lvmlloo = 1.
Then there exists a k-th eigenvector ¢* = (ck,...,c*) € [-1,1]™ C

R™ (¢* # 0) of (hy;) and a subsequence satisfying

k m
oo 8mck G(-,k;) locally uniformly in Q\ {x1, ..., Km}-

k
A e

(2.7)
. J
We note that it seems difficult to realize the matrix (h;;) (and D) in the
case #S = 1 considered in [6)].
From the conclusion (ii), we are able to show that v¥ — 0 outside the
blow-up set. On the other hand, we know that c¢f¥ = 0 implies v — 0
locally uniformly near &, see [8, Proposition 2.11]. Therefore we introduce

the following definition:

Definition 2.3. We say that an eigenfunction vt concentrates at k; € Q if
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there exists k;, — k; such that
[vE(Kkjn)| = C >0 forn large. (2.8)

As we see later, c;? is obtained as the limit of v(z;,) as n — oo for the
sequence satisfying z;, — &; and u,(z;,) —> oo. Therefore it holds that

vk concentrates at «; if and only if cf #0, (2.9)

that is, we are able to count the number of peaks of v¥ from the number of
non-zero components of ¢* as an application of this work.

Remark 2.4. We note that the behavior (2.7) for some ¢* € [-1,1]™ C
R™(c* # 0) is obtained in the previous work [8, Proposition 2.5 and 2.13].
In this work we clarify the origin of ¢* from the fine behavior of eigenvalues.

3 On the scaling argument and the behavior
of eigenfunctions

In this section we sketch the proof of (2.7) and introduce the scaling argument
necessary to get it.
Fix 0 < R < 1 satisfying

BQR(KZi) c Q fOI‘ 1= ]., ey, and BR(/%) N BR(K,j) = 0 if ¢ 7é j
Choose a sequence {z;,} for each x; € S satisfying

Tjn —> Kjy,  Un(Tjn) = Bﬁgx)un(x) — 0.
jn

From the Green representation formula and the behavior (1.4) of u,, we get

=/G(a:, Y)AnevmvFdy
= Z/ G(z,y) Ane v dy + O(\,).
Br(zjn)

Since G(z, z;,) is smooth far from z;,, Taylor’s theorem
G(r,y) = G(2,Zjn)+ Y — Tjn) - VoG (2, Tj0) + 8(2, 1, ¥ — Tj0),

1
8(2,m,y = 2jn) = 5 Y Cuays (MW = Tin)aly — Tin)s,

1<a,f<2

n= 77(.77 n, y) € BR (xj,n) )
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guarantees that
/ G(z,y) e vEdy
Br(zjn)

= G(z,z;n) / Ane*rvkdy + V,G(x, z;5) - / (Y — Tjn) Ane' vldy
BR(zj n) B

R(z'j,n)

1
+ 3 Z / (¥ — Zjn)aly — xj,n)ﬁGyay,e (z, n)Ane""vﬁdy
1<a,B<2 Y BR(Zjn)

=1 72.G(2,Tjn) + Y} n - ViyG(@, T50) + 72

So we need to see the behaviors of 17, 7}, and 72, to get (2.7).

To this purpose we rescale the solution u, and eigenfunction v* around
Zjn. Let d;, be a parameter determined by the relation
A | (3.1)

and set
Ujn(T) 1= Un(0;nZ + Tjn) — Un(Zjpn) In Bzg_ (0),
Jyn

0 (T) i= vE(6;nT + Tj,) in B_x (0).

»n

Then it holds that
~AUjp=e inBa(0), Un<Un0)=0 in B.n 0 (3.2

Jn

and
—ATE, = pkeBrik . inTe Bsf_n (0), Io; nHLm( x"—(o)) <1 (3.3)
ium
We note that there exists d; > 0 such that
5in = A\ + 0(A3)(—> 0) (3.4)

from Y.Y.Li’s estimate ([10], see also [9, Corollary 4.3]). We also note that
d; is know to given by (2.2), see [7, Proposition 3.4].
Now assuming
pe — us € R,

we reach the following problem at the limit n — oo:

~AU =€ inR?* U(Z) <U(0) (3.5)



and
—AV = pgee”V, V| po(re) < 1 (3.6)

From Chen-Li’s result [3], we see

1
2\ 2

i;n(2) = U(Z) in C>*(R2).

loc

and we get

On the other hand, we can show

loc

o, —V}F in CL2 (R?)

holds for a subsequence, where V* is a solution of (3.6)([8, Proposition 2.2]).
Since we know that there exists j € {1,---m} such that V¥ # 0 ([8, Propo-
sition 2.11]), we see that u* is an eigenvalue of the linealized eigenvalue
problem (3.6) for (3.5). These eigenvalues (and the eigenfunctions) are stud-
ied in [6] and we know

’;o=l(l+1) for some [ =0,1,2,---.

In this note, we are interested in the case u® = 0 and for this case the
eigenfunction is known to

k — k \
V" = const. (=: c;) € [-1,1].
Consequently we are able to confirm that
’ng = / )\neu"’l)ﬁ = / eﬁj’“ﬁjk-’n-——} C;c/ eU = 871'6?.
Br(j,n) B g (0) R?
7.n

Similarly we see

1 _ Un, kb __ ~ U;n~k
Yim = / (Y = Tjn) An€" v, = 0jn / ye s,
BR(“’j,n) B

r_(0)

e

Fymn

=6 { /}R G+ 0(1)} = 0(6;,) = 0 (,\

Sop=

59
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and, taking ¢ € (0, 1),

[ Grus@ )= tinlaly = zsm)sdactobdy
BR(f‘j,n)
< CR€/ ly — a:j,n|2_€)\ne“"dy

BR(xj,n)

=CR6},° /
B g (0)

Jn

G etindg = 0 (6,5) = o (M)

For simplify the presentation, we omitted here some additional argument
necessary to the process n — oo, see [8, Proposition 2.5 and 2.13] for
details.

4 On the improvement of the behavior of the
eigenvalues

The sharp formula (2.6) is from the determination of the following constant
L:

1
o = —2log A\, + L + o(1). (4.1)
Indeed, this leads
k_ 1 1 1
Hn = —2logA, + L+0o(1)  2logh, 1-— ;414;;(;)

1 L+ o(1) 1
—_ 1+ —-—=
2log A\, { + 2log A, o (logAn)}

 2logh, 4 (log\,)? (logXs)?/

It is easy to see that we get (2.3) from this if L is not specified. In the
following we sketch how to get

L=—8rA* +2(3log2 —1).
The constant L in (4.1) comes from two formula:

Un(T;n) = —2log A, — 2logd; + o(1), (4.2)
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where d; is the number given in (2.2), and

1 m
{;,; — un<xj,n)} Vom + 16mc) = —(87)* ) " giick +0(1),  (4.3)
n i=1

where _
Y 1<hem G(kj, k1), for j =1,
9ji = h#j .
—G(Kj, Ki), for 7 # 1.
Concerning this point, previously we used
Un(Zjn) = —2log A\, + O(1)
and
1 0
= — Un(Tjn) ¢ Vi = O(1).
Ho,
Here we eliminate u,(z;,) from these and get

1
{;E +2log A\, + O(l)} Yo = O(1).

n

We know that 7, — 87rc;? and there exists at least one j = 1,--- ,m such
that c§ # 0 since ¢* = (c¥,...,ck,) # 0. Therefore we get

L 9log A +0(1).

uk
n

Similarly, eliminating u,(z;,) from (4.2) and (4.3), we get

1 m
{—k +2log A\, +2logd; + 0(1)} 'y;-{n + 167rc;? = —(8m)? Zgjicf + o(1),
i=1

n

that is,
1 81 D i1 95iCh
E:—Zlog)\n—Z——Zlogdj— cfl 2 4+ 0(1)
8y . hick
= —2log A\, +2(3log2—-1) — WZ’;} L2 o(1).

J

Here we assume c;? # 0 for simplicity. Since this formula exists for each
Jj=1,---,m. We are able to get

m k m k
Doiey hyicd Yo i
k - k

c; o
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for j # I. This means that there exists a constant A* such that

m

§ : k _ Ak Kk
hjici =A Cj

i=1

for every j = 1,--- ,m, that is, A* is an eigenvalue of the matrix (h;), see
[7] for details. Obviously ¢¥ = (cf,...,cF,) is an eigenvector of (hj;).

Finally we are able to conclude that A* is the k-th eigenvalue of (hyi)
because pl < --- < uk.

4.1 Derivation of (4.2)

The formula (4.2) was essentially proved by C. C. Chen and C.-S. Lin [2,
Estimate D] from the Green’s representation formula:

Un(Tjn) = /Q G(a:j,n,y)/\ne“"(y) dy

1

= 10g |2, — Y| Ane®r® dy
2w Br( I

z]ln

+ / K(zjn,y)Ane* W) dy
Br(zjn)

£ [ Gy
1<i<m BR(iEi,n)
i#j
* / G(zjn, y) Ane*¥) dy
UL, Br(@in)

. 1 - ~
= Zn logd;n + —/ log |§| "% @ g
27 2 B g (0)

Jn

+87{R(@jn) + > Gl@jn 2in) } +o(1),
1<i<m
i# j

where

Pp— u
Ojn = An e’ dz.
Br(zj,n)

We are able to confirm that
1

2 BB—-R—(O)

j’n

_ 1 _
log || ™™~ djj — —— /R log|g| eV dj = —6log2  (4.4)



and
87{ R@;n) + Y Glasn 2in) } — 2log(8ds). (4.5)
1<i<m
i# J
On the other hand, we know o, — 87 from Theorem 1.1. Therefore
we get the following formula from the relation (3.1):

Oin
= —2log A\, + % log A, — 2log d; + o(1). (4.7)
am

To get (4.2), we need to know more precise behavior of 7, , along A\, — 0.
To this purpose the following one obtained in [2, (3.56)] is sufficient;:

Oin=8T+0(\). (4.8)
We note that a weaker version

Ojin=8m+o0 (/\é) ,
which is also sufficient for our purpose, can be obtained rather easily, see

13].

4.2 Derivation of (4.3)

To get the formula (4.3) we use the Green’s theorem for u,, and 2 —,; around
Br(Zjn):

k k k
/ {%v_’;_ ( ) }da-—/ {Aun unAzj—Z} dx
OBRr(z;jn) 81/ oy, Br(zjn) y"n, Koy,

(4.9)

vk

The choice of u, and LE seems to be a kind of trick. Indeed we know the
k:

behaviors of u, and —% far from S = {ki1, - ,km}, see (1.4) and (2.7).
Therefore the Ieft-hand side of (4.9) has limit in the process n — oo.
In fact, we have

Ou,, v d <vk)
Znon _ Up— | == | pdo
/BR(:an) { Ov k Ov \ pk }

A, 0 s,
— (871-)2ZZCZ- /aBR " ){ayG(x kn)G(x, k) — G(x,mh)gG(:c,ni)} do.
(4.10)

63



It is easy to see that

/BBR(K {ng(I k)G (2, k1) = Gz, ”h)%G(za’ii)} do

0, =1
{ —G(k;, ki)8. + G(x;, Kn)0:,  h#1,

where 62 = 1 if a = b and & = 0 else.
Therefore, from (4.10) we have

fio Vit =5 ()
OBR(zjn) ov :un ov /"’n

64

=(87r)2z > A {=G(ks, k)8 + G(kj, kn)8%} + o(1)

h=1 1<i<m

i#£h
= (87)? Z giicr + o(1).

i=1

On the other hand, we are able to apply the scaling argument t
right-hand side of (4.9). Indeed the following holds:

k k
/ {Aung% — unAv—:} dz
Br(zjn) K H

n

/\ e“"v,’;da:—i-/\n/ e’ und:c
ru’n Br(zjn) Br(zjn)
1

== —A / e'rv® dx + un(:cj,n))\n/ e dx
Hr, Br(zjn) Br(zjn)

+/ ek G, dT
B g (0)

Jn

1 ik o~ g~
= — (—TC - un(xj’n)) ’)/;)’,n + / eujmv‘;'c’nuj,n dx.
Ky, B r (0)
2

j)n
Here
/ el "vk nUjndZ — eUVj’“U dz = —167rc;?.
B_gr (0) R?
j,n

Consequently we get (4.3).

o the



5 Examples of ¢* = (c},... cf)+#0

Let us fix an integer m > 2 and Q be an annulus {z € R? (0 <)a < |z| < 1}.
In [12] there was constructed a m-mode solution wu,, to (1 1), i.e. a solution
which is invariant with respect to a rotation of i’; in R?

Mn@=u<'<ﬁ+z>)

This solution blows-up at m points k; = .- = k,,, which are located on a
circle concentric with the annulus and are vertices of a regular polygon with m
sides. So we can assume that k; = (rg,0), kg = 79 (cos 2T sin fn—") ey Ky =

: 2(m—D7 . 2(m—1)w
To (cos ——, Sin =—

Since G(z, k1) is symmetric with respect to the z1-axis, we get G (k;, 51) =
G(Km—j+2, K1), § = 2,..,m. Similarly the value G(ki, k) depends only on the
distance between «; and ;. Since 2 is an annulus, the Robin function R(x)
is radial, so that R(k;) =--- = R(km) = R.

Here we set G; := G(ni, k1) and R; := R+4 2222 G}, for simplicity. Then
the matrix h;; becomes as follows:
form=20(1=1,2,---),

for some g € (a, 1).

Rl + 2Gl+1 _G2 "'Gg B "‘Gl_,_l . *“Gg
N —Gy R +2G, -Gy ... ce e -G
(hij) = :
e Gy . . R+26

and form=2[4+1(1=1,2,--),

R -Gy, -Gz ... -G, -G, ... -Gy

-G R -Gy ... ... ... ... =G
(h”> — 2 | l 2 3 :

-Gy -Gs ... ... ... ... =Gy R

A straightforward computation shows the following facts:

e m=3 _

)\1=R+2G2, C1=(1 1, 1)

)\22 R+5G2,C2—-(1 ) C3—(10 )
o m=4

)\1 =R+ 2G2 + G3, €1 = (1, ]., 1, 1)

65
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/\2 = )\3 =R+ 4G2 + 3G3, €y = (1,0,'—1,0), €3 = (O, ].,0, —].)
M=R+6Gy+Gs, ¢y = (1, -1,1, —-1)

e m=5
M =R+2Gy+2G3, ¢ = (].,]., 1,1, 1),

Ao = X3 = R+ %GQ—FQ“}—"@G&
€y = (1’ :—1;5—@7 %37 _17 0)) €3 = (1’ _1’ _1;\/3’ O’ 1+2\/g)’

/\4=/\5=R+ '9+T\/3G2+9—2—\/3G3

o= (1,755, 25 _1,0), ¢ = (1, -1, =45, 0, 155).

3

e m=6
M=R+2Gy+ 2G5+ Gy, ¢ = (1, 1,1,1,1, 1),

A2 = A3 = R+ 3Gy + 5G3 + 3Gy,
€y = (1,0, -1,-1,0, 1), €3 = (1, 1,0, -—1,—1,0)

A = Xs = R+ 5G2 + 5G3 + Gy,
¢ =(1,-1,0,-1,1,0), ¢s = (1,0,1,—-1,0,1)

X = R+ 6Gy + 2G3 + 3Gy,
6 =(1,-1,1,-1,1,-1)

In general, it is easy to see that the first eigenvalue of (h;;) is A’ = R +
25, Gh+ Gy for m = 2l and R+ 25 G for m = 21 + 1 which is
simple. It is easy to see that the eigenspace corresponding to A! is spanned
by ¢! = (1,1,---,1).

Unfortunately we are not yet able to get further information on the multi-
plicity of the eigenvalues even for these cases and we will leave this for future
work, see also 7, Remark 5.1].
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