Some properties of harmonic univalent functions

Toshio Hayami

Abstract

A sufficient condition on harmonic univalent functions $f_1(z)$ and $f_2(z)$ in the open unit disk \mathbb{U} for the convex combination $f_3(z) = tf_1(z) + (1-t)f_2(z)$ to be also harmonic univalent in \mathbb{U} and its range $f_3(\mathbb{U})$ is convex in the horizontal direction is discussed. Furthermore, several illustrative examples and the images of functions satisfying the obtained condition are enumerated.

1 Introduction and Definitions

A real-valued function $\varphi(x,y)$ is real harmonic in $D\subset\mathbb{R}^2$ if and only if it satisfies Laplace's equation

$$\Delta \varphi = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = 0 \qquad ((x, y) \in D).$$

Let \mathbb{D} be a simply connected domain on the complex plane \mathbb{C} . A continuous complexvalued function f(z) = u(x, y) + iv(x, y) is harmonic in \mathbb{D} if u and v are real harmonic in \mathbb{D} (not necessarily harmonic conjugates), that is, if u and v satisfy

$$\Delta u = u_{xx} + u_{yy} = 0$$
 and $\Delta v = v_{xx} + v_{yy} = 0$ $(z = x + iy \in \mathbb{D})$

where the subscripts indicate partial derivatives.

Remark 1 A function f(z) = u(x,y) + iv(x,y) is analytic in $\mathbb D$ if it satisfies the Cauchy-Riemann equations

$$u_x = v_y$$
 and $u_y = -v_x$,

in short, if it has a derivative f'(z) at each point $z \in \mathbb{D}$. These relations show that every analytic function is harmonic.

Now, we consider the following two differential operators

2010 Mathematics Subject Classification: Primary 30C45, Secondary 58E20. **Keywords and Phrases**: Harmonic univalent, convex combination, convex in the horizontal direction.

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) f = \frac{1}{2} \left((u_x + v_y) + i(v_x - u_y) \right)$$

and

$$\frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) f = \frac{1}{2} \left((u_x - v_y) + i (v_x + u_y) \right)$$

where f = u + iv and z = x + iy. Then, by the Cauchy-Riemann equations, we see that f(z) is analytic if and only if

$$\frac{\partial f}{\partial z} = u_x + iv_x$$
 and $\frac{\partial f}{\partial \overline{z}} = 0$.

Furthermore, noting that the Laplacian Δf is denoted by

$$\Delta f = (u_{xx} + u_{yy}) + i(v_{xx} + v_{yy}) = 4 \frac{\partial^2 f}{\partial z \partial \overline{z}} = 4 \frac{\partial}{\partial \overline{z}} \left(\frac{\partial f}{\partial z} \right),$$

we know that f(z) is harmonic in \mathbb{D} if and only if $\partial f/\partial z$ is analytic in \mathbb{D} . From this relation, the following theorem is obtained.

Theorem A (cf. [3, pp.7]) If f(z) is harmonic in \mathbb{D} , then it can be written as

$$f(z) = h(z) + \overline{g(z)}$$

where h(z) and g(z) are analytic in \mathbb{D} . This representation is unique except for an additive constant. Conversely, for two analytic functions h(z) and g(z) in \mathbb{D} , a function $f(z) = h(z) + \overline{g(z)}$ is harmonic in \mathbb{D} .

Remark 2 The above theorem leads us that we take care of only the form of

$$f(z) = h(z) + \overline{g(z)}$$

when we discuss various properties and problems of harmonic (univalent) functions. Moreover complex-valued harmonic functions are closely related to analytic functions.

The Jacobian of a harmonic function $f = u + iv = h + \overline{g}$ can be written as

$$\mathcal{J}_f(z) = |h'(z)|^2 - |g'(z)|^2.$$

The following result about the relation between the locally univalency and the Jacobian of harmonic functions is given by Lewy [6].

Theorem B A complex-valued harmonic function f(z) is locally univalent in \mathbb{D} if and only if $\mathcal{J}_f(z) \neq 0$ for all $z \in \mathbb{D}$.

This theorem is improved by applying its proof (see, for example, [2], [3]).

Theorem C A harmonic function f(z) is locally univalent and sense-preserving in \mathbb{D} if and only if

$$\mathcal{J}_f(z) = |h'(z)|^2 - |g'(z)|^2 > 0 \qquad (z \in \mathbb{D}),$$

that is, that

$$|h'(z)| > |g'(z)| \qquad (z \in \mathbb{D}).$$

Similarly, f(z) is locally univalent and sense-reversing in \mathbb{D} if and only if

$$\mathcal{J}_f(z) = |h'(z)|^2 - |g'(z)|^2 < 0 \qquad (z \in \mathbb{D}),$$

that is, that

$$|h'(z)| < |g'(z)| \qquad (z \in \mathbb{D}).$$

We note the sense-preserving property of harmonic functions.

Remark 3

(i) $f(z) = h(z) + \overline{g(z)}$ is sense-preserving in $\mathbb D$ if and only if $\overline{f(z)} = \overline{h(z)} + g(z)$ is sense-reversing in $\mathbb D$.

(ii) If
$$f(z) = h(z) + \overline{g(z)}$$
 is sense-preserving in \mathbb{D} , then $h'(z) \neq 0$ $(z \in \mathbb{D})$.

(iii) If f(z) is analytic in \mathbb{D} , then the Jacobian $\mathcal{J}_f(z) = |f'(z)|^2 \geq 0$. Hence the classical result that f(z) is locally univalent and sense-preserving in \mathbb{D} if and only if $f'(z) \neq 0$ $(z \in \mathbb{D})$, that is, that "conformal mappings are sense-preserving" holds.

The canonical representation of harmonic functions f(z) in the open unit disk $\mathbb{U} = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$ is

$$f(z) = h(z) + \overline{g(z)}$$
 with $g(0) = 0$.

Since h(z) and g(z) are analytic in $\mathbb U$ and the representation is unique, f(z) has the following power series expansion

$$f(z) = h(z) + \overline{g(z)} = \sum_{n=0}^{\infty} a_n z^n + \overline{\sum_{n=1}^{\infty} b_n z^n}.$$

Thus we can normalize harmonic univalent functions in a way similar to the normalized analytic univalent functions. If f(z) is harmonic and sense-preserving in \mathbb{U} , then, by Theorem B, we derive that

$$|h'(z)| > |g'(z)|$$
 and therefore $h'(z) \neq 0$ $(z \in \mathbb{U})$.

This shows that, for the caronical representation of a function f(z) which is sense-preserving, harmonic and univalent in \mathbb{U} ,

$$F(z) = \frac{f(z) - h(0)}{h'(0)} = \frac{h(z) - a_0}{a_1} + \frac{\overline{g(z)}}{a_1}$$

$$= z + \sum_{n=2}^{\infty} \frac{a_n}{a_1} z^n + \sum_{n=1}^{\infty} \frac{b_n}{\overline{a_1}} z^n$$

$$= z + \sum_{n=2}^{\infty} A_n z^n + \sum_{n=1}^{\infty} B_n z^n$$

$$= H(z) + \overline{G(z)}$$

is univalent and denoted by analytic functions H(z) and G(z) with $H(0) = A_0 = 0$, $H'(0) = A_1 = 1$ and

$$|H'(z)| = \left|\frac{h'(z)}{a_1}\right| > \left|\frac{g'(z)}{a_1}\right| = |G'(z)| \quad (z \in \mathbb{U}).$$

Let $\mathcal{S}_{\mathcal{H}}$ be the class of all functions f(z) which have the caronical representation and they are sense-preserving, harmonic and univalent in \mathbb{U} with h(0) = 0 and h'(0) = 1. Namely, we consider harmonic univalent functions

$$f(z) = h(z) + \overline{g(z)} = z + \sum_{n=2}^{\infty} a_n z^n + \sum_{n=1}^{\infty} b_n z^n \in \mathcal{S}_{\mathcal{H}}.$$

Moreover, in view of the property $|b_1| = |g'(0)| < |h'(0)| = 1$ and the fact that

$$F(z) = \frac{f(z) - \overline{b_1 f(z)}}{1 - |b_1|^2} \in \mathcal{S}_{\mathcal{H}}$$

for any $f(z) \in \mathcal{S}_{\mathcal{H}}$, where

$$F(z) = z + \sum_{n=2}^{\infty} \frac{a_n - \overline{b_1} b_n}{1 - |b_1|^2} z^n + \sum_{n=2}^{\infty} \frac{b_n - b_1 a_n}{1 - |b_1|^2} z^n$$

$$= z + \sum_{n=2}^{\infty} A_n z^n + \sum_{n=2}^{\infty} B_n z^n \qquad (B_1 = 0),$$

we obtain the following subclass

$$S^0_{\mathcal{H}} = \{ f(z) : f(z) \in S_{\mathcal{H}} \text{ and } g'(0) = b_1 = 0 \}$$

and inclusion relations

$$\mathcal{S}\subset\mathcal{S}^0_{\mathcal{H}}\subset\mathcal{S}_{\mathcal{H}}$$

where S is the standard class of analytic univalent functions.

The following result is the well-known coefficient estimate for $\mathcal{S}^0_{\mathcal{H}}$.

Theorem B For all $f(z) \in \mathcal{S}^0_{\mathcal{H}}$, the sharp inequality $|b_2| \leq \frac{1}{2}$ holds.

We also discuss the coefficient estimate of functions $f(z) \in \mathcal{S}_{\mathcal{H}}^0$ for the case that f(z) has the finite power series expansion.

Theorem 1 If $f(z) \in \mathcal{S}^0_{\mathcal{H}}$ is a polynomial function given by

$$f(z) = h(z) + \overline{g(z)} = z + \sum_{j=2}^{l} a_j z^j + \overline{\sum_{j=2}^{m} b_j z^j}$$

for some l $(l=2,3,4,\cdots)$ and m $(m=2,3,4,\cdots)$, then

$$|a_k| + |b_k| \le \frac{1}{k}$$

where $k = \max\{l, m\}$, $a_j = 0$ $(j \ge l+1)$ and $b_j = 0$ $(j \ge m+1)$. The result is sharp.

Proof. Since $f(z) \in \mathcal{S}^0_{\mathcal{H}}$, we know that

$$|h'(z)| \neq |g'(z)| \qquad (z \in \mathbb{U}),$$

that is, that

$$h'(z) - e^{i\theta}g'(z) \neq 0$$
 $(z \in \mathbb{U})$

for any $\theta \in \mathbb{R}$. This means that, for every $z \in \mathbb{U}$,

$$1 + \sum_{j=2}^{k} j \left(a_j - e^{i\theta} b_j \right) z^{j-1} = (1 + \alpha_1 z) (1 + \alpha_2 z) (1 + \alpha_3 z) \cdots (1 + \alpha_{k-1} z) \neq 0.$$

Therefore we obtain that

$$|\alpha_j| \leq 1$$
 $(j=1,2,3,\cdots,k-1)$

and

$$\left|k\left(a_k - e^{i\theta}b_k\right)\right| = \left|\alpha_1\alpha_2\alpha_3\cdots\alpha_{k-1}\right| \le 1,$$

that is, that

$$\left| a_k - e^{i\theta} b_k \right| \le \frac{1}{k}$$

for any $\theta \in \mathbb{R}$. We easily know that

$$|a_k| + |b_k| \le \frac{1}{k}.$$

The sharpness is assured for the function

$$f(z) = z + \xi_1 z^k + \overline{\xi_2 z^k} \in \mathcal{S}^0_{\mathcal{H}} \qquad \left(|\xi_1| + |\xi_2| = \frac{1}{k} \right).$$

Remark 4 The above function

$$f(z) = z + \xi_1 z^k + \overline{\xi_2 z^k}$$
 $\left(|\xi_1| + |\xi_2| = \frac{1}{k} \right)$

is harmonic starlike univalent in U because it satisfies the condition

$$\sum_{n=2}^{\infty} n\left(|a_n| + |b_n|\right) \le 1.$$

This result is guaranteed by Avci and Złotkiewicz [1] and Silverman [7]

2 Elementary transformations

The class $S_{\mathcal{H}}$ is preserved under some elementary transformations. Here is a partial list.

(i) Conjugation If $f(z) = h(z) + \overline{g(z)} \in S_H$, then the function

$$F(z) = \overline{f(\overline{z})} = \overline{h(\overline{z})} + \overline{\overline{g(\overline{z})}} \in \mathcal{S}_{\mathcal{H}}.$$

(ii) Dilatation and rotation If $f(z) = h(z) + \overline{g(z)} \in S_H$, then the function

$$F(z) = \alpha^{-1} f(\alpha z) = \alpha^{-1} h(\alpha z) + \overline{\alpha^{-1} g(\alpha z)} \in \mathcal{S}_{\mathcal{H}}$$

for any complex number α $(0 < |\alpha| \leq 1)$.

(iii) Disk automorphism If $f(z) = h(z) + \overline{g(z)} \in S_H$, then the function

$$F(z) = \frac{f\left(\frac{z+\xi}{1+\overline{\xi}z}\right) - f(\xi)}{(1-|\xi|^2)h'(\xi)} = \frac{h\left(\frac{z+\xi}{1+\overline{\xi}z}\right) - h(\xi)}{(1-|\xi|^2)h'(\xi)} + \overline{\left\{\frac{g\left(\frac{z+\xi}{1+\overline{\xi}z}\right) - g(\xi)}{(1-|\xi|^2)\overline{h'(\xi)}}\right\}} \in \mathcal{S}_{\mathcal{H}}$$

for any $\xi \in \mathbb{U}$.

(iv) Affine transformation If $f(z) = h(z) + \overline{g(z)} \in S_H$, then the function

$$F(z) = \varphi_{\varepsilon} \circ f(z) \in \mathcal{S}_{\mathcal{H}}$$

for an affine mapping

$$\varphi_{\varepsilon}(z) = (1 - \varepsilon b_1)z + \varepsilon \overline{z}$$

where ε satisfies

$$\left|\varepsilon + \frac{\overline{b_1}}{1 - |b_1|^2}\right| < \frac{1}{1 - |b_1|^2}.$$

The proofs of (i) – (iv) are fairly straight forward, and hence we omit the details involved.

We now note that even if $f_1(z)$ and $f_2(z)$ are univalent in \mathbb{U} , the convex combination of $f_1(z)$ and $f_2(z)$ is not necessarily univalent in \mathbb{U} . For example, although

$$f_1(z) = \frac{2z - z^2}{2(1-z)^2} + \frac{\overline{z^2}}{2(1-z)^2}$$
 and $f_2(z) = -if_1(iz) = \frac{2z - iz^2}{2(1-iz)^2} + \frac{\overline{-iz^2}}{2(1-iz)^2}$

are in the class $S_{\mathcal{H}}$ (for details, see [4]), the convex combination $f_3(z)$ of these functions defined as

$$f_3(z) = tf_1(z) + (1-t)f_2(z)$$
 $(0 \le t \le 1)$

is **not** a member of $\mathcal{S}_{\mathcal{H}}$.

The present investigation is motivated by the above. It is important and interesting to discuss the condition for $f_3(z)$ to belong to $\mathcal{S}_{\mathcal{H}}$.

3 Preliminary Results

For some $\theta\left(-\frac{\pi}{2} \leq \theta < \frac{\pi}{2}\right)$, a domain $\mathbb{D} \subset \mathbb{C}$ is said to be convex in the direction of $e^{i\theta}$ if, for each $a \in \mathbb{C}$, the intersection

$$\mathbb{D}\cap\left\{a+te^{i\theta}:t\in\mathbb{R}\right\}$$

is either connected or empty. In particular, if $\theta = 0$ then \mathbb{D} is said to be convex in the direction of the real axis or convex in the horizontal direction (CHD). Clunie and Sheil-Small [2] have shown the next results concerned with CHD.

Lemma 1 Let $\mathbb{D} \subset \mathbb{C}$ be CHD, and let p(w) be a real-valued continuous function on \mathbb{D} . Then, the mapping

$$w \longmapsto w + p(w)$$

is univalent in $\mathbb D$ if and only if it is locally univalent in $\mathbb D$. If it is univalent, then its range is CHD.

Theorem C Let $f(z) = h(z) + \overline{g(z)}$ be harmonic and locally univalent in \mathbb{U} . Then, f(z) is univalent and its range is CHD if and only if the analytic function

$$\psi(z) = h(z) - g(z)$$

has the same properties.

This theorem leads us the following shearing technique.

Lemma 2 Let $\psi(z)$ be analytic and univalent in \mathbb{U} such that its range $\psi(\mathbb{U})$ is CHD and let w(z) be an analytic function in \mathbb{U} which satisfies |w(z)| < 1 $(z \in \mathbb{U})$. Then, by solving the simultaneous differential equations

$$\begin{cases} h'(z) - g'(z) = \psi'(z) \\ w(z)h'(z) - g'(z) = 0, \end{cases}$$

we can find a function

$$f(z) = h(z) + \overline{g(z)} \in \mathcal{S}_{\mathcal{H}}$$

whose range $f(\mathbb{U})$ is CHD.

For example, let $\psi(z) = \frac{1}{3} \log \left(\frac{1+2z+z^2}{1-z+z^2} \right)$ and w(z) = z. Then, since $s(z) = \frac{1+2z+z^2}{1-z+z^2}$

is univalent in U and it maps U onto the domain

$$\mathbb{C} \setminus \{t : t \leq 0 \text{ or } t \geq 4\},$$

we see that $\psi(z) = \frac{1}{3}\log(s(z))$ is univalent and it maps $\mathbb U$ onto the domain

$$\psi(\mathbb{U}) = \left\{ w : -\frac{\pi}{3} < \operatorname{Im}(w) < \frac{\pi}{3} \right\} \setminus \left\{ t : t \ge \frac{2}{3} \log 2 \right\}$$

which is CHD. Thus, solving the simultaneous differential equations

$$\begin{cases} h'(z) - g'(z) = \frac{1-z}{1+z^3} = \psi'(z) \\ zh'(z) - g'(z) = 0, \end{cases}$$

we obtain that

$$h'(z) = \frac{1}{1+z^3}$$
 and $g'(z) = \frac{z}{1+z^3}$.

It follows from Theorem C that

$$f(z) = z_{2}F_{1}\left(\frac{1}{3}, 1; \frac{4}{3}; -z^{3}\right) + \frac{\overline{z^{2}}_{2}F_{1}\left(\frac{2}{3}, 1; \frac{5}{3}; -z^{3}\right)}{\mathcal{S}_{\mathcal{H}}} \in \mathcal{S}_{\mathcal{H}}$$

where ${}_{2}F_{1}(a,b;c;z)$ represent the Gaussian hypergeometric function and $f(\mathbb{U})$ is a triangle, or CHD (see, for example, [5]) as follows:

The aim of this article is to find a sufficient condition on $f_1(z) = h_1(z) + \overline{g_1(z)} \in \mathcal{S}_{\mathcal{H}}$ and $f_2(z) = h_2(z) + \overline{g_2(z)} \in \mathcal{S}_{\mathcal{H}}$ for the convex combination

$$f_3(z) = t f_1(z) + (1-t) f_2(z) = h_3(z) + \overline{g_3(z)}$$
 $(0 \le t \le 1)$

to be also a member of $\mathcal{S}_{\mathcal{H}}$ and its range $f_3(\mathbb{U})$ is CHD.

4 Main Result

Our result is contained in

Theorem 2 Let $f_j(z) = h_j(z) + \overline{g_j(z)} \in \mathcal{S}_{\mathcal{H}}$ and its range $f_j(\mathbb{U})$ be CHD (j = 1, 2). If

$$\operatorname{Re}\left(h_1'(z)\overline{h_2'(z)}-g_1'(z)\overline{g_2'(z)}\right)>0 \qquad (z\in \mathbb{U})$$

and there exists an analytic function $\psi(z)$ such that

$$\psi(z) = h_j(z) - g_j(z)$$
 $(j = 1, 2),$

then $f_3(z) = tf_1(z) + (1-t)f_2(z) \in \mathcal{S}_{\mathcal{H}}$ and its range $f_3(\mathbb{U})$ is CHD.

Proof. We verify the locally univalency of $f_3(z)$. It follows from

$$h_3(z) = th_1(z) + (1-t)h_2(z)$$
 and $g_3(z) = tg_1(z) + (1-t)g_2(z)$

that

$$\left| \frac{g_3'(z)}{h_3'(z)} \right| = \left| \frac{tg_1'(z) + (1-t)g_2'(z)}{th_1'(z) + (1-t)h_2'(z)} \right|.$$

By the assumption of the theorem, we know that, for all $z \in \mathbb{U}$,

$$\begin{aligned} |th'_{1}(z) + (1-t)h'_{2}(z)|^{2} - |tg'_{1}(z) + (1-t)g'_{2}(z)|^{2} \\ &= t^{2} |h'_{1}(z)|^{2} + t(1-t) \left(h'_{1}(z)\overline{h'_{2}(z)} + \overline{h'_{1}(z)}h'_{2}(z) \right) + (1-t)^{2} |h'_{2}(z)|^{2} \\ &- t^{2} |g'_{1}(z)|^{2} - t(1-t) \left(g'_{1}(z)\overline{g'_{2}(z)} - \overline{g'_{1}(z)}g'_{2}(z) \right) + (1-t)^{2} |g'_{2}(z)|^{2} \end{aligned}$$

$$&= t^{2} \left(|h'_{1}(z)|^{2} - |g'_{1}(z)|^{2} \right) + (1-t)^{2} \left(|h'_{2}(z)|^{2} - |g'_{2}(z)|^{2} \right) + 2t(1-t)\operatorname{Re} \left(h'_{1}(z)\overline{h'_{2}(z)} - g'_{1}(z)\overline{g'_{2}(z)} \right) > 0.$$

This implies that $|h_3'(z)| > |g_3'(z)|$, that is, that $f_3(z)$ is locally univalent and sense-preserving in \mathbb{U} . By Theorem C, $w = \psi(z) = h_j(z) - g_j(z)$ is univalent in \mathbb{U} and its range $\psi(\mathbb{U})$ is CHD because $f_j(z) \in \mathcal{S}_{\mathcal{H}}$ and $f_j(\mathbb{U})$ is CHD. Then,

$$f_j(z) = h_j(z) - g_j(z) + \left(g_j(z) + \overline{g_j(z)}\right) = \psi(z) + 2\operatorname{Re}\left(g_j(z)\right)$$

and the composition $f_j \circ \psi^{-1}(w)$ can be written as

$$f_j(\psi^{-1}(w)) = \psi(\psi^{-1}(w)) + 2\text{Re}\left\{g_j(\psi^{-1}(w))\right\} = w + p_j(w) \qquad (j = 1, 2)$$

for some real-valued continuous function $p_i(w)$ in $\psi(\mathbb{U})$. We derive that

$$f_3(\psi^{-1}(w)) = tf_1(\psi^{-1}(w)) + (1-t)f_2(\psi^{-1}(w))$$

$$= t(w+p_1(w)) + (1-t)(w+p_2(w))$$

$$= w + (tp_1(w) + (1-t)p_2(w))$$

$$= w + p_3(w)$$

is locally univalent in $\psi(\mathbb{U})$, and hence it is univalent in $\psi(\mathbb{U})$ and its range is CHD by Lemma 1. The proof is completed.

Setting $\psi(z) = h_j(z) - g_j(z) = z$ (j = 1, 2) in Theorem 2, we obtain the following examples.

Example 1 Let

$$f_1(z) = h_1(z) + \overline{g_1(z)} = z + \frac{1}{4}z^2 + \frac{1}{4}\overline{z}^2$$

and

$$f_2(z) = h_2(z) + \overline{g_2(z)} = z + \frac{1}{6}z^3 + \frac{1}{6}\overline{z}^3.$$

Then $f_1(z)$, $f_2(z) \in \mathcal{S}_{\mathcal{H}}$, $\psi(z) = h_j(z) - g_j(z) = z$. Furthermore, we know that $f_1(\mathbb{U})$, $f_2(\mathbb{U})$ and $\psi(\mathbb{U}) = \mathbb{U}$ are CHD. For all $z = x + iy \in \mathbb{U}$ $(x^2 + y^2 < 1)$,

$$\operatorname{Re}\left(h'_{1}(z)\overline{h'_{2}(z)} - g'_{1}(z)\overline{g'_{2}(z)}\right) = \operatorname{Re}\left\{\left(1 + \frac{1}{2}z\right)\left(1 + \frac{1}{2}\overline{z}^{2}\right) - \frac{1}{2}z \cdot \frac{1}{2}\overline{z}^{2}\right\}$$

$$= \operatorname{Re}\left(1 + \frac{1}{2}z + \frac{1}{2}\overline{z}^{2}\right)$$

$$= 1 + \frac{1}{2}x + \frac{1}{2}(x^{2} - y^{2})$$

$$= \frac{1}{2}(1 + x) + \frac{1}{2}(1 + x^{2} - y^{2})$$

$$> \frac{1}{2}(1 + x) + \frac{1}{2}\left((x^{2} + y^{2}) + x^{2} - y^{2}\right)$$

$$= \frac{1}{2} + \frac{1}{2}x + x^{2}$$

$$= \left(x + \frac{1}{4}\right)^{2} + \frac{7}{16}$$

$$\geq \frac{7}{16} = 0.4375 > 0.$$

Therefore,

$$f_3(z) = tf_1(z) + (1-t)f_2(z)$$

$$= z + \frac{t}{4}z^2 + \frac{1-t}{6}z^3 + \frac{\overline{t}}{4}z^2 + \frac{1-t}{6}z^3 \qquad (0 \le t \le 1)$$

is also in the class $S_{\mathcal{H}}$ and its range $f_3(\mathbb{U})$ is CHD.

We actually check images of $f_1(z)$, $f_2(z)$ and $f_3(z)$ with $t = \frac{1}{3}$.

$$f_1(z)=z+rac{1}{4}z^2+rac{1}{4}\overline{z^2}\in\mathcal{S}_{\mathcal{H}}$$

$$f_2(z)=z+rac{1}{6}z^3+rac{1}{6}\overline{z^3}\in\mathcal{S}_{\mathcal{H}}$$

$$f_3(z) = \frac{1}{3}f_1(z) + \frac{2}{3}f_2(z) \in \mathcal{S}_{\mathcal{H}}$$

Example 2 Let $\psi(z) = h_j(z) - g_j(z) = z$ and $\frac{g'_j(z)}{h'_j(z)} = z^j$ (j = 1, 2). Then solving the following simultaneous differential equations

$$\begin{cases} h'_1(z) - g'_1(z) = 1 \\ zh'_1(z) - g'_1(z) = 0 \end{cases} and \begin{cases} h'_2(z) - g'_2(z) = 1 \\ z^2h'_2(z) - g'_2(z) = 0, \end{cases}$$

we obtain

$$f_1(z) = -\log(1-z) + \overline{(-z - \log(1-z))} \in \mathcal{S}_{\mathcal{H}}$$

and

$$f_2(z) = \frac{1}{2} \log \left(\frac{1+z}{1-z} \right) + \overline{\left(-z + \frac{1}{2} \log \left(\frac{1+z}{1-z} \right) \right)} \in \mathcal{S}_{\mathcal{H}}.$$

Moreover, we see that their ranges $f_1(\mathbb{U})$ and $f_2(\mathbb{U})$ are CHD. In view of $|z|^2 < 1$ and $\operatorname{Re}\left(\frac{1}{1+z}\right) > \frac{1}{2} > 0$, we know that

$$\operatorname{Re}\left(h'_{1}(z)\overline{h'_{2}(z)} - g'_{1}(z)\overline{g'_{2}(z)}\right) = \operatorname{Re}\left(\frac{1}{1-z} \cdot \overline{\frac{1}{1-z^{2}}} - \frac{z}{1-z} \cdot \overline{\frac{z^{2}}{1-z^{2}}}\right)$$

$$= \operatorname{Re}\left((1-|z|^{2}\overline{z})\left|\frac{1}{1-z}\right|^{2} \cdot \overline{\frac{1}{1+z}}\right)$$

$$= \left|\frac{1}{1-z}\right|^{2} \operatorname{Re}\left(\frac{1}{1+z} - \frac{|z|^{2}z}{1+z}\right)$$

$$> \left|\frac{1}{1-z}\right|^{2} \operatorname{Re}\left(\frac{|z|^{2}(1-z)}{1+z}\right)$$

$$= \left|\frac{z}{1-z}\right|^{2} \operatorname{Re}\left(\frac{1-z}{1+z}\right) \ge 0 \quad (z \in \mathbb{U}).$$

Therefore, for any $t \ (0 \le t \le 1)$,

$$f_3(z) = tf_1(z) + (1-t)f_2(z)$$

$$= -tz \log(1-z) + \frac{1-t}{2} \log\left(\frac{1+z}{1-z}\right) + \overline{\left(-z - t \log(1-z) + \frac{1-t}{2} \log\left(\frac{1+z}{1-z}\right)\right)}$$

is also a member of $S_{\mathcal{H}}$ and its range $f_3(\mathbb{U})$ is CHD.

Indeed, the images of $f_1(z)$, $f_2(z)$ and $f_3(z)$ with $t = \frac{3}{4}$ are below.

$$f_1(z) = -\log(1-z) + \overline{-z - \log(1-z)} \in \mathcal{S}_{\mathcal{H}}$$

$$f_2(z) = rac{1}{2}\log\left(rac{1+z}{1-z}
ight) + \overline{-z + rac{1}{2}\log\left(rac{1+z}{1-z}
ight)} \in \mathcal{S}_{\mathcal{H}}$$

$$f_3(z) = \frac{3}{4}f_1(z) + \frac{1}{4}f_2(z) \in \mathcal{S}_{\mathcal{H}}$$

References

- [1] Y. Avci and E. Złotkiewicz, On harmonic univalent mappings, Ann. Univ. Marie Curie-Sklodowska Sect. A 44(1991), 1–7.
- [2] J. Clunie and T. Sheil-Small, *Harmonic univalent functions*, Ann. Acad. Sci. Fenn. Ser. A I 9(1984), 3–25.
- [3] P. L. Duren, *Harmonic Mappings in the Plane*, Cambridge University Press, Cambridge, 2004.
- [4] T. Hayami, Coefficient conditions for harmonic close-to-convex functions, Abstr. Appl. Anal. Vol.2012, Article ID 413965, 1–12.
- [5] T. Hayami, A sufficient condition for p-valently harmonic functions, Complex Var. Elliptic Equ. **59**(2014), 1214–1222.
- [6] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42(1936), 689–692.
- [7] H. Silverman, Harmonic univalnet functions with negative coefficients, J. Math. Anal. Appl. **220**(1998), 283–289.

Toshio Hayami
Department of Mathematics and Physics
Setsunan University
Neyagawa, Osaka 572-8508, Japan

E-mail: $ha_ya_to112@hotmail.com$