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Some properties of
harmonic univalent functions

Toshio Hayami

Abstract

A sufficient condition on harmonic univalent functions fi(z) and f2(z) in the
open unit disk U for the convex combination f3(z) = tf1(2)+ (1 —t)f2(2) to be also
harmonic univalent in U and its range f3(U) is convex in the horizontal direction
is discussed. Furthermore, several illustrative examples and the images of functions
satisfying the obtained condition are enumerated.

1 Introduction and Definitions

A real-valued function ¢(z,y) is real harmonic in D C R? if and only if it satisfies
Laplace’s equation

Ap=—+—=0 ((z,y) € D).

Let D be a simply connected domain on the complex plane C. A continuous complex-
valued function f(z) = u(x,y) + iv(z, y) is harmonic in D if u and v are real harmonic in
D (not necessarily harmonic conjugates), that is, if v and v satisfy

Au=1tz +uy=0 and Av=1,+v,=0 (2=z+iyeD)
where the subscripts indicate partial derivatives.

Remark 1 A function f(z) = u(z,y)+iv(z,y) is analytic in D if it satisfies the Cauchy-
Riemann equations

Uy = vy and Uy = —ug,

in short, if it has a derivative f'(z) at each point z € D. These relations show that every
analytic function is harmonic.

Now, we consider the following two differential operators
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Furthermore, noting that the Laplacian A f is denoted by
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we know that f(z) is harmonic in D if and only if f/9z is analytic in D. From this
relation, the following theorem is obtained.

Theorem A (cf. [3, pp.7]) If f(2) is harmonic in D, then it can be written as

where h(z) and g(z) are analytic in D. This representation is unique except for an additive
constant. Conversely, for two analytic functions h(z) and g(z) in D, a function f(z) =

h(z) + g(2) is harmonic in D.

Remark 2 The above theorerh leads us that we take care of only the form of

f(z) = h(2) + 9(2)

when we discuss various properties and problems of harmonic (univalent) functions. More-
over complex-valued harmonic functions are closely related to analytic functions.

The Jacobian of a harmonic function f = u + iv = h + § can be written as
Ti(2) = W (2)]* = |g'(2)]*.

The following result about the relation between the locally univalency and the Jacobian
of harmonic functions is given by Lewy [6].

Theorem B A complez-valued harmonic function f(2) is locally univalent in D if and
only if T;(2) # 0 for all z € D.
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This theorem is improved by applying its proof (see, for example, [2], [3]).

Theorem C A harmonic function f(z) is locally univalent and sense-preserving in D
if and only if

Ji(z) = ()" ~1g(2))" >0 (2 €D),
that is, that
IW'(2)| > 1g'()]  (zeD)
Similarly, f(z) is locally univalent and sense-reversing in D if and only if
Ti(z) =K ()" =1g(2)I* <0 (2 €D),
that is, that
IW(2)l <lg'(2)]  (z€D).

We note the sense-preserving property of harmonic functions.

Remark 3 .
(i) f(2) = h(z) + g(z) is sense-preserving in D if and only if f(z) = h(2) + g(z) is sense-
reversing in D.

(ii) If f(z) = h(z) + g(2) is sense-preserving in D, then A'(2) #0 (z € D).

(iii) If f(2) is analytic in D, then the Jacobian J(z) = |f'(z)[* Z 0. Hence the classical
result that f(z) is locally univalent and sense-preserving in D if and only if f'(z) # 0
(z € D), that is, that ” conformal mappings are sense-preserving” holds.

The canonical representation of harmonic functions f(z) in the open unit disk U =
{z:2€C and |z| <1} is

f(z) = h(z) + g(2) with g(0) = 0.

Since h(z) and g(z) are analytic in U and the representation is unique, f(z) has the
following power series expansion

f(2)=h(z) +9(2) = Zanzn + anz".

n=0

Thus we can normalize harmonic univalent functions in a way similar to the normalized
analytic univalent functions. If f(z) is harmonic and sense-preserving in U, then, by
Theorem B, we derive that

|W'(2)| > |g'(2)| and therefore A'(z) #0 (z€U).



This shows that, for the caronical representation of a function f(z) which is sense-
preserving, harmonic and univalent in U,
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= H(z)+G()

is univalent and denoted by analytic functions H(z) and G(z) with H(0) = Ag = 0,
H'(0) = A; =1 and
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|H'(2)] = =[G"(2)] (z€0).

Let Sy be the class of all functions f(z) which have the caronical representation and
they are sense-preserving, harmonic and univalent in U with A(0) = 0 and A/(0) = 1.
Namely, we consider harmonic univalent functions

f(2) =h(z) + gz ~z+Zanz +sz"eSH

n=2

Moreover, in view of the property |b1| = |¢'(0)] < |h'(0)| =1 and the fact that

f(z) = b1 f(2)

e

€ Sy

for any f(z) € Sy, where

bl n & bn_blan
F = 2"+ - n
(2) Z+Z 1— o - Z 1= b2~

= z+ZAz +ZBz” (B, =0),

n=2

we obtain the following subclass
Sy ={f(2): f(z) € Sy and ¢'(0) = b, =0}
and inclusion relations

S C Sy CSy
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where S is the standard class of analytic univalent functions.
The following result is the well-known coefficient estimate for S2.
1
Theorem B  For all f(z) € S, the sharp inequality |by| < 3 holds.

We also discuss the coefficient estimate of functions f(z) € 8 for the case that f(2)
has the finite power series expansion.

Theorem 1 If f(2) € 8 is a polynomial function given by

l m
f@)=h(z)+g(z)=z+ Zajzj + ijzj
=2 j=2

for somel (1=2,3,4,---) and m (m = 2,3,4,---), then
el + Il <
a ~ -
k Rl S
where k = max{l,m}, a; =0 (j 21 +1) and b; =0 (j 2 m+ 1). The result is sharp.

Proof.  Since f(z) € 8%, we know that
()| #1d'(z)] (2 €U),
that is, that
W(z)—e?g'(z)#0  (2€U)

for any 6 € R. This means that, for every z € U,
1+ ZJ — €))7 = (14 ou2) (1 + a2) (1 + azz) - - (1 + ag—12) # 0.

Therefore we obtain that
lajl £1 (1=1,2,3,--- ;k—1)
and
|k (ax — €°bi)| = lonapas -+ op1| S 1,

that is, that
) 1
lak - ewbkl § E
for any 8 € R. We easily know that

|ak| + [be| =

> =



The sharpness is assured for the function

N———

f(z) =2+ 625 + 628 € S, (|§1|+|§2|:.’1;

Remark 4 The above function
— 1
fo=crar a8 (lal+lel =)

is harmonic starlike univalent in U because it satisfies the condition

o]

S el + Jbal) S 1.

n=2

This result is guaranteed by Avci and Zlotkiewicz [1] and Silverman [7]

2 Elementary transformations

The class Sy is preserved under some elementary transformations. Here is a partial
list.

(i) Conjugation If f(2) = h(z) + g(2) € Sy, then the function

F(z)=TE =F@) + 9() € Sn.

(ii) Dilatation and rotation If f(z) = h(z) + g(z) € Sn, then the function

)
F(2) = alf(az) = a *h(az) + a~lg(az) € Sy

for any complex number a (0 < |a| = 1).

(iii) Disk automorphism If f(2) = h(z) + g(2) € Sy, then the function

! (fj_’;z ) £k (fff) ~hE) o (f:é) ~9(6)

I—EPRE - EPRO ) a-lPre

F(z) =

for any £ € U.

(iv) Affine transformation If f(z) = h(z)+ g(z) € Sy, then the function
F(z) =¢.0 f(z) € Su
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for an affine mapping
e(2) = (1 —¢eby)z +€Z
where € satisfies

by
T— (6,2

1

+ < .
¢ 1— |bo?

The proofs of (i) —(iv) are fairly straight forward, and hence we omit the details involved.

We now note that even if fi(2) and f2(z) are univalent in U, the convex combination
of fi(2) and f3(2) is not necessarily univalent in U. For example, although
2z — 22 22 2z — 122 —i2?
= d = - 1 ) =
=27 T2 M LG)=-ih02) =g s t sa Ty

f1(2)

are in the class Sy (for details, see [4]), the convex combination f3(z) of these functions
defined as

fas(z)=thi(z) + (1-t)f2(z) (0St=1)

is not a member of Sy.

The present investigation is motivated by the above. It is important and interesting
to discuss the condition for f3(z) to belong to Sy.

3 Preliminary Results

For some 6 (—g <6< %), a domain D C C is said to be convex in the direction of

e' if, for each a € C, the intersection
DN {a+te?:t eR}

is either connected or empty. In particular, if § = 0 then D is said to be convex in the
direction of the real axis or convex in the horizontal direction (CHD). Clunie and Sheil-
Small [2] have shown the next results concerned with CHD.

Lemma 1 LetD C C be CHD, and let p(w) be a real-valued continuous function on D.
Then, the mapping

w — w + p(w)

s univalent in D if and only if it is locally univalent in D. If it is univalent, then its range
is CHD.



Theorem C Let f(z) = h(z)+g(z) be harmonic and locally univalent in U. Then, f(z)
is univalent and its range is CHD if and only if the analytic function

has the same properties.
This theorem leads us the following shearing technique.

Lemma 2 Let ¢(z) be analytic and univalent in U such that its range ¢(U) ts CHD and
let w(z) be an analytic function in U which satisfies |lw(z)| < 1 (z € U). Then, by solving
the simultaneous differential equations

hW(z) - g'(2) = ¥'(2)
w(z)h'(z) — g'(2) =0,

we can find a function

f(z) = h(z) +g(2) € Sy
whose range f(U) is CHD.

1 (1+2z+z2

For example, let ¢(z) = -3—log 1 e ) and w(z) = z. Then, since
—z+2z

. 1422+ 22
s(z) = 1— 2+ 22

is univalent in U and it maps U onto the domain
C\{t:t<0 or t =4},
1

we see that ¥(z) = 3 log(s(z)) is univalent and it maps U onto the domain

T T 2

Y(U) = {w D —= < Im(w) < —}\ t:t2-log2

3 3 3

which is CHD. Thus, solving the simultaneous differential equations
1-=2

h(z) = g'(2) = =¢/(2)

T 1428

we obtain that
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It follows from Theorem C that

14 22 2 5
f(z) =2:F (5,1;53—23') + 72F1 (5,155;-Z3> € Sy

where 3 F1 (a, b; c; z) represent the Gaussian hypergeometric function and f(U) is a triangle,
or CHD (see, for example, [5]) as follows:

The aim of this article is to find a sufficient condition on fi(2) = hi(2) + g1(2) € Sn
and f5(z) = hy(z) + g2(2) € Sy for the convex combination

fa(z) = thi(2) + (1= 1) fa(2) = hs(2) + g3(2) (0=t =1)

to be also a member of Sy and its range f3(U) is CHD.

4 Main Result

Our result is contained in

Theorem 2 Let f;(z) = hj(z) + g;(2) € Sy and its range f;(U) be CHD (j = 1,2). If
Re (h(2)5(2) - 6i(2)3(2)) >0 (2 € 1)
and there exists an analytic function ¥(z) such that

¥(z) = hj(z) — g;(z) (1 =1,2),
then f3(z) = tfi(2) + (1 — t) fo(z) € Sy and its range f3(U) is CHD.



Proof.  We verify the locally univalency of f3(z). It follows from
hs(2) = thi(2) + (1 — t)ha(2) and  g3(2) = tq1(2) + (1 — t)ga(2)

that

/

95(2)
h(z)

By the assumption of the theorem, we know that, for all z € U,

_ ’ tg}(2) + (1 — t)g(2)
(=) + (1 - Oyz) |

|th1 (2) + (1 = )5 (2)|* — [tgi (2) + (1 — t)gy(2)I?

= 2Ry () + (1 — ) (R4 (IR5(2) + B ()ha(2)) + (1 — &) (=)

216 () = (1 = 1) (9h(2)9h(2) ~ i (2)9h(2) ) + (1 = )2 lga(2) P

= 1* (|hy(2)[* = 191 (2)[*) + (1 = ) (|h () — |g5(2))
+2¢(1 — t)Re (hg (2)h5(2) — g;(z)m) > 0.

This implies that |h3(2)| > |g4(2), that is, that f3(2) is locally univalent and sense-
preserving in U. By Theorem C, w = ¢(2) = h;(z) — g;(2) is univalent in U and its range
¥ (U) is CHD because f;(z) € Sy and f;(U) is CHD. Then,

1i(2) = hi(2) = 9i(2) + (03(2) + 9;2) ) = ¥(2) + 2Re (g5(2))

and the composition f; o ™! (w) can be written as

i (w—l(w)) =9 (@Z)_I(IU)) + 2Re {gj (’g[)_l(w))} = w + pj(w) (G=1,2)

for some real-valued continuous function p;(w) in ¥ (U). We derive that

@MW) = th@ (W) +Q-t)f (¥ (w)
= tHw+ pu(w)) + (1~ 0w + po(w)
= wt (tp(w) + (1 - Opa(w)

= w+p3(w)
is locally univalent in ¢ (U), and hence it is univalent in ¥(U) and its range is CHD by
Lemma 1. The proof is completed. O

Setting 1(z) = h;j(z) — g;(2) = z (j = 1,2) in Theorem 2, we obtain the following
examples.
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Example 1 Let

Ale) = (o) + B = 2+ 1574 27

and

fa(2) = ha(2) + gz( y=2+ éz + 615—3

Then fi(z), fo(2) € Sn, ¥(2) = hj(z) — gi(2) = 2. Furthermore, we know that fi(U),
f2(U) and ¥(U) = U are CHD. Forallz-x+zyEU (2 +y? < 1),

Re (h’l(z)m - g;(z)'g;—(éi) = Re { (1 + %z) (1 + %‘52) - %z : -;-32}

1 1,
= Re(1+2z+-2—z>

1 1
= 1+—ac+§(x2-—y2)

2
1 1
= -2-(1+.Z') §(l+x —y)
1 1 2 2 2 2
> 5(1+x)+—2—((:c +y)+z —y)
A
L1 2+7
= T+ - —
4 16
2 1——04375>0
=16 '

Therefore,
fa(z) = thi(z) + (1 -1)f2(z)

4 6 4 6
is also in the class Sy and its range f3(U) is CHD.

1
We actually check images of f1(z), f2(2) and f3(z) with t = 3
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g;(2)

Example 2 Let ¢(z) = hj(z) — 9;(2) = z and h;(z)

=27 (j = 1,2). Then solving the

following simultaneous differential equations
hi(z) — gi(z) =1 ha(z) — gh(z) = 1
and
zhi(z) — gi(z) =0 22hy(2) — g3(2) = 0,

we obtain

fi(z) = —log(1 — 2) + (—z — log(1 — 2)) € Sy

1 142 1 I1+2
fg(z)——ilog(l_z) + (—z+§10g<1_z)) € Su.

Moreover, we see that their ranges f1(U) and fo(U) are CHD. In view of |2|2 < 1 and
Re( ! ) >-1—>0, we know that
1+2

and

2

l—z 1—22 1—2 1—22
2 T
142z
_ 1 2Re 1 2%
1—2 l1+2 1+2z

-
e 2R6(|z|2<1—z>>

1+ 2

Re (1 (550 — 6 (FD) = Re( R s >

1
1-2

Re ((1 ~|2?2)

2
z 1—2
= >
Re(1+z> 20 (z € U).

Therefore, for anyt (0 <t < 1),

f3(z) = th(z)+ 1 -t)f(2)

1-1¢ 1+2 1-t¢ 1+2
= —tzlog(l—2)+ 5 log<1_2)+(—z—tlog(1—z)+ 3 log<1_z>>

is also a member of Sy and its range f3(U) is CHD.

Indeed, the images of f1(z), f2(2) and f3(2) with ¢ = 2 are below.
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