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Abstract The stable marriage problem is a well studied problem on bipartite graphs, and its special class,

MAX SMTI (the problem finding a maximum cardinality stable matching with ties and incomplete lists)

is known to be NP-hard. In this paper, we show that MAX SMTI is NP-hard even for highly restricted
instances, where each person’s preference list includes at most one strict preference. We also show that

there is a polynomial time algorithm for solving the problem for a little more restricted class of instances,

where each man has at most one strict preference; and if there exists a man who has one strict preference,

then he has the unique first choice.
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1. Introduction

The stable marriage problem is a classical matching problem on bipartite graphs. An in-

stance of the stable marriage problem consists of $n$ men, $n$ women, and each person’s

preference list which represents his/her preference to the opposite sex. A matching $M$ is a
set of pairs of men and women such that they are acceptable to each other. The cardinality

of matching is the number of pairs in $M$ . A pair of a man and a woman is called a blocking

pair for $M$ if both of them prefer others to their current partners. A matching $M$ is stable if

there is no blocking pair for $M$ . The stable marriage problem is to find a stable matching in

a given input instance. Since Gale and Shapley [4] introduced it in 1962, this problem has
been studied by numerous researchers because of its mathematical charm and applicability

to the real world.
In its original setting, each person’s preference list is complete and does not include

ties. In this case, every stable matching is a perfect matching, and it can be obtained in

polynomial time using a well-known algorithm, the Gale-Shapley algorithm [4]. However, if

preference lists include ties and only a part of the members of the opposite sex, the problem

of finding a maximum cardinality stable matching is known to NP-hard [9]. We call such

a class MAX SMTI (MAXimum Stable Marriage with Ties and Incomplete Lists). MAX
SMTI is also known to be NP-hard under certain restrictions. For example, the one-sided-
ties problem is such a problem, where ties can appear only in women’s preference lists [13].

A number of researchers have studied such special cases as well as the general MAX SMTI
(see e.g. [12]).

On the other hand, it is known that some special cases of MAX SMTI with harder

restrictions can be solved in polynomial time, e.g., classes where each person’s preference

list includes no tie [5], and where each man’s preference list includes at most two women
[8]. Therefore, a natural question comes to mind: what is the hardest restriction for which

the problem remains NP-hard? In other words, what is the boundary between polynomial-

time solvability and NP-hardness for this problem? We refer to it as “the boundary of
complexity”’ for MAX SMTI.
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In this paper, we show that MAX SMTI is still NP-hard even for highly restricted
instances where each person’s preference list includes at most one strict preference. We also
show that there exists a polynomial time algorithm for a little more restricted instance,
where each man’s preference list includes at most one strict preference; and, if someone’s
list includes a strict preference, then it has a unique first choice. (In Section 3, we define
this precisely.) We refer to the former class of instance as Class 1, and the latter Class 2.
Since these two variants are so similar, it can be considered as a kind of the boundary of
complexity.

The paper is organized as follow. In Section 2, we review some related works. In Section
3, we give some definitions concerning our problems. In Section 4, we show that MAX SMTI
for Class 1 is NP-hard. In contrast, we show in Section 5 that MAX SMTI for Class 2 is
polynomial time solvable.

2. Related works

The NP-hardness of MAX SMTI is shown by Iwama et al. in 1999 [9]. A few years later,
Manlove et al. established some valuable results for the problem [13]. One is that MAX
SMTI remains NP-hard under some hard restrictions (this variant is called MAX SSMTI
in [15]), another is that MAX SMTI is approximable within a factor of 2 by breaking ties
arbitrary and finding any stable matching. Since then, researchers have focused on a variety
of special instance classes of MAX SMTI.

In particular, MAX SMOTI (MAXimum Stable Marriage with One-sided Ties and In-
complete lists) [15] and MAX SSMTI (Special SMTI) are two well-studied variants of MAX
SMTI. Instances of MAX SMOTI have a common property that ties can appear only in
women’s preference lists (i.e., men’s preference lists are strictly ordered and does not in-
clude ties). MAX SSMTI is even more restricted variant of MAX SMOTI, where ties are
only allowed at the ends of the women’s preference lists. As mentioned above, MAX SSMTI
is NP-hard, and so is MAX SMOTI. Currently, the best approximation ratios for these
subclasses are 19/13 $(<1.4616)[2]$ and 5/4 $(=1.25)[7]$ , respectively (both are achieved by
an algorithm using LP-reduction, called GSA-LP [11]).

In connection with “the boundary of complexity Irving et al. showed some key findings
[8]. That is, MAX SMTI is solvable in polynomial time if each man’s list is of length at
most two (even when women’s lists are of unbounded length), but if each man’s list is of
length at most three, the problem turns NP-hard (even if each women’s list is of length
at most three). They referred to the former class as $(2, \infty)$-MAX SMTI and the latter as
$(3, 3)$-MAX SMTI. More generally, $(p, q)$ -MAX SMTI is a restriction of MAX SMTI in terms
of the length of preference lists where each man’s preference list includes at most $p$ women
and each woman’s preference list includes at most $q$ men [10]. There are some other works
about NP-hardness and inapproximability of similar variants. Halld\’osson et al. [6] showed
that $(4, 7)$-MAX SMTI is NP-hard and cannot be approximable by a constant unless $P=NP.$

3. Preliminaries
In this section, we prepare some notation and terminology used in this paper.
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Definition 3.1. An instance of the stable marriage problem is a 4-tuple $I=(U, Y,pri_{U},pri_{Y})$ ,

where

$|U|=|Y|=n\in \mathbb{N}_{+}$ ; $U\cap Y=\emptyset$ ;

$pri_{U}$ : $U\cross Yarrow\{O, 1, \cdots, n\}$ ;

$pri_{Y}$ : $Y\cross Uarrow\{O, 1, \cdots, n\}.$

The sets $U$ and $Y$ consist of the members of men and women in $I$ , respectively, and $pri_{U}$

and $pri_{Y}$ are priority functions which represent each person’s preference to the opposite sex.
Let $m\in U$, and $\{w, w’\}\subset Y$. We say that $m$ prefers $w$ to $w’$ if $pri_{U}(m, w)>pri_{U}(m,$ $w$

If $pri_{U}(m, w)=pri_{U}(m,$ $w$ then we say that $w$ and $w’$ are in a tie with respect to $m$ (or
$m$ equally prefers $w$ and $w$ We sometimes denote an instance $I$ as $(U_{I}, Y_{I},pri_{U_{I}},pri_{Y_{I}})$ to
avoid a confusion.

Definition 3.2. A pair $(m, w)$ of a man $m$ and a woman $w$ with a property $pri_{U}(m, w)\neq 0$

and $pri_{Y}(w, m)\neq 0$ is called an acceptable pair. Let $\mathbb{A}$ be the set of all acceptable pairs in
the input instance. If $(m, w)\in \mathbb{A}$ , then we say that $m$ is acceptable to $w$ , and vice versa.

Definition 3.3. Let $m\in U$ , and $k\in \mathbb{N}_{+}$ be the number of women who are acceptable to
$m$ . An ordered list $w_{1},$ $w_{2},$ $\cdots,$ $w_{k}$ with a property that $pri_{U}(m, w_{i})\geq pri_{U}(m, w_{j})>0(i=$

$1,$ $\cdots$ , k) if $i<j$ , is called a preference list of $m$ . Women’s preference lists are defined
similarly.

We say that a man $m$ has $k$ strict preferences if women in $m$ ’s preference list can be
partitioned into $k+1$ groups with respect to $pri_{U}(m, \cdot)$ $(i.e., |\{pri_{U}(m, w)|w\in Y\}\backslash \{O\}|=$

$k+1)$ . Similarly, it is defined for women.

Definition 3.4. Let $M$ be a matching on the bipartite graph $(U, Y;\mathbb{A})$ and $SU$ and $SY$

denote the sets of single men and women $(i.e.,$ person, $who do not$ match $in M)$ . Let $M(p)$

denote the partner of a person $p$ $(i.e., M(m)=w\Leftrightarrow M(w)=m\Leftrightarrow(m, w)\in M).$ A blocking
pair for $M$ is a pair $(m, w)\in \mathbb{A}$ of a man and a woman which satisfies one of the following
conditions:

$pri_{U}(m, w)>pri_{U}(m, M(m))\wedge pri_{Y}(w, m)>pri_{Y}(w, M(w))$ ; (3.1)

$pri_{U}(m, w)>pri_{U}(m, M(m))\wedge w\in SY$ ; (3.2)

$pri_{Y}(w, m)>pri_{Y}(w, M(w))\wedge m\in SU$ ; (3.3)

$w\in SY\wedge m\in SU$. (3.4)

Definition 3.5. A set $M\subset \mathbb{A}$ of acceptable pairs is called a stable matching if every
$(m, w)\in \mathbb{A}$ is not a blocking pair for $M.$

Definition 3.6. The problem of finding the maximum cardinality of a stable matching in
the input instance (where cardinality of a matching is the number of its components) is
called $MAX$ SMTI (MAXimum Stable Marriage with Ties and Incomplete lists).

Definition 3.7. PER SMTI (PERfect SMTI) is the problem of checking whether a perfect
stable matching $M$ exists or not (i.e., $M$ is a stable matching, and there is no single person
with respect to $M$) for a given instance of MAX SMTI.
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Definition 3.8. Let $V$ be the set of variables of a satisfiability problem. $(2,2)E3$-SAT is
the problem of checking whether $B$ is satisfiable, given an boolean formula $B$ in conjunctive
normal form in which each clause contains exactly three literals and, for each $v\in V$ , each
of literals $v$ and $\overline{v}$ appears exactly twice in $B.$

The problem $(2, 2)E3$-SAT is known to be NP-complete [1]. Irving et al. showed the
NP-hardness of $(3, 3)$-MAX SMTI by using a reduction from $(2, 2)E3$-SAT [8].

Definition 3.9. Let $m\in U$ and $w$ be a woman in the $m$ ’s preference list. We say that $w$

is the unique first choice of $m$ if $pri_{U}(m, w)>pri_{U}(m, w’)$ for any $w’\in Y\backslash \{w\}.$

Definition 3.10. Let $p$ be a person in an instance $(i.e, p\in U\cup Y)$ . Consider the following
conditions for $p$ :

(SO) $p$ has no strict preference;

(S1) $p$ has one strict preference;

(S2) $p$ has two strict preferences;

(UFC) $p$ has the unique first choice;

(L2) $p$ ’s preference list is length of two;

(L3) $p$ ’s preference list is length of three.

Class 1, Class 2, and Class 3 are the sets of instances of MAX SMTI satisfying some of
the above conditions. The Class 1 is composed of instances of MAX SMTI in which each
person satisfies

(SO) or $(S1)$ .

The Class 2 consists of instances of MAX SMTI in which each man satisfies

(SO) or $((S1)$ and $(UFC))$ ,

and the Class 3 consists of instances of MAX SMTI in which each person satisfies

((SO) and $(L2)$ ) or $((S2)$ and $(L3))$ .

We give an example of instances of Classes 1, 2, and 3 in Tables 1, 2, and 3, respectively.
Note that a man $m$ ’s preference list includes a woman $w$ if and only if $w$ ’s preference includes
$m$ . The set of men is $\{a, b, c, d\}$ and the set of women is $\{w, x, y, z\}$ for each instance. The
symbol $”‘=$ “ denotes a tie, and $\langle>$

“ denotes a strict preference. In Table 1, each person’s
preference list has at most one strict preference, i.e., the symbol $”‘>$ “ does not appear twice
in each person’s preference list. In Table 2, each man $m$ has the same property, and if $m$

has a strict preference, then he has the unique first choice (see man $a$). On the other hand,
the strict preference can appear arbitrary number of times on women’s preference lists in
Table 2 (woman $x$). In Table 3, the length of each person’s preference list is either two or
three, and if the preference list is of length two, then it has no strict preference (man $b$),
and if the preference list is of length three, then it has two strict preferences (man $a$).
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Table 1: Preference lists of an instance of Class 1
$a$ : $w$ $=$ $z$ $>$ $y$ $=$ $x$ $w$ : $a$ $>$ $c$ $=$ $d$

$b$ : $x$ $>$ $z$ $x$ : $d$ $=$ $a$ $=$ $b$

$c$ : $z$ $=$ $y$ $=$ $w$ $y$ : $c$ $=$ $d$ $>$ $a$

$d$ : $w$ $>$ $z$ $=$ $x$ $=$ $y$ $z$ : $a$ $=$ $c$ $=$ $b$ $=$ $d$

Table 2: Preference lists of an instance of Class 2
$a$ : $w$ $>$ $z$ $=$ $y$ $=$ $x$ $w$ : $a$ $>$ $c$ $=$ $d$

$b$ : $x$ $>$ $z$ $x$ : $d$ $>$ $a$ $>$ $b$

$c$ : $z$ $=$ $y$ $=$ $w$ $y$ : $c$ $=$ $d$ $>$ $a$

$d$ : $w$ $>$ $z$ $=$ $x$ $=$ $y$ $z$ : $a$ $=$ $c$ $=$ $b$ $=$ $d$

Table 3: Preference lists of an instance of Class 3
$a$ : $w$ $>$ $z$ $>$ $y$ $w$ : $a$ $>$ $c$ $>$ $d$

$b$ : $x$ $=$ $z$ $x$ : $d$ $=$ $b$

$c$ : $z$ $>$ $y$ $>$ $w$ $y$ : $c$ $=$ $d$

$d$ : $w$ $=$ $z$ $z$ : $a$ $>$ $c$ $>$ $b$

4. NP-hardness of MAX SMTI for Class 1

In this section, we show the NP-hardness of MAX SMTI for Class 1. The result holds even
if each person’s preference list is of length at most three.

We can show the NP-completeness of PER SMTI for Class 3 by reduction from $(2, 2)E3-$

SAT. We can also show the NP-completeness of PER SMTI with Class 1 by using a reduction
from PER SMTI for Class 3. Accordingly, MAX SMTI for Class 1 is NP-hard.

Transformation from $(2,2)E3$-SAT to PER SMTI for Class 3

Let us show the NP-completeness of PER SMTI for Class 3 by using a reduction from
$(3, 3)E3$-SAT. First, we introduce a transformation from an instance of $(2, 2)E3$-SAT to
an instance of $(3, 3)$-MAX SMTI, which Irving et al. used to show the NP-hardness of
$(3, 3)$-MAX SMTI in [8].

Let $B=(V, C)$ be an instance of $(2, 2)E3$-SAT, where $V=\{v_{0}, v_{1}, v_{n-1}\}$ and $C=$

$\{c_{1}, c_{2}, c_{m}\}$ are the sets of variables and clauses, respectively. An instance $I$ of $(3, 3)$-MAX
SMTI is constructed as follows. The set of men in $I$ is $X\cup P\cup Q$ , where

$X= \bigcup_{i=0}^{n-1}X_{i}, X_{i}=\{x_{4i+r}|0\leq r\leq 3\}(0\leq i\leq n-1)$ ,

$P= \bigcup_{j=1}^{m}P_{j}, P_{j}=\{p_{j}^{1},p_{j}^{2},p_{j}^{2}\}(1\leq j\leq m)$ ,

$Q=\{q_{j}|c_{j}\in C\}.$
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The set of women in $I$ is $Y’\cup C’\cup Z$ , where

$Y’= \bigcup_{i=0}^{n-1}Y_{i}’, Y_{i}’=\{y_{4i+r}|0\leq r\leq 3\}(0\leq i\leq n-1)$ ,

$C’=\{c_{j}^{s}|1\leq j\leq m, 1\leq s\leq 3\},$

$Z=\{z_{j}|1\leq j\leq m\}.$

The preference lists of $I$ are given by Table 4.
In the preference list of a man $x_{4i+r}\in X(0\leq i\leq n-1, r\in\{0,1 the$ symbol $c(x_{4i+r})$

denotes the woman $c_{j}^{s}\in C’$ such that the $(r+1)th$ occurrence of literal $v_{i}$ appears at position
$s$ of $c_{j}$ . Similarly if $r\in\{2$ , 3 $\}$ then the symbol $c(x_{4i+r})$ denotes the woman $c_{j}^{s}\in C’$ such
that the $(r-1)th$ occurrence of literal $\overline{v}_{i}$ appears at position $s$ of $c_{j}$ . Also in the preference
list of a woman $c_{j}^{s}\in C’$ , if literal $v_{i}$ appears at position $s$ of clause $c_{j}\in C$ , the symbol
$x(c_{j}^{s})$ denotes the man $x_{4i+r-1}$ , where $r\in\{1$ , 2 $\}$ in accordance with the first or the second
occurrence of literal $v_{i}$ in $B$ . Otherwise, if literal $\overline{v}_{i}$ appears at position $s$ of clause $c_{j}\in C,$

the symbol $x(c_{j}^{s})$ denotes the man $x_{4i+r+1}$ , where $r\in\{1$ , 2 $\}$ in accordance with the first or
the second occurrence of literal $\overline{v}_{i}$ in $B$ . Then the following proposition holds.

Proposition 4.1 (Irving et al. [8]). An instance $B$ of $(2, 2)E3$-SAT is satisfiable if and only
if $I$ admits a perfect stable matching.

$\frac{Tab1e4:Preference1istsintheconstructedinstance}{x_{4i}:y_{4i}>c(x_{4i})>y_{4i+1}(0\leq i\leq n-1)}$

$x_{4i+1}$ : $y_{4i+1}$ $>$ $c(x_{4i+1})$ $>$ $y_{4i+2}$ $(0\leq i\leq n-1)$

$x_{4i+2}$ : $y_{4i+3}$ $>$ $c(x_{4i+2})$ $>$ $y_{4i+2}$ $(0\leq i\leq n-1)$

$X_{4i+3}$ : $y_{4i}$ $>$ $c(x_{4i+3})$ $>$ $y_{4i+3}$ $(0\leq i\leq n-1)$

$p_{j}^{s}q_{j}$

$:$

:
$z_{j}c_{j}^{1}$

$>>$ $c_{j}^{2}c_{j}^{s}$

$>$ $c_{j}^{3}$

$(1\leq j\leq m, 1\leq s\leq 3)$

$(1\leq j\leq m)$

$y_{4i}$ : $x_{4i}$ $=$ $x_{4i+3}$ $(0\leq i\leq n-1)$

$y_{4i+1}$ : $x_{4i}$ $=$ $x_{4i+1}$ $(0\leq i\leq n-1)$

$y_{4i+2}$ : $x_{4i+1}$ $=$ $x_{4i+2}$ $(0\leq i\leq n-1)$

$y_{4i+3}$ : $x_{4i+2}$ $=$ $X_{4i+3}$ $(0\leq i\leq n-1)$

$c_{j}^{s}$ : $p_{j}^{s}$ $>$ $x(c_{j}^{s})$ $>$ $q_{j}^{8}$ $(1\leq j\leq m, 1\leq s\leq 3)$

$z_{j}$ : $p_{?}^{1}$ $=$ $p_{\dot{?}}^{2}$ $=$ $p_{i}^{3}$ $(1\leq j\leq m)$

Next, we consider a transformation from $B$ to an instance of Class 3. Let $I’$ be the
instance obtained from $I$ by the replacing preference lists of $P$ and $Z$ , as follows:

$p_{j}^{s}$ : $z_{j}$
$=$ $c_{j}^{s}$ $(1\leq j\leq m, 1\leq s\leq 3)$ ;

$z_{j}$ : $p_{j}^{1}$ $>$ $p_{j}^{2}$ $>$ $p_{j}^{3}$ $(1\leq j\leq m)$ .

Then $I’$ is in Class 3. The following lemma holds.

Lemma 4.1. An instance of $(3, 3)$-MAX SMTI $I$ admits a perfect stable matching if and
only if the instance $I’$ admits a perfect stable matching.
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Proof. Let $M$ be a perfect matching on $(U, Y;\mathbb{A})$ .
( $\Rightarrow$ ) : Suppose that $M$ is stable in $I$ and not stable in $I’$ . Let $(m, w)$ be a blocking pair

for $M$ in $I’$ . If $m\not\in P$ and $w\not\in Z$ , then $(m, w)$ is a blocking pair for $M$ in $I$ , and so we
obtain $m\in P$ or $w\in Z$ . Since each man in $P$ has no strict preference in $I’$ , he cannot be
in blocking pairs in $I’$ . Note that $w$ ’s partner must belong to $P$ if $w\in Z$ . Thus there is no
blocking pair for $M$ in $I’.$

( $\Leftarrow$ ) : Suppose that $M$ is stable in $I’$ and is not stable in $I$ . Let $(m, w)$ be a blocking
pair for $M$ in $I$ . We obtain $m\in P$ by similar arguments as above. If $w\in C’$ , then
$pri_{U}(m, w)>pri_{U}(m, M(m))$ does not hold for any woman $M(m)$ because $w$ is the worst
woman in $m$ ’s preference list. On the other hand, each woman in $Z$ has no strict preference
in $I$ , and so she cannot be in blocking pairs in $I’$ . Thus there is no blocking pair for $M$ in
I. $\square$

Corollary 4.1. PER SMTI for Class 3 is NP-complete.

Transformation from PER SMTI for Class 3 to PER SMTI for Class 1

Let us prove the NP-completeness of PER SMTI for Class 1 by using a reduction from PER
SMTI for Class 3.

Algorithm 1 shows a pseudo-code of the algorithm for transforming an instance in Class
3 to an instance in Class 1. The algorithm consists of the two phases. In Phase 1, we remove
the pairs which are contained in all stable matchings, in the input instance. To remove a
pair $(m, w)$ , we replace $U_{I}$ and $Y_{I}$ by $U_{I}\backslash \{m\}$ and $Y_{I}\backslash \{w\}$ , respectively. Let $P_{U}$ be the set
of pairs $(m, w)$ such that $m$ is the unique first choice of $w$ , and $w$ is the unique first choice
of $m$ in the input instance. Then, we delete all pairs in $P_{U}.$

In Phase 2, we delete the pairs which do not belong to any stable matching in the input
instance. To delete a pair $(m, w)$ , we replace their priority functions with $pri_{U_{I}}(m, w)=0$

and $pri_{Y_{I}}(m, w)=0.$

Lemma 4.2. Let $M$ be a perfect stable matching in $I_{3}$ . Then the following two conditions
hold:

(a) $P_{U}\subseteq M$ ;
(b) $M$ does not contain pairs which are deleted in Phase 2.

Lemma 4.3. $I_{3}$ admits a perfect stable matching if and only if $I_{1}$ admits a perfect stable
matching.

The outline of our proof for Lemma 4.3 is as follows.
( $\Rightarrow$ ) : Let $M$ be a perfect stable matching in $I_{3}$ , and $M’$ be a matching in $I_{1}$ defined as

$M’$ $:=M\backslash P_{U}$ . We can show that $M’$ is a perfect stable matching in $I_{1}.$

( $\Leftarrow$ ) : Let $M’$ be a perfect stable matching in $I_{1}$ , and $M$ a matching in $I_{3}$ defined as
$M:=M’\cup P_{U}$ . Then $M$ is a perfect matching in $I_{3}$ . Suppose that there exists a blocking
pair $(m, w)$ for $M$ in $I_{3}$ . We can show that if $(m, w)$ is a blocking pair for $M$ in $I_{3}$ , then
$(m, w)$ is also a blocking pair for $M’$ in $I_{1}$ , which is a contradiction.

Theorem 4.1. MAX SMTI for Class 1 is NP-hard. This result holds even if each person’s
preference list is of length at most three.

123



$\overline{\frac{A1gorithm1AtransformationfromClass3toClass1}{Input:AninstanceI_{3}ofC1ass3;}}$

Output: An instance $I_{1}of$ Class 1;
1: $Iarrow I_{3}$ ;

2: $/*$ Phase 1 $*/$

3: $P_{U}arrow\{(m, w)|m$ is the unique first choice of $w$ in $I_{3}$ , and $w$ is the unique first choice of $m$

in $I_{3}\}$ ;
4: remove all pairs in $P_{U}$ from $I$ ;
5: $/*$ Phase 2 $/$

6: for each man $m$ in $I$ whose preference list contains three women in $I$ do
7: $w_{1}arrow the$ first choice of $m$ ’s preference list in $I$ ;
8: $w_{2}arrow the$ second choice of $m$ ’s preference list in $I$ ;
9: for each man $m’$ in $I$ where $pri_{Y_{I_{3}}}(w_{1}, m)>pri_{Y_{I_{3}}}(w_{1}, m’)$ do
10: delete the pair $(m’, w_{1})$ from $I$ ;

11: $pri_{U_{I}}(m, w_{2})arrow pri_{U_{I}}(m, w_{1})$ ;

12: for each woman $m$ in $I$ whose preference list contains three men in $I$ do
13: $m_{1}arrow the$ first choice of $w$ ’s preference list in $I$ ;
14: $m_{2}arrow the$ second choice on $w$ ’s preference list in $I$ ;
15: for each woman $w’$ in $I$ where $pri_{U_{I_{3}}}(m_{1}, w)>pri_{U_{I_{3}}}(m_{1}, w’)$ do
16: delete the pair $(w’, m_{1})$ from $I$ ;

17: $pri_{Y_{I}}(w, m_{2})arrow pri_{Y_{I}}(w, m_{1})$ ;

18: $I_{1}arrow I$ ;
19: return $I_{1}$ ;

5. A polynomial time algorithm for Class 2

In this section, we develop an algorithm to solve MAX SMTI for Class 2 in polynomial time.
The algorithm is almost the same as the one proposed in [8]. We can show that it solves a
more general instance class of the problem.

Algorithm 2 shows a pseudo-code for the algorithm. It consists of three phases. In Phase
1, we delete the pairs which do not belong to any stable matching. To delete a pair $(m, w)$ ,
we rewrite their priority functions as $pri_{U}(m, w)=0$ and $pri_{Y}(w, m)=$ O. Let $m_{i}\in U$

and $w_{j}$ be the unique first choice of $m_{i}$ . If there exists a strict successor $m_{k}$ of $m_{i}$ on $w_{j}’s$

preference list $(i.e., pri_{Y}(w_{j}, m_{i})>pri_{Y}(w_{j}, m_{k})\neq 0)$ , then $(m_{k}, w_{j})$ is deleted. Let $\mathbb{A}’$

denotes the set of pairs of a man and a woman which are still acceptable to each other after
Phase $0$ and Phase 1. In Phase 2, we find a minimum cost maximum cardinality matching
$M_{G}$ on the bipartite graph $(U, Y;\mathbb{A}’)$ where the cost of an edge $(m, w)$ is $-pri_{Y}(w, m)$ . This
procedure terminates within polynomial time [3].

The cardinality of $M_{G}$ is the same as the maximum cardinality stable matching in the
input instance, but there can be a pair $(m, w)\in \mathbb{A}’$ which satisfies (3.2) with respect to
$M_{G}$ . To obtain a stable matching, we remove those pairs from the matching in Phase 3.
We set $M$ $:=M_{G}$ and iterate the following process. Let $m_{i}$ be a man who is matched
in $M$ and has the unique first choice, say $w_{j}$ . If $w_{j}$ is single in $M$ , then we replace $M$

by $(M\cup\{(m_{i}, w_{j} \backslash \{(m_{i}, M(m_{i}))\}$ . We refer to this procedure as STABILIZE. The
procedure is repeated until no such a man exists.

Let us start analyzing of the algorithm. First, we discuss the correctness of Phase 1.

Lemma 5.1. There exists no stable matching in the input instance which contains a pair
deleted in Phase 1.
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$\overline{\frac{A1gorithm2Apo1ynomia1timealgorithmforMAXSMTIforClass2}{Input:aninstanceofC1ass2}}$

Output: a matching $M$

1: $/*$ phase 1 $/$

2: set all men to be unmarked;
3: while some man $m_{i}$ is unmarked and $m_{i}$ has a non-empty preference list do
4: set $m_{i}$ to be marked;
5: if $m_{i}$ has the unique first choice then
6: $w_{j}arrow the$ unique first choice of $m_{i}$ ;
7: for each strict successor $m_{k}$ of $m_{i}$ in $w_{j}$ ’s preference list do
8: set $m_{k}$ unmarked;
9: delete the pair $(m_{k}, w_{j})$ ;

10: $/*$ phase 2 $/$

11: $Garrow(U, Y, \mathbb{A}’)$ ;
12: $M_{G}arrow a$ minimum cost maximum cardinality matching in $G$ ;
13: $/*$ phase 3 $/$

14: $Marrow M_{G}$ ;

15: while there exists a man $m_{i}$ assigned to his second-choice woman $w_{k}$ in $M$ and the woman
$w_{j}$ who is the unique first choice of $m_{i}$ is unassigned in $M$ do

16: $Marrow(M\backslash \{(m_{i}, w_{k} \cup\{(m_{i}, w_{j})\}$ ;

17: return $M$ ;

Proof. Let $M$ be a stable matching and $(m_{k}, w_{j})\in M$ a pair which is deleted in Phase
1. According to the algorithm, there must be a man $m_{i}\in U$ whose unique first choice
is $w_{j}$ , and $m_{k}$ is a strict successor of $m_{i}$ in $w_{j}$ ’s preference list $(i.e., pri_{Y}(w_{j}, m_{i})>$

$pri_{Y}(w_{j}, m_{k})\Leftrightarrow pri_{Y}(w_{j}, m_{i})>pri_{Y}(w_{j}, M(w_{j})))$ . If $m_{i}$ matches someone in $M$ , then
$pri_{U}(m_{i}, w_{j})>pri_{U}(m_{i}, M(m_{i}))$ because $w_{j}$ is the unique first choice of $m_{i}$ . Hence, $(m_{i}, w_{j})$

is a blocking pair for $M$ , regardless of whether $m_{i}$ is matched in $M$ or not. This contradicts
the stability of M. $\square$

Next, we discuss the stability of the output matching.

Lemma 5.2. No pair $(m, w)\in \mathbb{A}’$ satisfies any of the three conditions (3.1), (3.3) and (3.4)
with respect to $M_{G}.$

Lemma 5.3. Let $M\subset \mathbb{A}’$ be a matching which we obtain after some executions of STA-
BILIZE for $M_{G}$ , and let $M’\subset \mathbb{A}’$ be a matching which we obtain after an execution of
STABILIZE for $M$ . If no pair $(m, w)\in \mathbb{A}’$ satisfies any of the three conditions (3.1), (3.3)
and’ (3.4) with respect to $M$ , then $M’$ has the same property.

Note that no pair $(m, w)\in \mathbb{A}’$ satisfies (3.2) with respect to the output matching of
Phase 3. Hence, it follows from Lemma 5.2 and Lemma 5.3 that the output matching of
the algorithm is stable.

The rest to be discussed is the finiteness of the algorithm. It is easy to see that both
Phase 1 and Phase 2 terminate in polynomial time. In each execution of STABILIZE,
exactly one man switches his current partner to his unique first choice. Hence, STABILIZE
is executed at most $|U|$ times, and thus we obtain the following conclusion.
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Theorem 5.1. Given an instance of MAX SMTI in Class 2, Algorithm 2 returns a maximum
cardinality stable matching in a polynomial time.
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