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1 Introduction

In this paper we consider the following logistic diffusion equation with spatially inhomo-
geneous coefficients and continuously delay term:

(P) $\{\begin{array}{ll}u_{t}=div\{d(x)\nabla u\}+u\{a(x)-b(x)u-c(x)k*u(t)\} in \Omega\cross(0, \infty) ,Bu=0 on \partial\Omega\cross(0, \infty) ,u 0)=u_{0} in \Omega,\end{array}$

where $\Omega$ is a bounded domain in $\mathbb{R}^{N}$ with sufficiently smooth boundary $\partial\Omega,$

$a,$
$b$ and $c$ are

functions of class $L^{\infty}(\Omega)$ with $b\geq 0$ and $c\geq 0$ in $\Omega$ and

$k*u(t) := \int_{0}^{t}k(t-s)u(s)ds.$

A diffusion coefficient $d$ is a positive function of class $C^{1+\alpha}(\overline{\Omega})$ with $\alpha\in(0,1)$ . Boundary
operator $B$ represents the following boundary condition

$Bu=u$ or $Bu=\partial u/\partial n+\beta(x)u,$

where $\partial/\partial n$ denotes the exterior normal derivative to $\partial\Omega$ and $\beta$ is a nonnegative function
of class $C^{1+\alpha}(\partial\Omega)$ . Moreover, $k$ is assumed to be a nonnegative function of class $C^{1}(0, \infty)\cap$

$L^{1}(0, \infty)$ satisfying

$\int_{0}^{\infty}k(t)dt=1$ . (1.1)

Our problem (P) appears in ecology and $u$ denotes the population density of a biological
species. Throughout this paper, we always assume

$(A_{i}1)u_{0}$ is a nonnegative (not identically zero) function of class $L^{\infty}(\Omega)$ ,

(A.2) $\inf_{\lambda\in 11}\{b(x)+c(x)\}>0.$

If $c\equiv 0$ , then (P) is an initial boundary value problem for a spatially inhomogeneous

logistic diffusion equation. In this case, the dynamics of solutions of (P) is well known
(see Cantrell-Cosner [3, 4, 5 However, it is more realistic to take account of the past
information in the study of population biology. The term $k*u(t)$ is sometimes called a
hereditary term and describes effects from the past to the present. Naturally, the following
two functions $k$ are typical delay kernels in mathematical biology:

(K.1) $k(t)^{-}=(1/T)e^{-t/T},$

(K.2) $k(t)=(t/T^{2})e^{-t/T}.$
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Here, (K.1) and (K.2) are called a weak delay kernel and a strong delay kernel, re\’{s}pectively.

For instance, they appear in the bacteria model (for details, see Iida [8]).
Our main purpose is to study

(P.1) Existence and uniqueness of global solutions of (P),

(P.2) Asymptotic behavior of solutions as $tarrow\infty,$

(P.3) Existence, uniqueness and stability of positive stationary solutions.

When $a,$ $b,$ $c$ and $d$ are constants, $(P.1)-(P.3)$ are studied by many authors and lots of
results are obtained (see e.g. [8, 10, 14, 17, 18] with homogeneous Neumann boundary
condition and [15, 20] with homogeneous Dirichlet boundary condition). In addition,

some systems of Volterra diffusion equations have also been studied in [1, 19]. However,

there are few results for (P) under inhomogeneous environment. So our main purpose
is to study Volterra diffusion equations with spatial inhomogeneity. We have to develop

some devices and tools to discuss the spatial inhomogeneity. Details for our arguments
will be found in the paper of Yoshida-Yamada [21].

The plan of this paper is as follows. In Section 2, we will introduce our results. They

are concerned with $(P.1)-(P.3)$ and main results are Theorems 2.4, 2.5 and 2.7. Consider
the following eigenvalue problem:

(EP) $\{\begin{array}{ll}-div\{d(x)\nabla\psi\}-a(x)\psi=\lambda\psi in \Omega,B\psi=0 on\partial\Omega.\end{array}$

Let $\lambda_{1}\equiv\lambda_{1}(a, d)$ denote the principal eigenvalue of (EP). For the proof of some theorems,

the sign of $\lambda_{1}$ is important. So in Section 3, we will discuss some sufficient conditions for
$\lambda_{1}<0$ . In Sections 4, 5 and 6, we will prove Theorems 2.4, 2.5 and 2.7, respectively.

Notation

For $p\in[1, \infty],$ $L^{p}(\Omega)$ denotes the Banach space of measurable functions $u$ in $\Omega$ with norm

$\Vert u\Vert_{p,\ddagger 1}$ $:= \{\int_{tl}|u(x)|^{p}dx\}^{1/p}<\infty$ if $p\in[1, \infty)$ ,

$\Vert u\Vert_{\infty,t)}:=ess\sup_{x\in 1\}}|u(x)|<\infty$ if $p=\infty.$

If there is no confusion, then we will omit the subscript $\Omega$ . For each $p\in[1, \infty$ ) and
integer $k\in[1, \infty$ ), $W^{k,p}(\Omega)$ denotes the usual Sobolev space of measurable functions $u$ in
$\Omega$ such that $u$ and its distributional derivatives up to order $k$ belong to $L^{p}(\Omega)$ . Its norm
is defined by

$\Vert u\Vert_{k,p,t1}=(\sum_{|\alpha|\leq k}\Vert D^{\alpha}u\Vert_{p}^{p})^{1/p}$

where a denotes a multi-index for derivatives. If there is no confusion, then we will also
omit the subscript $\Omega$ . We sometimes write $H^{k}(\Omega)$ instead of $W^{k,2}(\Omega)$ . Moreover, $W_{0}^{k,p}(\Omega)$

denotes the closure of $C_{0}^{\infty}(\Omega)$ in $W^{k,p}(\Omega)$ , where $C_{0}^{\infty}(\Omega)$ denotes the space of infinitely
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differentiable functions in $\Omega$ with compact support in $\Omega$ . In the same way as $H^{k}(\Omega)$ , we
sometimes write $H_{0}^{k}(\Omega)$ instead of $W_{0}^{k,2}(\Omega)$ .

Let $I$ be any subinterval of $[0, \infty$ ) and let $X$ be any Banach space. Denote by $C(I;X)$

the space of $X$-valued strongly continuous functions in $I$ . For any positive integer $j,$

$C^{j}(I;X)$ denotes the space of functions $u$ of class $C(I;X)$ such that $u$ is $j$ -times strongly
continuously differentiable in $I.$

2 Main results

Let $p>1$ be fixed. Define a closed, linear and elliptic operator $A$ with dense domain
$D(A)$ by

$Au=-div\{d(x)\nabla u\}$

and

$D(A)=\{\begin{array}{ll}W_{0}^{1,p}(\Omega)\cap W^{2,p}(\Omega) if Bu=u,\{v\in W^{2,p}(\Omega)|Bu=0 on \partial\Omega\} if Bu=\partial u/\partial n+\beta(x)u.\end{array}$

For each $\mu\in[0$ , 1$]$ , we introduce the fractional power spaces $D(A^{\mu})$ equipped with the
graph norm of $A^{\mu}$ in the standard manner. If $p> \max\{1, N/2\}$ , then

$D(A^{\mu})\subset C^{\nu}(\overline{\Omega})$ with $\nu\in[0, 2\mu-(N/p)$ ). (2.1)

For the proof of (2.1), see Henry [6] or Pazy [9]. It is well known that $-A$ generates
an analytic semigroup $\{e^{-tA}\}_{t\geq 0}$ in $L^{p}(\Omega)$ . Then we can establish the global exi’stence
theorem.

Theorem 2.1. Let $p> \max\{1, N/2\}$ . Then (P) has a unique solution $u$ in the class

$u\in C([O, \infty);L^{p}(\Omega))\cap C^{1}((0, \infty);L^{p}(\Omega))\cap C((0, \infty);D(A))$ ;

which satisfies

$u>0$ in $\Omega\cross(0, \infty)$ and $\partial u/\partial n<0$ on $\partial\Omega\cross(0, \infty)$

if $Bu=u$ , and
$u>0$ in $\overline{\Omega}\cross(0, \infty)$

if $Bu=\partial u/\partial n+\beta(x)u$ . Moreover, if $\inf_{x\in\Omega}b(x)>0$ , then

$u\leq m$ $in$ $\Omega\cross(0, \infty)$ , (2.2)

where $m= \max\{\Vert u_{0}\Vert_{\infty}, \sup_{x\in Jl}\{a(x)/b(x)\}\}.$

This theorem can be proved in the standard manner. For details, see for instance [7]
and [18].

By a stationary solution of (P) we mean any solution of

(SP) $\{\begin{array}{ll}div\{d(x)\nabla\varphi\}+\varphi[a(x)-\{b(x)+c(x)\}\varphi]=0 in \Omega,B\varphi=0 on \partial\Omega,\end{array}$

(note (1.1)). We will look for positive solutions of (SP).
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Recall (EP). Then $\lambda_{1}$ is given by the following variational characterization (see [5,
Chapter 2

$\lambda_{1}=\inf_{\psi\in H^{1}(tl) ,\Vert\psi||_{2}=1}\{\int_{tl}d(x)|\nabla\psi|^{2}dx+\int_{\partial t1}d(x)\beta(x)\psi^{2}d\sigma-\int_{ll}a(x)\psi^{2}dx\}$

if $B\psi=\partial\psi/\partial n+\beta(x)\psi$ , where $\sigma$ denotes a surface element, while

$\lambda_{1}=\inf_{\psi\in H_{0}^{1}(\Omega) ,\Vert\psi||_{2}=1}\{\int_{l}d(x)|\nabla\psi|^{2}dx-\int_{1l}a(x)\psi^{2}dx\}$

if $B\psi=\psi.$

Then we can obtain the existence and uniqueness of a positive solution of (SP).

Theorem 2.2. Problem (SP) has a positive solution $\varphi$ if and only if $\lambda_{1}<0$ , where $\lambda_{1}$ is
the principal eigenvalue of (EP). Moreover, when $\varphi$ exists, it is uniquely determined and
it satisfies

$0<\varphi\leq M$ $in$ $\Omega$ (2.3)

and
$\{\begin{array}{l}\partial\varphi/\partial n<0 on \partial\Omega if B\varphi=\varphi,0<\varphi\leq M on \partial\Omega if B\varphi=\partial\varphi/\partial n+\beta(x)\varphi,\end{array}$

where $M= \sup_{x\in\Omega}\{a(x)/\{b(x)+c(x)\}\}.$

Remark 2.1. Since $\lambda_{1}<0$ requires $\sup_{x\in t\}}a(x)>0,$ $M$ is a positive number.

Theorem 2.2 can be proved as an application of the monotone method (see Sattinger
[13, Theorem 2.1]).

We can show the following result on the asymptotic behavior of solutions for (P) in
the case of $\lambda_{1}\geq 0$ , namely the case of nonexistence of positive stationary solution:

Theorem 2.3. Assume

$\inf_{x\in\Omega}b(x)>0$ and $\lambda_{1}\geq 0$ or $\inf_{x\in\Omega}b(x)=0$ and $\lambda_{1}>0$ . (2.4)

Then every solution $u$ of (P) satisfies
$\lim_{tarrow\infty}u(t)=0$ uniformly in 9.

Proof. Since $c$ and $k$ are nonnegative, the positivity of $u$ implies

$u_{t}\leq div\{d(x)\nabla u\}+u\{a(x)-b(x)u\}.$

Consider the following problem:

$\{\begin{array}{ll}v_{t}=div\{d(x)\nabla v\}+v\{a(x)-b(x)v\} in \Omega\cross(0, \infty) ,Bv=0 on\partial\Omega\cross(0, \infty) ,v 0)=\Vert u_{0}\Vert_{\infty} in \Omega.\end{array}$

Owing to (2.4), the theory of dynamical systems shows

$\lim_{tarrow\infty}v(t)=0$ uniformly in 9.

Since the comparison theorem (see e.g. Smoller [16]) shows $u\leq v$ , the conclusion easily

follows. $\square$
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In what follows, we will discuss the case $\lambda_{1}<0$ , which assesses that there exists a
unique positive stationary solution $\varphi$ of (SP). First, we will consider the case $\inf_{x\in\Omega}b(x)>$

O. Denote by $\hat{k}$ the Laplace transform of $k$ :

$\hat{k}(\lambda)=\int_{0}^{\infty}e^{-\lambda t}k(t)dt.$

Then we can prove the global attractivity of $\varphi$ of (SP).

Theorem 2.4. Assume $\inf_{x\in t)}b(x)>0,$ $\lambda_{1}<0$ and $tk\in L^{1}(0, \infty)$ . Furthermore, assume
that there exists a positive constant $k_{0}$ such that

$b(x)+{\rm Re}\hat{k}(i\eta)c(x)\geq k_{0}$ for $x\in\Omega$ and $\eta\in \mathbb{R}$ . (2.5)

Then every solution $u$ of (P) satisfies

$\lim_{tarrow\infty}u(t)=\varphi$ uniformly in $\overline{\Omega}$ . (2.6)

Recall special kernels (K.1) and (K.2). Then both kernels satisfy $tk\in L^{1}(0, \infty)$ .

Moreover, for (K. 1),

$\inf_{\eta\in \mathbb{R}}{\rm Re}\hat{k}(i\eta)=\inf_{\eta\in \mathbb{R}}{\rm Re}(\frac{1}{1+i\eta T})$

(2.7)

$=0,$

and for (K.2),

$\inf_{\eta\in \mathbb{R}}{\rm Re}\hat{k}(i\eta)=\inf_{\eta\in \mathbb{R}}{\rm Re}(\frac{1}{1+i\eta T})^{2}$

(2.8)
$=-\underline{1}$

8

From (2.7) and (2.8), $\varphi$ is always globally attractive for (K.1), while for (K.2), it is globally

attractive if

$\inf_{x\in tl}\{b(x)-\frac{c(x)}{8}\}>0$ . (2.9)

When we consider (P) with spatially homogeneous coefficients and homogeneous Neumann

boundary condition, it follows from [18] that, if $k$ is given by (K.2), then $\varphi$ loses its stability

and that the Hopf bifurcation occurs. However, there is no result on the Hopf bifurcation

in other cases.
We can also consider (P) for the case $\inf_{x\in Jl}b(x)=0$ . One of the difficulties of this

case is to derive a priori estimate of $u.$

Theorem 2.5. Let $\inf_{x\in tl}b(x)=0,$ $\lambda_{1}<0$ and $tk\in L^{1}(0, \infty)$ . Assume ${\rm Re}\hat{k}(i\eta)\geq 0$ for
$\eta\in \mathbb{R}$ . Then every solution $u$ of (P) satisfies

$\sup_{t\in[0,\infty)}\Vert u(t)\Vert_{\infty}<\infty.$
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Repeating the proof of Theorem 2.4, we can also obtain the following result:

Theorem 2.6. In addition to the assumptions of Theorem 2.5, assume (2.5). Then every
solution $u$ of (P) satisfies

$\lim_{tarrow\infty}u(t)=\varphi$ uniformly in $\overline{\Omega}.$

Recall that if $k$ is defined by (K.1) (resp. (K.2)), it satisfies (2.7) (resp. $(2.8)_{t}$). Then
both of (K.1) and (K.2) cannot satisfy (2.5). This implies that Theorem 2.6 is inconvenient
from the viewpoint of the application. By putting additional assumptions, we can improve
Theorem 2.6 as follows.

Theorem 2.7. In addition to the assumptions of Theorem 2.5, assume $k(O)\neq 0$ and
$k$ $dk/dt)\in L^{1}(0, \infty)$ . Furthermore, assume that there exist positive constants $c_{0}$ and
$k_{1}$ such that $c(x)\geq c_{0}$ for $x\in\Omega$ and

${\rm Re}\{\hat{k}(i\eta)\}^{-1}\geq k_{1}$ for $\eta\in \mathbb{R}$ . (2.10)

Then every solution $u$ of (P) satisfies
$\lim_{tarrow\infty}e\}(t)=\varphi$ uniformly in $\overline{\Omega}.$

3 Sufficient conditions for $\lambda_{1}<0$

In this section, we will search some suffcient conditions for $\lambda_{1}<0$ . Set

$\Omega_{0}=\{x\in\Omega|a(x)>0\}$ , (3.1)

and always assume $\Omega_{0}\neq\emptyset$ in this section. Consider the following eigenvalue problem:

$\{\begin{array}{l}-div\{d(x)\nabla\rho\}=\mu a(x)p in \Omega,(3.2)B\rho=0 on \partial\Omega.\end{array}$

Let $\mu_{1}^{+}\equiv\mu_{1}^{+}(a, d)$ denote the positive principal eigenvalue of (3.2). It is given by the
following variational characterization (see e.g. [5]):

$\frac{1}{\mu_{1}^{+}}=\rho\in H^{1}(tl)\sup_{\rho\neq 0}\frac{\int_{Jl}a(x)\rho^{2}dx}{\int_{tl}d(x)|\nabla p|^{2}dx+\int_{\partial t)}d(x)\beta(x)p^{2}d\sigma}$

if $B\psi=\partial\psi/\partial n+\beta(x)\psi$ , while

$\frac{1}{\mu_{1}^{+}}=\rho\in H_{0}^{1}(\Omega)\sup_{\rho\neq 0}\frac{\int_{\Omega}a(x)\rho^{2}dx}{\int_{tl}d(x)|\nabla\rho|^{2}dx}$ (3.3)

if $B\psi=\psi$ . Note that if $Bp=\partial p/\partial n$ , then $\mu_{1}^{+}$ exists if and only if

$\int_{l}a(x)dx<0$ . (3.4)

For the proof of (3.4), see, e.g., [5]. The relation between $\lambda_{1}$ and $\mu_{1}^{+}$ is given by the
following proposition (see [5, Theorem 2.6]):
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Proposition 3.1. Let $\lambda_{1}$ be the principal eigenvalue of (EP) and let $\mu_{1}^{+}$ be the positive

principal eigenvalue of (3.2).

(i) If $B\psi=\psi$ or $B\psi=\partial\psi/\partial n+\beta(x)\psi(\beta\not\equiv 0)$ , then $\lambda_{1}<.0$ if and only if $\mu_{1}^{+}<1.$

(ii) If $B\psi=\partial\psi/\partial n$ with (3.4), then $\lambda_{1}<0$ if and only if $\mu_{1}^{+}<1$ . If $B\psi=\partial\psi/\partial n$ with

$\int_{\Omega}a(x)dx>0$ , (3.5)

then $\lambda_{1}<0.$

Then the following result is obtained:

Proposition 3.2. Define $\Omega_{0}$ by (3.1). Let $B\psi=\psi$ or $B\psi=\partial\psi/\partial n$ with (3.4) or
$B\psi=\partial\psi/\partial n+\beta(x)\psi(\beta\not\equiv 0)$ . Then there exists a positive constant $d^{*}$ such that $\lambda_{1}<0$

for any $d$. satisfying $\Vert d\Vert_{\infty,1l_{0}}<d^{*}$

Proof. We will only discuss the case $B\psi=\psi$ . The other cases can be handled similarly.

Take any connected set $\Omega_{0}^{*}\subset\Omega_{0}$ . Take any function $\rho\in H_{0}^{1}(\Omega_{0}^{*})$ and let $\tilde{\rho}:\Omega_{0}^{*}arrow \mathbb{R}$ be

the natural extension of $\rho$ . Observing (3.3), we can estimate

$\frac{1}{\mu_{1}^{+}}\geq\sup_{\rho\neq 0}\frac{\int_{ll}a(x)\tilde{p}^{2}dx}{\int_{\zeta)}d(x)|\nabla\tilde{\rho}|^{2}dx}\rho\in H_{O}^{1}(l_{O}^{*})$

$\int_{\zeta)_{0}^{*}}a(x)\rho^{2}dx$

$\geq\Vert d\Vert_{\infty,\Omega_{0_{\rho\in H_{0}^{1}(t)_{0}^{*})}}^{*\sup_{\rho\neq 0}}}^{-1}\int_{tl_{0}^{*}}|\nabla\rho|^{2}dx$

Choose $d^{*}$ as

$d^{*}= \rho\in H_{O}^{1}(Jl_{0}^{*})\sup_{\rho\neq 0}\frac{\int_{\Omega_{0}^{*}}a(x)\rho^{2}dx}{\int_{(t_{0}^{*}}|\nabla\rho|^{2}dx}.$

Then $\mu_{1}^{+}<1$ for any $d$ satisfying $\Vert d\Vert_{\infty,\Omega_{0}^{*}}<d^{*}$ . Therefore, Proposition 3.1 yields the

conclusion.
$\square$

Propositions 3.1 and 3.2 imply that a positive stationary solution exists if a diffusion

coefficients in a favorable habitat $\Omega_{0}$ is sufficiently small or (3.5) is achieved with homo-

geneous Neumann boundary condition. In ecology, this fact asserts that there is a chance
for a species to survive if the species stays in a favorable habitat $\Omega_{0}.$
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4 Proof of Theorem 2.4

For the proof of Theorem 2.4, we will follow the argument used by Yamada [20]. Let $\varphi$

be a positive solution of (SP). We introduce the following nonnegative functional:

$E(u)= \int_{\zeta)}\varphi^{2}(x)g(u(x)/\varphi(x))dx$

(4.1)
$= \int_{\zeta\}}\varphi(x)\{u(x)-\varphi(x)-\varphi(x)\log\frac{u(x)}{\varphi(x)}\}dx,$

where

$g(u)=u-1-\log u$ . (4.2)

This functional has also been used in [1].

Lemma 4.1 (cf. [20, Lemma 3.1]). Define $E(u)$ by (4.1). Then any solution $u$ of (P)
satisfies

$\frac{d}{dt}E(u(t))=-\int_{Il}d(x)\varphi^{2}|\nabla\{\log\frac{u(t)}{\varphi}\}|^{2}dx-\int_{\zeta\}}b(x)\varphi\{u(t)-\varphi\}^{2}dx$

$- \int_{t1}c(x)\varphi\{u(t)-\varphi\}k*(u-\varphi)(t)dx$ (4.3)

$+ \int_{t}^{\infty}k(s)ds\int_{l}c(x)\varphi^{2}\{u(t)-\varphi\}dx.$

Proof. We will only prove the case $Bu=u$ . The other cases can be proved similarly.
Differentiation of (4.1) with respect to $t$ yields

$\frac{d}{dt}E(u(t))=\int_{tl}\{1-\frac{\varphi}{u(t)}\}u_{t}(t)\varphi dx$

$= \int_{tl}\varphi\{1-\frac{\varphi}{u(t)}\}$ div{d(x)Vu(t)}dx

$+ \int_{Jl}\varphi\{u(t)-\varphi\}\{a(x)-b(x)u(t)-c(x)k*u(t)\}dx.$

In view of (1.1),

$a(x)-b(x)u-c(x)k*u(t)=a(x)-\{b(x)+c(x)\}\varphi-b(x)(u-\varphi)$

$-c(x)k*(u-\varphi)(t)+c(x)\varphi l^{\infty}k(s)ds.$

Since $\varphi$ is a solution of (SP), it follows that

$\frac{d}{dt}E(u(t))=\int_{\Omega}\varphi\{1-\frac{\varphi}{u(t)}\}div\{d(x)\nabla u(t)\}dx-\int_{\Omega}\{u(t)-\varphi\}div\{d(x)\nabla\varphi\}dx$

$- \int_{Il}b(x)\varphi\{u(t)-\varphi\}^{2}dx-\int_{1}c(x)\varphi\{u(t)-\varphi\}k*(u-\varphi)(t)dx$

$+ \int_{t}^{\infty}k(s)ds\int_{\zeta)}c(x)\varphi^{2}\{u(t)-\varphi\}dx.$
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Moreover, we also obtain from the integration by parts

$\int_{\zeta\}}\varphi\{1-\frac{\varphi}{u(t)}\}div\{d(x)\nabla u(t)\}dx-\int_{\zeta\}}\{u(t)-\varphi\}div\{d(x)\nabla\varphi\}dx$

$=- \int_{\zeta)}d(x)\{|\nabla\varphi|^{2}-\frac{2\varphi}{u(t)}\nabla\varphi\cdot\nabla u(t)-\frac{\varphi^{2}}{u^{2}(t)}|\nabla u(t)|^{2}\}dx$

$=- \int_{t1}d(x)\varphi^{2}|\nabla\{\log\frac{u(t)}{\varphi}\}|^{2}dx.$

Therefore, (4.3) follows. $\square$

Then we are ready to follow the argument in [20]. We will also prepare some regularity
results.

Lemma 4.2. Let $u$ be a bounded solution of (P) and let $\delta$ be any positive number. Then
there exist positive constants $K_{1},$ $K_{2}$ and $K_{3}$ , independent of $t$ , such that for $p>1,$
$t\in[\delta, \infty)$ and $\mu\in[0$ , 1),

$\Vert A^{\mu}u(t)\Vert_{p}\leq K_{1},$

and for $h>0,$

$\Vert A^{\mu}\{u(t+h)-u(t)\}\Vert_{p}\leq K_{2}h^{\theta}+K_{3}h^{1-\mu}$ (4.4)

with $\theta\in(0,1-\mu)$ .

For the proof of Lemma 4.2, see [18, Theorem 3.1] and Rothe [12, Lemma 21].

Proof of Theorem 2.4. We may assume $u_{0}>0$ . Indeed, we can retake $u_{0}=u(T)>0$ for
$T>0$ and prove this theorem with slight modification. Integrating (4.3) over [O,T] with
arbitrary number $T>0$ , we have

$E(u(T))+ \int_{0}^{T}\int_{t1}d(x)\varphi^{2}|\nabla\{\log\frac{u(t)}{\varphi}\}|^{2}dxdt+\int_{0}^{T}\int_{\zeta)}b(x)\varphi\{u(t)-\varphi\}^{2}dxdt$

$+ \int_{0}^{T}\int_{1}c(x)\varphi\{u(t)-\varphi\}k*(u-\varphi)(t)dxdt$ (4.5)

$=E(u_{0})+ \int_{0}^{T}\int_{t}^{\infty}k(s)ds\int_{l}c(x)\varphi^{2}\{u(t)-\varphi\}dxdt.$

By virtue of (2.2) and (2.3), the second term in the right hand side of (4.5) is estimated
as

$\int_{0}^{T}\int_{t}^{\infty}k(s)ds\int_{tl}c(x)\varphi^{2}\{u(t)-\varphi\}dxdt\leq\Vert c\Vert_{\infty}M^{2}(m+M)|\Omega|\int_{0}^{\infty}sk(\mathcal{S})ds.$

Since $tk\in L^{1}(0, \infty)$ , it follows from (4.5) and the above inequality that

$\int_{0}^{T}\int_{1l}b(x)\varphi\{u(t)-\varphi\}^{2}dxdt+\int_{0}^{T}\int_{\zeta)}c(x)\varphi\{u(t)-\varphi\}k*(u-\varphi)(t)dxdt\leq K_{4}$ , (4.6)
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where

$K_{4}=E(u_{0})+ \Vert c\Vert_{\infty}M^{2}(m+M)|\Omega|\int_{0}^{\infty}tk(t)dt.$

For $v$ : $[0, T]arrow \mathbb{R}$ , define $v_{T}$ by

$v_{T}(t)=\{\begin{array}{ll}v(t) if t\in[O, T],0 if t\in(-\infty, \infty)\backslash [0, T],\end{array}$

and for $k:[0, \infty$ ) $arrow \mathbb{R}$ , define $\tilde{k}$ by

$\tilde{k}(t)=\{\begin{array}{ll}k(t) if t\in[0, \infty) ,0 if t\in(-\infty, 0) .\end{array}$

Then we can derive the following relation (cf. [18, Lemma 2.2]):

$\mathcal{F}(\tilde{k}*\prime)\tau)(\eta)=\hat{k}(i\eta)\mathcal{F}v_{T}(\eta)$ , (4.7)

where $\mathcal{F}v$ denotes the Fourier transform of $v$ :

$\mathcal{F}v(\eta)=(2\pi)^{-1/2}\int_{-\infty}^{\infty}e^{-i\eta t}\tau)(t)dt.$

Therefore, making use of (2.5), (4.7), Fubini’s theorem and Parseval-Plancherel’s equality,
we can obtain

$\int_{0}^{T}\int_{\Omega}b(x)\varphi\{u(t)-\varphi\}^{2}dxdt+\int_{0}^{T}\int_{\Omega}c(x)\varphi\{u(t)-\varphi\}k*(u-\varphi)(t)dxdt$

(4.8)
$\geq k_{0}\int_{0}^{T}\int_{\zeta)}|u(t)-\varphi|^{2}\varphi dxdt_{1}$

(for details, see [18] and [20]).
Since $T$ is arbitrary and $K_{4}$ is independent of $T$ , (4.6) and (4.8) yield

$\varphi^{1/2}(u-\varphi)\in L^{1}((0, \infty);L^{2}(\Omega))$ . (4.9)

On the other hand, (4.4) shows that $\varphi^{1/2}(u-\varphi)$ is uniformly continuous in $(0, \infty)$ with
respect to $L^{2}(\Omega)$ norm. The fact, together with (4.9) implies

$\lim_{tarrow\infty}\int_{\Omega}|u(t)-\varphi|^{2}\varphi dx=0$ . (4.10)

Then we can prove (2.6) from (4.10). Its proof is exactly the same as in [20] with $A$

replaced by $A+1.$ $\square$

Remark 4.1. Take $p>N$ and $\mu\in((p+N)/(2p), 1)$ . Then (2.1) implies

$\lim_{tarrow\infty}u(t)=\varphi$ in $C^{1}$ (St).
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5 Proof of Theorem 2.5

We will prove this theorem along the arguments used in the work of Yamada [20, Proposi-

tion 3.3]. We can assume $u_{0}>0$ . Since $\lambda_{1}<0$ , there exists an unique positive stationary

solution $\varphi$ of (SP). Then integrating (4.3) over $[0, T]$ with $T>0$ , we see

$E(u(T)) \leq E(u_{0})+\Vert c\Vert_{\infty}M\int_{0}^{T}\int_{t}^{\infty}k(\mathcal{S})ds\int_{)}\varphi u(t)dxdt$ (5.1)

as in the proof of Theorem 2.4. Since $g$ is a convex function (see (4.2)), it is possible to

apply Jensen’s inequality (see e.g. [2, pp. 120]) to $E(u(T))$ to get

$g( \Vert\varphi\Vert_{2}^{-2}\int_{\zeta)}\varphi u(T)dx)\leq\Vert\varphi\Vert_{2}^{-2}\int_{tl}\varphi^{2}g(\frac{u(T)}{\varphi})dx$

(5.2)
$=\Vert\varphi\Vert_{2}^{-2}E(u(T))$ .

Put $V(t):= \Vert\varphi\Vert_{2}^{-2}\int_{\Omega}\varphi u(t)dx$ . Then we obtain from (5.1) and (5.2)

$\Vert\varphi\Vert_{2}^{2}g(V(T))\leq E(v_{0})+\Vert c\Vert_{\infty}\cdot\Vert\varphi\Vert_{2}^{2}M\int_{0}^{T}\int_{t}^{\infty}k(s)dsV(t)dt$ . (5.3)

By using the idea in [20], it can be shown that for sufficiently large $T_{0},$

$K_{6}:= \Vert c\Vert_{\infty}M\int_{T_{0}}^{\infty}l^{\infty}k(s)dsdt<1.$

Then (5.3) implies that for every $T\geq T_{0},$

$g(V(T)) \leq\Vert\varphi\Vert_{2}^{-2}E(u_{0})+\Vert c\Vert_{\infty}M\int_{0}^{T_{0}}\int_{t}^{\infty}k(s)d_{\mathcal{S}}V(t)dt+K_{6}\sup_{t\geq T_{0}}V(t)$ .

Recall that $g$ is given by (4.2). Since $K_{6}<1$ , it follows from the above inequality that

$\sup_{t\geq T_{0}}V(t)\leq K_{7}$
(5.4)

with some $K_{7}$ . Then it follows from (5.4) that

$\sup_{t\geq 0}\int_{\Omega}\varphi u(t)dx\leq K_{8}$ (5.5)

with some $K_{8}.$

Let $r\in(O, 1/2)$ . Then we can obtain from (5.5) that

$\sup_{t\geq 0}f_{l}u^{r}(t)dx\leq K_{9}$ , (5.6)

where $K_{9}$ is a suitable positive constant, independent of $t$ (for details, see [20]). Therefore,

the result of Rothe [11, Proposition 2] implies the conclusion. $\square$
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6 Proof of Theorem 2.7

We will prove this theorem by the same idea as in [20, Theorem 3.5]. We may assume
$u_{0}>0$ . By $\lambda_{1}<0$ , there exists a unique positive stationary solution $\varphi$ of (SP). Define a
new function $v$ as

$v(x, t)=k*(u-\varphi)(x, t)$ .

Similarly to the proof of Theorem 2.4, integrate (4.3) over $[0, T]$ with an arbitrary $T>0$ ;
then there exists a positive constant $K_{10}$ , independent of $T$ , such that

$E(u(T))+ \int_{0}^{T}\int_{t)}d(x)\varphi^{2}|\nabla\{\log\frac{u(t)}{\varphi}\}|^{2}dxdt$

(6.1)
$+ \int_{0}^{T}\int_{tl}b(x)\varphi\{u(t)-\backslash \prime\rho\}^{2}dxdt+\int_{0}^{T}\int_{tl}c(x)\varphi\{u(t)-\varphi\}v(t)dxdt\leq K_{10}.$

Since $v$ satisfies

$v_{t}(t)=k(0)\{u(t)-\varphi\}+k’*(u-\varphi)(t)$ , (6.2)

it follows that

$\frac{1}{2}\frac{d}{dt}.l_{l}c(x)\varphi v^{2}(t)dx=\int_{l}c(x)\varphi v(t)v_{t}(t)dx$

$= \int_{11}c(x)\varphi v(t)[k(0)\{u(t)-\varphi\}+k’*(u-\varphi)(t)]dx.$

Integrate this identity over $[0, T]$ :

$\frac{1}{2}\int_{0}^{T}\frac{d}{dt}\int_{\zeta\}}c(x)\varphi v^{2}(t)dxdt$

(6.3)
$= \int_{0}^{T}\int_{\zeta\}}c(x)\varphi v(t)[k(O)\{u(t)-\varphi\}+k’*(u-\varphi)(t)]dxdt.$

In view of $v(O)=0,$

$\int_{0}^{T}\frac{d}{dt}\int_{1}c(x)\varphi v^{2}(t)dxdt=f_{l}c(x)\varphi v^{2}(T)dx$

$\geq 0.$

Therefore, we can see from (6.3)

$- \int_{0}^{T}\int_{\Omega}c(x)\varphi v(t)k’*(u-\varphi)(t)dxdt\leq k(0)\int_{0}^{T}\int_{\Omega}c(x)\varphi\{u(t)-\varphi\}v(t)dxdt$

(6.4)
$\leq k(0)K_{10},$

where we have used (6.1).
Note

$\hat{k}’(i\eta)=\int_{0}^{\infty}e^{-i\eta t}k’(t)dt$

$=-k(0)+i\eta\hat{k}(i\eta)$
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and $\mathcal{F}(\prime J_{T)(\eta)}=\hat{k}(i\eta)\mathcal{F}((u-\varphi)_{T})(\eta)$ . Then

$\mathcal{F}(\tilde{k}’*(u-\varphi)_{T})(\eta)=\{-k(0)+i\eta\hat{k}(i\eta)\}\{\hat{k}(i\eta)\}^{-1}\mathcal{F}(\uparrow)\tau)(\eta)$ . (6.5)

By virtue of $(6,5)$ , Fubini’s theorem and Parseval-Plancherel’s equality, similarly in the
proof of Theorem 2.4, we can show

$- \int_{0}^{T}\int_{tl}c(x)\varphi v(t)k’*(u-\varphi)(t)dxdt$

$=- \int_{\zeta f}c(x)\varphi\int_{-\infty}^{\infty}v_{T}(t)\tilde{k}’*(u-\varphi)_{T}(t)dtdx$

$=- \int_{tl}c(x)\varphi\int_{-\infty}^{\infty}{\rm Re} \mathcal{F}(v_{T})(\eta)\mathcal{F}(\tilde{k}’*(u-\varphi)_{T})(\eta)d\eta dx$

$=k(0) \int_{\Omega}c(x)\varphi\int_{-\infty}^{\infty}{\rm Re}\{\hat{k}(i\eta)\}^{-1}|\mathcal{F}(v_{T})(\eta)|^{2}d\eta dx.$

Therefore, (6.4) implies

$c_{0}k_{1} \int_{0}^{T}\int_{)}\varphi v^{2}(t)dxdt\leq K_{10},$

(note (2.10)). Since $T$ is arbitrary and $K_{10}$ is independent of $T$ , this fact implies

$\varphi^{1/2}v\in L^{1}((0, \infty);L^{2}(\Omega))$ . (6.6)

One can prove the uniformly continuity of $v(t)$ with respect to $t$ from (6.2) (see [20]).
Hence, it follows from (6.6) that

$\lim_{tarrow\infty}\varphi^{1/2}v(t)=0$ in $L^{2}(\Omega)$ .

In the same manner as [20] (replace $A$ by $A+1$ ),

$\lim_{tarrow\infty}v(t)=0$ uniformly in 9. (6.7)

The rest of the proof is essentially the same as Yamada [20]. So we omit the details. $\square$
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