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On stability of line solitons for the KP-II equation

Tetsu Mizumachi (Hiroshima University)

1 Introduction

The KP-II equation

(1.1) 3z (Bsu + Bu + 39, (u?)) + 3351; =0 fort>0and (z,y) € R?
is a generalization to two spatial dimensions of the KdV equation

(1.2) Ayu+ OBu +30,(u?) =0,

and has been derived as a model in the study of the transverse stability of solitary wave solutions
to the KAV equation with respect to two dimensional perturbation when the surface tension is
weak or absent (see [14]).

The global well-posedness of (1.1) in H*(R?) (s > 0) on the background of line solitons
has been studied by Molinet, Saut and Tzvetkov [29] whose proof is based on the work of
Bourgain [5]. For the other contributions on the Cauchy problem of the KP-II equation, see e.g.
(10, 11, 12, 13, 34, 35, 36, 37] and the references therein.

Let
= -2 E
@c(z) = ccosh (\/;x), c>0.

Then ¢, is a solution of
(1.3) o — 2cpc + 3p2 =0,

and @.(x — 2ct) is a solitary wave solution of the KdV equation (1.2) and a line soliton solution
of (1.1) as well.

Let us briefly explain known results on stability of 1-solitons for the KdV equation first.
Stability of the 1-soliton .(z — 2ct) of (1.2) was proved by [2, 4, 39] using the fact that ¢ is a
minimizer of the Hamiltonian on the manifold {u € H*(R) | [[ullr2®) = llcllL2®)}-

Solitary waves of the KdV equation travel at speeds faster than the maximum group velocity
of linear waves and the larger solitary wave moves faster to the right. Using this property,
Pego and Weinstein [31] prove asymptotic stability of solitary wave solutions of (1.2) in an
exponentially weighted space. Later, Martel and Merle established the Liouville theorem for the
generalized KdV equations by using a virial type identity and prove the asymptotic stability of
solitary waves in HL (R) (see e.g. [18]). For stability of multi-solitons of the generalized KdV
equations, see [19].

For the KP-II equation, its Hamiltonian is infinitely indefinite and the variational approach
such as [9] is not applicable. Hence it seems natural to study stability of line solitons using strong
linear stability of line solitons as in [31]. Spectral transverse stability of line solitons of (1.1) has



been studied by [1, 6]. Alexander et al. [1] proved that the spectrum of the linearized operator
in L?(R?) consists of the entire imaginary axis. On the other hand, in an exponentially weighted
space where the size of perturbations are biased in the direction of motion, the spectrum of the
linearized operator consists of a curve of resonant continuous eigenvalues which goes through 0
and the set of continuous spectrum which locates in the stable half plane and is away from the
imaginary axis (see [6, 22]). The former one appears because line solitons are not localized in
the transversal direction and 0, which is related to the symmetry of line solitons, cannot be an
isolated eigenvalue of the linearized operator. Such a situation is common with planer traveling
wave solutions for the heat equation. See e.g. [15, 17, 40].

Using the inverse scattering method, Villarroel and Ablowitz [38] studied solutions of around
line solitons for (1.1). Recently, Mizumachi [22] has proved transversal stability of line soliton
solutions of (1.1) for exponentially localized perturbations. The idea is to use the exponential
decay property of the linearized equation satisfying a secular term condition and describe vari-
ations of local amplitudes and local inclinations of the crest of modulating line solitons by a
system of Burgers equations.

Now let us introduce our results.

Theorem 1.1. Let cg > 0 and u(t,z,y) be a solution of (1.1) satisfying u(0,z,y) = e, (x) +
vo(z,y). There ezist positive constants g9 and C satisfying the following: if vo € HY*(R%) N
8 L*(R?) and |vol| 2(g2) + || Dz | w0l 2 + |||Dz|_1/2|Dy|1/2vo|}L2(]R2) < €0 then there exist C'-
functions c(t,y) and z(t,y) such that for everyt >0 and k > 0,

(1.4) lu(t, z,y) = @eqty) (= — 2(t, ¥) L2m2) < Cllvollzz

(1.5) llet, ) = coll grrqry + 18y 2 (&, )l gy + 1e(t, ) = 2¢(t, )| areery < Cllvoll 2,
o) Jim (I8yelt Moy + 1030 | ey ) =0

and for anyR > 0,

(1-7) tllglo ||u(t, T+ .’L‘(t, y), y) - ‘pc(t,y)(w)|IL2((x>_R)ny) =0.

Theorem 1.2. Let cy > 0 and s > 1. Suppose that u is a solutions of (1.1) satisfying u(0,z,y) =
©co(z) +vo(z,y). Then there exist positive constants eo and C such that if ||(x)*vo| i1 (r2) < €0,
there exist c(t,y) and z(t,y) satisfying (1.6), (1.7) and

(1.8)  Jlult,z,y) — e(ry) (@ — z(t, YD)l 2®e) < Cll{x) vollmrwe) »
(1.9) lle(t, ) — coll r(wy + 119y (s )l e gy + e (t, ) — 2¢(t, )l ey < Clia)*voll a2 (m2)
for everyt >0 and k > 0.

Remark 1.1. By (1.5) and (1.6),

lim sug(IC(t, y) — col + |zy(t,y)]) =0,

t—o0 ye

and as ¢ — 00, the modulating line soliton . ,\(x — z(t,y)) converges to a y-independent
modulating line soliton @, (z — z(t,0)) in L2(R; X (Jy| < R)) for any R > 0. Hence it follows
from (1.7) that

Jim {lu(t, z +2(2,0),) ~ ¢eo (@)l 22> R)x (1< R) = 0-



We remark that the phase shift z(¢,y) in (1.4) and (1.7) cannot be uniform in y because of the
variation of the local phase shift around y = +2v/2cot + O(v/t). See Theorems 1.4 and 1.5 in
22].

Remark 1.2. The KP-II equation has no localized solitary waves (see [7, 8]). On the other hand,
the KP-I equation has stable ground states (see [8, 16]) and line solitons of the KP-I equation
are unstable (see [32, 33, 41]).

Now let us explain our strategy of the proof. To prove stability of line solitons in [22], we
rely on the fact that solutions of the linearized equation decay exponentially in exponentially
weighted norm as ¢ — oo if data are orthogonal to the adjoint resonant continuous eigenmodes.
To describe the behavior of solutions around a line soliton, we represent them by using an ansatz

(110) ’U,(t, z, y) = Qpc(t,y)(z) - 1/)c(t,y) (Z + 3t) + 'U(t, 2, y) y =T — "E(t7 y) ’

where ¢(t,y) and x(t, y) are the local amplitude and the local phase shift of the modulating line
soliton ¢ ) (z — x(t,y)) at time ¢ along the line parallel to the z-axis and 4, is an auxiliary
function so that

/ v(t, 2,y)dz = / v(0,2,y)dz for any y € R.
R R

One of the key step is to prove |[v(¢)]| 12 is square integrable in time. In [22], we impose
a non secular condition on v(¢) such that the perturbation v(¢) is orthogonal to the adjoint
resonant eigenfunctions in order to apply the strong linear stability property of line solitons (see
Proposition 2.1 in Section 2)to v. Since the adjoint resonant eigenfunctions grow exponentially
as £ — 00, the secular term condition is not feasible for v(¢) which is not exponentially localized
as * — oo. Following the idea of [21, 24, 25], we split the perturbation v(¢) into a sum of
a small solution v;(¢) of (1.1) satisfying v1(0) = vy and the remainder part va(t). As is the
same with other long wave models in [21, 24], the solitary wave part moves faster than the
freely propagating freely propagating perturbations and the localized L2-norms of v; are square
integrable in time thanks to the virial identity (see [7]).

The remainder part vo(t) is exponentially localized as * — oo and is mainly driven by the
interaction between v; and the line soliton. We impose the secular term condition on v to apply
the linear stability estimate. To estimate ||e**vy(t)||;2 with small & > 0, we use the semigroup
estimate introduced in Section 2 to estimate the low frequencies in y and apply a virial type
estimate to estimate high frequencies in y to avoid a loss of derivatives caused by the use of the
semigroup estimate.

Since we split the perturbation v into two parts v; and wvo, in the the virial identity of wvo,
we cannot cancel the derivative of the nonlinear term 8,(v1v2) by integration by parts and we
need a time global bound of ||vy(t)|| ;3. For the purpose , we use the nonlinear scattering theory
in [12] which gives a time global bound for LP-norms with p > 2 if v;(0) = vy € |D,|/2L?(R?)
is small and vg is sufficiently smooth.

Another point is that we do not assume vy is integrable in y. For this reason, the modulation
parameters &(t,y) := c(t,y) — co and zy(¢,y) are not necessarily pseudo-measures and we are not
able to estimate F 1L — L? estimates for é and zy. Instead, we use the monotonicity formula
to obtain time global bounds for &(t) and x,(t). Since the terms related to vi(¢) are merely
square integrable in time and cubic terms that appear in the energy identity are not necessarily
integrable in time, we use a change of variables to eliminate these terms to obtain time global
estimates.



In this report, we explain the strategy of the proof of Theorem 1.1 and .

Finally, let us introduce several notations. For Banach spaces V and W, let B(V, W) be the
space of all linear continuous operators from V' to W and let || T pv,w) = sup|jq))y, =1 [|Tullw for
T € B(V,W). We abbreviate B(V,V) as B(V). For f € S(R") and m € §'(R"), let

FNE = O =en™ [ f@etda,
(F1)(@) = fl) = fl=2),  (m(Da)f)(@) = (2m) ™2 f)(a)

We use a < b and a = O(b) to mean that there exists a positive constant such that a < Cb.
Various constants will be simply denoted by C and C; (i € N) in the course of the calculations.
We denote (z) = v/1+ z2 for z € R.

2 Linear stability of line solitons

To prove stability of line solitons for the KP-II equation, we use linear stability property of the
line-solitons as Pego and Weinstein [31] did for the KdV equation.. We recollect decay estimates
of the semigroup generated by the linearized operator around a 1-line soliton and some function
spaces to analyze modulation parameters of line solitons.

Since (1.1) is invariant under the scaling u — A2u(A3t, Az, A2y), we may assume co = 2 in
Theorems 1.1 and 1.2 without loss of generality. Let

o=y, L=-08+40;—30;'0; —60:(¢").

We remark that e'€ is a C%-semigroup on X := L?(R?;e2**dzdy) for any a > 0 because Lo :=
—82 +40, — 307 185 is m-dissipative on X and £ — Ly is infinitesimally small with respect to
Lo.

Using Plancherel’s theorem, we have | f|x = || f(: + ic, )l L2(r2) and

(2.1) let0 fllx < e £ .

Solutions of 8yu = Lu satisfying a secular term condition decay like solutions to the free equation
O:u = Lou. To be more precise, let us introduce a family of continuous resonant eigenvalues
near 0 and the corresponding continuous eigenfunctions of the linearized operator L. Let

Bn) =1+, An) =4inB(n),

—L_32(ePMsechz), g*(x,n) = (e’ secha).

Then
L(n)g(x,£n) = MEn)g(z,xn), L(n)*g*(z,+n) = A(Fn)g"(z,£n) .

Now we define a spectral projection to the resonant eigenmodes {g.+(z,7n)}. Let

gl(xan) =2§Rg(:v,77), 92(7:177) = _27]%9(:1:,77)’
gi(z,m) = Rg*(x,m), gs(z,n) =—n'Sg*(z,7),



and Py(no) be a projection to resonant modes defined by

Py(mo) f () Z / k(M) gk(z,n)e™" dn,

k12

M ——
o) = [ Jim ( [ f(wl,yoe-iywdyl) Gt d

R M—oo
—Var [ (7)o )G 1) da.
R

For ng and M satisfying 0 < 1o < M < o0, let

1 .
Pi(no, M)u(z,y) := o / cint /R u(@, 1)V dyrdn,
Nos (NS

P3(no, M) := P1(0, M) — Po(no) -
Then we have the following.

Proposition 2.1. ([22, Proposition 3.2 and Corollary 3.3]) Let a € (0,2) and m1 be a positive
number satisfying RB(m) — 1 < a. Then there erist positive constants K and b such that for
any No € (0)771]7 M 27]0) fEX andtZOy

e Py(mo, M) fllx < Ke™™||f|1x -

Moreover, there exist positive constants K' and b’ such that fort > 0,

1€ Pa(no, M) fllx < K'e™i47/2(|e* f|x ,
le* Pa(mo, M3z fllx < K'e™it™3/4)(e% fI 1113 -

3 Decomposition of the perturbed line soliton

Let us decompose a solution around a line soliton solution ¢(z —4¢) into a sum of a modulating
line soliton and a non-resonant dispersive part plus a small wave which is caused by amplitude
changes of the line soliton:

(31) U(t, T, y) = Qﬁc(t’y)(Z) - wc(t,y),L(z + 3t) + ’U(t, Z, y) y =T — $(t, y) s

where . () = 2(v2c — 2)¢(z + L), ¢(x) is a nonnegative function such that ¥(z) =
if |z] > 1 and that [p¢(z)de = 1 and L > 0 is a large constant to be fixed later. The
modulation parameters c(to, o) and z(to,yo) denote the maximum height and the phase shift
of the modulating line soliton ¢, (x — z(t,y)) along the line y = yo at the time ¢ = ¢y, and
e, 1, is an auxiliary function such that

(3.2) /R Vor(c) dz = /R (ela) — () de

Since a localized solution to KP-type equations satisfies [p u(t,z,y)dz = 0 for any y € R and
t > 0 (see [27]), it is natural to expect small perturbations appear in the rear of the solitary
wave if the solitary wave is amplified.



To utilize exponential linear stability of line solitons for solutions that are not exponentially
localized in space, we further decompose v into a small solution of (1.1) and an exponentially
localized part following the idea of [21] (see also [24, 26]). Let ¢; be a solution of

8 + B30 + 30:(9%) + 30,1824 =0,
(3.3) .
91(0,z,y) = vo(z,y),
and
(3.4) vt z,y) =01tz +z(t,v),y), valt,z,y) =v(tzy) —ultzy).

Obviously, we have v2(0) = 0 and v3(t) € X := L?(R?e¥**dzdy) for t > 0 as long as the
decomposition (3.1) persists. Indeed, we have the following.

Lemma 3.1. Let vo € H'/2(R?) and 91(t) be a solution of (3.3). Suppose u(t) is a solution of
(1.1) satisfying u(0,z,y) = ¢(z) +vo(z,y). Then for any a € [0,1), w(t, z,y) = u(t,z+4t,y) —

o(z) — 01(t, x + 4t,y) satisfies
(3.5) w € C([0, 00); X)),
(3.6) dw, 8 8w e L*0,T;X) foranyT >0.

Moreover, the mapping
H'2(R?) 3 v - w € C([0, T}; X)

18 continuous.

Note that by [29], we know d,w, 97 *8,w € L§°Lt2y in advance.
To fix the decomposition (3.1), we impose that ve(t, z,y) is symplectically orthogonal to low
frequency resonant modes. More precisely, we impose the constraint that for k = 1, 2,

M S .
(3.7) lim / / va(t, 2,9) g4 (2, m, c(t, y))e ¥ dzdy = 0 in L2 (—no,m0),
-MJR

M-

where g3 (2,7, ¢) = cgi (v/f22,n) and 3(2,m,c) = §93(v/e/2z,1).

Since w(0) = 0 and w € C([0,00); X), a pair of (v2,c,x) satisfying (3.1), (3.4) and (3.7)
exists at least locally in time.

Let Y and Z be closed subspaces of L?(R) such that for an 9 > 0,

Y=F712, Z={feL*R)|suppf C[-no,m0]}
Using the implicit function theorem, we have the following.

Proposition 3.2. Let o € (0,1) and let 6y and L is a large positive number. Then there exists
T > 0 and va(t, z,y), é(t,y) :=c(t,y) — 2 and &(t,y) = z(t,y) — 4¢ such that

(v2,8,%) € C([0,T; X xY xY),
and satisfy (3.1), (3.4) and (3.7) fort € [0,T). Moreover, there exist positive constants é; and
&9 such that if

(3.8) sup [lua(t)llx < d1, sup [l&(t)lly <d2, sup [[Z(t)|ly < oo,
t€[0,T) t€[0,T) tef0,T)

then either T = oo or T is not the mazimal time of the decomposition (3.1) satisfying (3.4),
(3.7) and (3.8).



4 Modulation equations

Next, we will derive a system of PDEs which describe the motion of modulation parameters
c(t,y) and z(t,y). Substituting ¥; (¢, z,y) = v1(t, z,y) with z =z — z(t,y) into (1.1), we have

(4.1) Oy — 2¢0,v1 + 33'01 -+ 38;185’01 = BZ(N1,1 + N1’2) + N1’3 ,

where N1; = —3v%, N1 o = {z; — 2c — 3(zy)?}v1 and Ny 3 = 69y(xyv1) — 3zyyvi. Substituting
the ansatz (3.1) into (1.1), we have

(4-2) Btv ==[:C’U+€+32(N1 +N2)+N3,

where Lov = ~38,(82 ~ 2¢ + 6pc)v — 33;185, =0 F+ by, b = Ly + Lo + i3 (K = 1,2),
Ye(2) = te,(z + 3t) and

b1 =(x¢ — 2¢ — 3(zy)?) gl — (ct — 6cyzy)Beipe, 12 = 3Tyyepe,
o0 o
413 =3cyy/ Ocpe(z1)dz1 + 3(cy)2/ B2pc(21)dz
z z

€1 =(c — 6eyy)detpe — (w0 — 4 = 3(ay) )il
2 =(83 — :)c — 30:(42) + 60:(pethe) — Bz,

log = — 3ny/ Bclzc(zl)dzl - 3(cy)2/ 8027220(21)‘121 )

z

Ny =-3?, No={x;—2— 3(xy)2}v + 69cv,
N3 = 62,0,v + 3zyyv = 60, (Tyv) — 3Tyyv.

Here we use the fact that ¢, is a solution of (1.3). We slightly change the definition of ¥ from
[22] in order to apply the virial identity to [p. De(2)v3(t, 2,y) dzdy.
Subtracting (4.1) from (4.2), we have

(4.3) Opvg = Lovg + £+ 0,(Na1 + Nao + Nayg) + Najs,
where

Noi = —3(2v1v2 +v3), Nog= {z;—2c— 3(ccy)2}v2 + 69cvg,
N2,3 = 68y (:L'y’Uz) — 3:L‘yy7)2 , N2’4 = 6(¢c - <pc)v1 .

To derive modulation equations on c(¢,y) and z(¢,y), we differentiate (3.7) with respect to
t and substitute (4.3) into the resulting equation. Then for 7 € [—no, 0],

G | ot 501G, e u)e v dady
R2
(4.4)

6
— [ GG e ve dzdy + Y- ITi(tn) =0,
R2 ]=1



where

I} = / va(t, 2,4) Loz . (97, 2, c(t, y))eW7) dedy
RZ

1} == [ NosBigilerm,elta))e " dady,

II/% = \/R? N2,3g]:(z’ 7 C(t, y))e_iyndZdy

+6 /R . va(t, 2,9)cy (b, Y)Ty(t, ) Beg (2, m, c(t, y))e ™" dzdy,

I = /R ,v2(62,9) (e — 6eyay) (t,9)0egi (2, m, <, y))e " dady,

I =- /  NaoBLg (e, 6 9)e " dady,
R

I} =— / N348.g} (2,1, c(t, y))e™ V" dzdy .
Rz

The modulation PDEs of ¢(t,y) and z(¢, y) can be obtained by computing the inverse Fourier
transform of (4.4) in 7. The leading term of

1 [m —
— / / 616t (2, m, c(t, y1)) eV dady, dy
271’ —1o R2

is

(4.5) Gilt,y) = /R 0690020, e, 9))dz .

Since g¥(z,0,¢) = @.(2) and g3(z,0,c) = (c/2)%? JZ o Octpc, we can compute G; and Gy explic-
itly.
Lemma 4.1. ({22, Lemma 6.1]) Let 1 = § — 7{; and pg = 33 — 3. Then
c\ 3/2 c\1/2 2
G1 =16zyy (5) — 2(c; — beyzy) (5) +6cyy — —(cy)*,
_ B _ 9 E 2 E 3/2 _l _ E 1/2
G2 = — 2(z; — 2¢ — 3(z,)?) (2) + 6y (2) > (e — 6cyy) (2)

Cc

+ p1cyy + pa(cy)? (g) - .

We remark that (G1,G2) are the dominant part of the modulation equations for ¢ and z.
To translate the nonlinear terms 6(c/2)"/2cyz, and 16z,,{((c/2)*/? — 1} in G into a divergence
form, we will make use of the following change of variables. Let P bea projection from L?(R)
onto Y and
1
3

(4.6) bt ) = 5 Py {Vae(t,)¥2 -4}, i = %ﬁl {cft,)? — 4} B,
0

20 6 16
B = , Bp= .
1) ! (% 2) 2 (#1 6)

We remark that b~ é =c — 2 if ¢ is close to 2.

AR
Il
ey
oo

%)



Assuming the smallness of the following quantities, we obtain the modulation equations of
c(t,y) and z(t,y).
Mc(T) = Sug(llﬁ(t)lly +llzy@lly) + leyllz20,v) + lzwll2073v)

)

My (T) = tsuP] o1 (@®)llzz + 1€ @)Yl 20wey , MIUT) = t:gé%] o1 ()l s

0?

Ma(T) = sup [o2(®)llx + |1€(2) 2 r2075%), Mu(T) = sup [[o(t)llzz,
0<t<T te(0,7]

where ||v]lw () = ||(e™*1/2 + e=I=F3+L)y|| 12re), L is a large positive constant and
7 10,0(t, 2, y) = Frk (ﬂf o(t, € ))
2 OyU\L, 2, Y) - &n \ ¢ zyV\L,6,M) ) -

Proposition 4.2. There exists a 63 > 0 such that if Mcg(T) + Ma(T) + no + e L < §3 for a
T >0, then

(4.7) (lft

Tt

) = A(t,Dy) (b) + N+ O(Ry,) + hot.,

z
where A(t, Dy) = Ao(Dy) + Ai(t,Dy), ps = -4 + 3 =1 + I > 1/8,

2-3n° -8’ —a
Aoy = (70, )00, i) = 0@,

_B (. 605)
3P (el D)

o II?(t "7)) iyn
= ! Wl dn.
Fon f_,,o (HS(t, m)<
If v2(0) = 0, then b(0,-) = 0 and z(0,-) = 0.

The dominant part of A¢(D,) is determined from (G1,G2) in Lemma 4.1. The operator
A; comes from the auxiliary function 9, and it decays exponentially because the interaction
between 1. and g; becomes exponentially small as ¢ — oo.

5 A priori estimates for the local speed and the local phase shift

In this section, we will estimate M, ,(T) assuming the smallness of M. (T), My(T) (i = 1,2),

no and e~ %%,

Lemma 5.1. There exist positive constants 64 and C such that if M¢ (T) + My (T') + M2(T) +
no + e~%L < 64, then

(5.1) Meo(T) < C(llvoll 2mey + Mi(T) + M2(T)?).

Outline of the proof of Lemma 5.1. Let us translate (4.7) into a system of b and zy. By (4.7),
b
z

(5.2) o ( v
b(O, ) =0, a“y(oa ) =0,

= A(t, Dy) b + nonlinear terms,
v g,



whereu3=—%l+%=%+’2’—2>l/83nd

A(t,n) =A(n) + (8823 ggzzg) +O0(eoBHLY A () = (in(2_f:’ts772)

2

8i

Let w(n) = /16 + (8uz — 1)n2, Af(n) = —2n*Linw(n) and IL(n) = 4 (
Then

IL.(n) " Ac(m)ILe(n) = diag(\f (m) , A7 (m)) .
We remark that |w(n) — 4| < 72

By the change of variables b = (Z;) and ( b ) =I1,(Dy) (ZI),
2

Ty

(5.3) ob = {285[ + Oyw(Dy)os + Aa(t, Dy)}b + nonlinear terms,

where 03 = 0) and As(t,n) = O(n®) + O(e=*Bt+D)) for 1 € [—no, no].

1
01
We decompose the nonlinear terms in (5.3) as

(5.4) N+ 8N+ N") — 8K (t,y),

4b? — 4b1by — 2b2
N0 =B (2b2 + dbyby — 483

(5.5) N' € L®(0,T;Y)NLY(0,T;Y), N”eL®0,T;Y)nL*0,T;Y),
tS[uP 1K, Iy + 1K L2017y S Ma(T), Jlim K@)y =0
€[0

8in
-n

).

81

10

n+iw(n) n- iw(n)>'

There is a term of a term O(R,,) related to v; in the nonlinearity of (5.3). A crude estimate
| Roy | L2(0,7;v) < M1 (7) is insufficient to obtain a time global monotonicity formula for b because

b does not necessarily belongs to L2(0,T;Y). The most problematic part of R,, is

70 )
/ / U1 (t’ 2, y) ‘pg(t,y)e—lyn dzdyd”] .
—1o R2

We use (1.3) and (4.1) to decompose that part into a sum of higher order terms and O (8;k)

with o
bew) = [ [ nlts o) (e dedndr.
—To

Another point is that (9,A/°, b) may not belong to L' (0, T) unless vy is not strongly localized
in the y-direction. In fact, we need to eliminate cubic terms in fR (3yN0, b) dy to obtain a time

global bound for ||b(t)|ly. For the purpose, we make use of the change of variables

1
(5.6) d= = =b—|{ <bby+ O(k) 1 + O(k) . ey =.
dy 2 1
Taking the L?(R)-inner product between the heat equation of d and d, we have
T
(5.7) S[up ld@)13= + 4/ 18y BT dt S llvol 72 +Mez(T)? + Mi(T)? + Ma(T)* .
tefo 0

See [23] for the details.



6 The L?(R?) estimate

We will estimate M, (T') assuming smallness of M (T, M;(T) and Ma(T).

Lemma 6.1. Let o € (0,1) and 64 be as in Lemma 5.1. Then there exists a positive constant

C such that
Mo(T) < C(|lvoll 22y + Mea(T) +Mi(T) +Ma(T)) .

To prove Lemma 6.1, we will use the following variant of the L? conservation law. Let
Q)= [ {o(620)" = 2 a -+ 300u(t2,9)} dedy

Then for ¢ € [0,T],

t ~
Q(t,v) = Q(0,v) + 2/0 /]R2 (En + b1z + 60 ) (2) (s ) (z)) (s, 2, y) dzdyds
t
_ 6/0 /Rz(az_layv)(s,Z,y)cy(‘g’y)ac(pc(t’y)(z) dzdy

¢ t
- 6/0 /Rz Bo(sy) (2)0(8:2,9)" dzdyds — 2/0 /IR2 Uae(s ), L(% + 3s) dzdyds .

7 Estimates for v;
In this section, we will give upper bounds of v;. First, we estimate M (00).

Lemma 7.1. There exist positive constants C and d5 such that if ||vol|z2 < 05, then Mj(oo0) <
Cllvoll 2

Lemma 7.1 follows from the virial identity and the L2-conservation law of the KP-II equation.
Following the spirit of [18], we use the virial identity to ensure v; € L?([0,00); L (R?)). Let
X+.¢(x) =1+ tanhez, 71(t) be a C* function and

Lo(®) = [ xo.clo = 81(8) = a0,)38(0,2,v) dody.

For any ¢; > 0, there exist positive constants €9 and & such that if inf, {(t) > ¢1, € € (0,£0)
and ||91(0)| g2 < &, then for any o € R,

t
Lo+ [ [ oo = 21(6) = c0){(0un)? + (0570,0)° + 5 }(5,,) dodyds < L0,
0
where v = %min{S, c1}. Moreover,
(7.1) tlim I,,(t) =0 for any zo € R.
—00

See e.g. [25, Lemma 5.3] for a proof.
Next, we estimate M/ (00).

11
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Lemma 7.2. There exist positive constants C and 8§ such that if |||Dg|™Y?vo|r2 +
1Da["?v0l 12 + | Da| /21Dy | ?uo|2 < 8, then

1(00) < C(I1Dz"Y?voll 2 + 1 Dal w0l 12 + 1Dz~ Dy [V ol 2) -

In order to estimate the L3-norm of v1, we apply the small data scattering result for the
KP-II equation by [12].

For the sake of self-containedness, let us introduce some notations in [12]. Let Z be a set of
finite partitions —oco = t9 < t; < --- < tg = 00. We denote by VP (1 < p < 00) the set of all
functions v : R — L?(R?) such that lims_,1 v(t) exist and for which the norm

K 1/p
||v||w={ sup va(m—v(tk_l)n’;zmz)}

{t H0€Z k=1
is finite, where v(—00) := lim;_,_o v(t) and v(co) := 0. We denote by V*_ the closed subspace
of every right-continuous function v € V? satisfying lims oo v(t) = 0. Let V¥ := eSV? and
Vfrc,-—,s ;= eSVP with § = -8 - 33;135.
Let x € C§°(—2,2) be an even nonnegative function such that x(n) = 1 for n € [-1,1].
Let %(£) = x(t) — x(2t) and Py be a projection defined by Pyu(r,&,n) = x(N"1€)a(r, £,7) for
N =2"and n € Z. For s < 0, we denote by Y* the closure of C(R; H!(R?))N V2. with respect

to the norm
1/2
2 2
Jully, = (;N sllPNullvg) :

We denote by Y*(0,T) the restriction of Y to the time interval [0, T] with the norm
lullys oy = inf{llElly. | @€ Y, a(t) = u(t) for t € [0,T]}.

Proposition 3.1 and Theorem 3.2 in [12] ensure that higher order Sobolev norms of a solution
to (4.1) remain small provided v is small in the higher order Sobolev spaces. Let T > 0 and

t
IT(ul,U2)(t)=A 1[0,T](s)e(t‘s)saz(uluz)(s) ds.

Then we have the following,.

Lemma 7.3. Let s > 0 and uy, ug € Y™Y2. Then there ezists a positive constant C such that
for any T € (0, 00),

(7.2) 11D |* I (u1, u2)ly—1/2 < Cll|Del*uwally-1/2lually-1/2,
(7.3) 1{Dy)°IT(u1, u2)|ly-1/2 < C H 1{Dy)*uslly-—1/2 -
j=1,2

Using Lemma 7.3 with s = 1/2, we have
sup 1Dl *31(¢)l2 S WDa"vollz2
sup 1D2|Y21 Dy 251 ()22 S 1| D2l ™*(Dy)woll 2
and it follows that )

151 (Ol s w2y SNIDal*51()l|z2(me) + 1 Dal 72| Dy 251 ()] L2 ey
SIDa|~*(Dy)voll 2 -
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8 Decay estimates in the exponentially weighted space

In this section, we will estimate My (T) following the line of [22, Chapter 8].

Lemma 8.1. Let 1y and a be positive constants satisfying vo < a < 2. Suppose M} (0co) is
sufficiently small. Then there exist positive constants 6 and C such that if M o(T) + M1 (T) +
Ma(T) + My (T') < 6,

(8.1) My(T) < C(Mo(T) + My (T)) .

Let x € C$°(—2,2) be an even nonnegative function such that x(n) = 1 for n € [-1,1]. Let
xm(n) = x(n/M) and

1 X
Pemu = o / xar(n)a(€,m) eV dedn,  Pspy =1 — P<y.
Rz

To prove Lemma 8.1, we will use linear stability property of line solitons (Proposition 2.1)
to the low frequency part v<(t) := P<pv2(t) and make use of a virial type estimate for the high
frequency part vs(t) := Ps>pvo(t).

8.1 Decay estimates for the low frequency part

Lemma 8.2. Let ng and o be positive constants satisfying vo < o < 2. Suppose that v3(t) is a
solution of (4.3) satisfying v2(0) = 0. Then there exist positive constants d¢ and C such that if
M; (T) + Ma(T') < 86 and M > no, then

[1P1(0, 2M)v2| oo (0, 7;3) + 1P1(0, 2M)w2ll 120 1,x)

(8.2) <C {M(T) + M1 (T) + Mz(T)(M2(T) + My(T))} .

Outline of the proof of Lemma 8.2. Let ¥2(t) = Pa(no,2M)va(t). Then

(8.3)

84y = Lo + Po(no, 2M){€ + 0y (Na1 + Noo + Né’z + Nog) + N273} ,
72(0) =0,

where N}, = {26(t,y) + 6(6(2) — @eey) () }enlt, 2 v).
Applying Proposition 2.1 to (8.3), we have

lo2(O)llx < /Ot e (=9 (¢ — 5)=%/4||e** Py(mo, 2M) No,1(5) | 1 2 ds
(8.4) + /0 eV =) (1 — 5)"V/2(|| Nyo(s) |1 x + | Ng.2(8)lx + I Noallx) ds
t
+ / =9 ((s)]1x + [INa3(5) 1) ds.
0

Using the fact that ||P<apullrizz S \/M||u||L1(Rz), we have
1€ Pa (o, 2M)Na 1|1z S VM (loall 2 + llvallz2) vzl x -
By the definitions M, ¢(T"), M1 (T) and My(T) and (4.7), we can prove

t GS[%I}) [B2(8) |l x + 1B2(8) | L20,7:) S Mee(T) 4+ Mi(T) + (My(T') + Ma(T))Ma(T) .
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As long as vy(t) satisfies the orthogonality condition (3.7) and &(¢, y) remains small, we have
I152(0) [l x S 1PL(0, 2M)va(B)l|x < N192(2)Ilx

in exactly the same way as the proof of Lemma 9.2 in [22]. Thus we have (8.2). This completes
the proof of Lemma 8.2. U

8.2 Virial estimates for v,

Next we prove a virial type estimate in the weighted space X in order to estimate the high
frequency part of v>.. We need the smallness assumption of sup;> ||v1(t)||L3®2) to estimate the
high frequency part v (t).

Lemma 8.3. Let a € (0,2) and va(t) be a solution to (4.3) satisfying v2(0) = 0. Suppose
M/ (00) is sufficiently small. Then there exist positive constants d¢, My and C such that if
Mc,z(T) + M; (T) + MQ(T) + Mv(T) < d¢ and M > M, then fort € [O,T],

¢
lua®l <€ [ o= (el + IPenrva(o)le + en (o)l ) ds-
The key is for high f To prove virial type identities for v2, we use the following.

Claim 8.1. For any p € [2,6],

3_3
2 p

3_1
(8.5) le*®ullzs < Crllullk *(I8zullx + 1187 dyullx + llullx)

Proof of Lemma 8.3. Let p(z) = €2**. Multiplying (4.3) by 2p(z)va(t, z,y) and integrating the
resulting equation by parts, we have for ¢ € [0, T},

% (/Rz P(2)vs(t, 2,9)? dzdy) + /]R2 P(2) (E(ve) - 4vg) (t, z,y) dzdy

(8.6) 5
=S I,
k=1

where
115 ——-2/ p(2)lva(s, z,y) dzdyds ,
R2

115 =~ [ () (@lt.0) - 32,(6)%) alt, 2, )" dedy,

iy = [ {(o) v aptey? (e VewsEEI0) Yoy,

11, =12 / P(2) (w102 (¢, 2, y) dedy + 12 / P(2) (v1v2902) (b, 2, ) dady
R2 R2

IIT5 =12 /}R2 9: (p(2)va(t, 2,¥)) (Pe(ty) (2) — Yoty L(z + 3t)) vi(t, 2,y) dzdy.

Using Claim 8.1 and the Holder inequality, we have

[ 9 @mte, )t dzin] $ 1Ol [0 wat 230,
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1y S [lor ()] s / P(2) ((B:02)” + (871 0yv2)” + ) (¢, 2, ) dady .
R

For y-high frequencies, the potential term can be absorbed into the left hand side. Indeed, it
follows from Plancherel’s theorem and the Schwarz inequality that

7 (o) + 070,05 )?) (2.0 dacy

2 n? 2
=2o4/R2 (|§+ia| + l§+i0412> | Fos(t, €& + ia,n)|” dédn

>2M | p'(2)vs(t,2,9)* dady.
R2
If M (c0) is small enough, we have for ¢ € [0, T,

G | ootz P dsdy + Ma [ popentt,z0)? dedy
(8 7) dt R R

’ 1

< 2 2 2

<%0 Jee p(2)€° dzdy + Mo /IR2 p(2)(v<)*(s,2,y) dzdy’+ 0O (H’Ul(t)”W(t)) ,

provided M is sufficiently large and dg is sufficiently small. Lemma 8.3 follows immediately from

(8.7). O

Lemma, 8.1 follows from Lemmas 8.2 and 8.3.

9 Proof of Theorem 1.1

If M (00) is sufficiently small, then

My (T) < Jlwollz2 ,
Meo(T) S llvollze + My(T) +Ma(T)? < flvoll 2 + Ma(T)?,

M(T) < Mego(T) +Mi(T) S llvollzz +Ma(T)?,

M,(T) S llvollzz + Mego(T) +Mi(T) + Ma(T) S flvollzz +Ma(T),

and we have
Mz (00) + M (00) + Ma(c0) + My(00) S [lvollL2(me)

by a continuation argument.

10 Proof of Theorem 1.2

If vo(z,y) is polynomially localized, then at ¢ = 0 we can decompose a perturbed line soliton into
a sum of a locally amplified line soliton and a remainder part v (z, y) satisfying [ v.(z,y) dz =0
for all y € R.
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Lemma 10.1. Let cg > 0 and s > 1 be constants. There erists a positive constant g such that
if £ := ||(z)*voll 1 (r2) < €0, then there exists c1(y) € H'(R) such that

(10.1) /;(‘Pcl(y)(m) - %0(-’13)) dr = /R’vo(z‘,y) dx,
(10.2) lex() = eoll aqwy S | (@00 sy 1%a0lne S (272

(10.3) lvell L2(R2) S |K$>8/200||L2(R2)> 185 vull 2 + lvell ey S 1) *voll i (re) »

HY(R?) ’

where v,(x,y) = v0(Z, Y) + Peo(T) — Pey () (T)-

To prove Theorem 1.2, we modify the definitions of v (¢, 2,¥), va2(t, z,¥) c(t,y) and z(t,y)
as follows. Let 91 be a solution of (1.1) satisfying ;(0, z,y) = v.(0,,y). Lemmas 7.1 and 10.1

imply
M (00) S [{@)*?voll L2ge) -

Lemma 7.2 and (10.3) imply
1(00) S =) *voll 1 (me) -
Let a(t, z,y) = u(t,z,y) — 01(t,2,y). Then (0, z,y) = ¢, ()(z). By Lemma 10.1,
10,2, y) — ey (2)l1x S llea(-) — coll 2wy S 1) *voll L2(mey

and by the implicit function theorem, there exist a T > 0 and (v2(t),é(¢),Z(t)) € X XY xY
satisfying (3.1), (3.4) and (3.7) for ¢ € [0, T], where &(t, y) = c(t,y)—co and Z(¢,y) = z(t, y) —2cot.
Clearly, we have

lv2(0)l| xz2ey + 1EO) Iy S (=) *voll L2gey,  %(0,7) =0,
and following the proof of Lemmas 5.1, 6.1 and 8.1, we can prove

Mez(T) S [{2)* ?voliz2mey + Ma(T) + Ma(T)?,
My(T) S [[(z)*?voll 2wy + Meo(T) + My (T) + Ma(T),
M2(T) S [{z)* ?voll r2we) + Meo(T) + My (T) .

Thus we can prove Theorem 1.2 in exactly the same way as Theorem 1.1.
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