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1 Introduction

We consider time periodic problem for the following compressible Navier-Stokes-Korteweg
system in R3:

(Op+divM =0, (1.1)
M M
o.M +div (2 = aiv (5(7) +K(p)) + g, (12)

8,(pE) + div (ME) + div (P(p, 0)%)

S

= GAG + div ((8(%) +K(p)) %) + Mg. (1.3)

\
Here p = p(z,t), M = (M(z,t), Ma(z,t), M3(z,t)) and E = E(z,t) > 0 denote the
unknown density, momentum, and total energy respectively, at time ¢ € R and position
z € R3; 0 denotes the absolute temperature of fluid satisfying

1M

2 p2

where C, denotes the heat capacity at the constant volume, that is assumed to be a

positive constant; S and K denote the viscous stress tensor and the Korteweg stress
tensor that are given by

MY _ [, Ms5. . (M
{ S(3) = (waiv ) + 2wy (%), (1.49)
K(p) = 5(8p* = |Vpl)di; — 22 22,

E=C0+

where dij(%) = % 5%— (%) + 5%(%4) ); p and p' are the viscosity coefficients that
k3 j z‘

are assumed to be constants satisfying

2
u>0, §u+u’20;



P = P(p,0) is the pressure that is assumed to be a smooth function of p and § satisfying
Pp(p*ve*) > O) PO(PHG*) > Oa

where p, and 6, are given positive constants; x and & denote the capillary constant and
the heat conductivity coefficient respectively, that are assumed to be positive constants;
and g = g(z,t) is a given external force periodic in t. We assume that g = g(z,t) satisfies
the condition

g(z,t+T) = g(x,t) (zeR3teR) (1.5)

for some constant 7' > 0.

The system (1.1)-(1.3) is known to be a model system for two phase flow with phase
transition between liquid and vapor in compressible fluid. In deriving (1.1)-(1.3), phase
transition boundary is regarded as a diffuse interface. So (1.1)-(1.3) describes fluid state
by the changes of the density. (Cf., [4, 6, 11] for the derivation of (1.1)-(1.3).)

As for the mathematical analysis for (1.1)-(1.3), most of literatures treated the system
in terms of the density p, velocity v = M/p and absolute temperature 6:

O:p + div (pv) = 0, (1.6)
p(Bw + (v-V)v) + VP(p,0) = pAv + (u+ p)Vdive + kpVAp + pg,  (1.7)
pCo(8; + (v - V)8) + 0Py (p, 0)dive = GAG + ¥(v) + B(p,v), (1.8)

where ¥(v) and ®(p, v) are given by

W(v) = p/(divv)? + 2uDv : Dv, Dv = (di5(v))} =1,
d(p,v) = & (J%QE + pAp) divv — k(Vp® Vp) : Vu.

Chen and Zhao ([3]) considered the stationary problem (1.6)-(1.8) for g of the form g(z) =
div g (z) + go(z) around (p,,0,68,). It was shown in [3] that if g satisfies

3 1
Do+ [zl Vgl + (L + [2])* Vg e

I+ gl I+ ) gl < 1, (1.9)

then there exists a stationary solution for problem (1.6)-(1.8) in the weighted L* N L?
space. The stability of the stationary solution was also considered in [3]. It was shown in
[3] that if g satisfies (1.9), then the stationary solution (p*, v*,8*) is asymptotically stable
under sufficiently small initial perturbations, and the perturbation satisfies

(o(8),v(2),8(t)) — (p*,v*,6")|| e — O

as t — oo. Chen, Xiao and Zhao ([2]) and Cai, Tan and Xu ([1]) then considered time
periodic problem for the barotropic and non-barotropic system of (1.6)-(1.8), respectively,
on R™ with n > 5. They proved that there exists a time periodic solution (pper, Vper, Oper)
around (p,,0,0,) for a sufficiently small g € CO(R; H¥~' N L') satisfying (1.5), where
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N € Z satistying N > n + 2. Furthermore, the time periodic solution is stable under
sufficiently small perturbations and it holds that

1(p(t) = Pper(£), v(t) — Uper(2), 6(2) = Oper(t)) Lo = 0 (¢ = 00).

In this paper we consider time periodic problem for (1.1)-(1.3) instead of (1.6)-(1.8).
We will show the existence of a time periodic solution for (1.1)-(1.3) around (p,, 0, E,) on
R? with E, = C,0,. It will be proved that if g satisfies (1.5) and

lgllcqomzyy + 1 + |21 glloqoize=) + (1 + 12?)gll 20, 7m0-1) < 1

for an integer s > 2, then there exists a time periodic solution (pper — pu, Mper, Eper — Ex) €
C([0,T); H®*) with period T for (1.1)-(1.3), and (pper — Px, Mper, Eper — E.) satisfies the
estimate

1

sup { DI+ )04 = ) Oim + 31+ )00 ()]

te[0,T] j=0
+ Z 1@+ Jel )0 (Bper = Bz }
< C(“gllcqo,T];Ll) + 11+ 121*)gllcore) + 11+ 121*) gl L20.7;m5-1 )- (1.10)

Furthermore, the time periodic solution (pper, Mper, Eper) for (1.1)-(1.3) is asymptotically
stable under sufficiently small initial perturbations and the perturbation satisfies

I(p(£), M (), E(£)) — (pper(t), Mper(t), Eper(t))llzee — 0 (¢ — 00).
The precise statements of our results are given in Theorem 2.1 and Theorem 2.2 below.

The existence of time periodic solution is proved by using the time-T-map for the
linearized semigroup at (p.,0, F,). We will employ a function space of hybrid type which,
roughly speaking, consists of functions whose low frequency parts belong to a weighted
L* N L? space and high frequency parts belong to a weighted L?-Sobolev space. For the
low frequency part we introduce a function space similar to that employed in the study of
the stationary problem in [3], that is, a set of periodic functions with values in a weighted
L> N L? space similar to (1.9). We investigate the spatial decay properties of the integral
kernel of the time-T-map, and establish the estimates for the low frequency part by a
potential theoretic method. Due to the conservation form of momentum and total energy
we can estimate the nonlinear terms for the low frequency part directly. As for the high
frequency part, we employ the weighted energy method to obtain the a priori estimates.
Note that by making use of the smoothing effect for p due to the term kKVAp arising in
the Korteweg tensor, the derivative loss due to the term v - Vp does not occur for the high
frequency part and we can directly treat (1.1)-(1.3).

The asymptotic stability of the time periodic solution (pper, Mper, Eper) is proved by
the energy method using the Hardy inequality as in [3, 7).



2 Main results

To state our results, we define function spaces with spatial weight.
For a nonnegative integer £ and 1 < p < oo, we denote by L} the weighted L? space

defined by
L2 = {u € 17 ullyg := (1 + 2)fulli» < oo},

Let k and £ be nonnegative integers. We define the weighted L2-Sobolev space Hf by
Hf = {u € H% ||ull gy < +o00},

where

p
2

Hf = Que MYy = | 3 105ul | <+oo
|| <k

We also introduce function spaces of T-periodic functions in . We denote by Cper(R; X)
the set of all T-periodic continuous functions with values in X equipped with the norm
I lle(o,71:x); and we denote by L2,.(R; X) the set of all T-periodic locally square integrable
functions with values in X equipped with the norm || - ||z20,7;x)-

Our result on the existence of a time periodic solution is stated as follows.

Theorem 2.1. Let s be an integer satisfying s > 2. Assume that g(z,t) satisfies (1.5)
and g € Cper(R; L' N L) N L2, (R; H3 ™). Set

[9]s = ||g||0([o,T];leL§°) + |IQI|L2(0,T;H;—1)-

Then there exists a constant § > 0 such that if [g]ls < &, then the system (1.1)-(1.3)
has a time periodic solution Uper = ' (Pper — Pr; Mper, Eper — Ey) € Cper(R; L) with
Vper € Cper(R; H® x H*™1) satisfying

S (12 + |z Dger @Iz + (1 + |2])*Vtper (@)l ) < Clgle-

Our next issue to study the stability of the time periodic solution obtained in Theorem
2.1. Let " (pper, Mper, Eper) be the time-periodic solution obtained in Theorem 2.1, let the
perturbation be denoted by @ = T(p, M, E), where p = p — pper,]\;[ =M - Mper,E’ =
E — Epe, and let the initial perturbation be denoted by

to = Gfp=o = T(P(O) - pper(0)7 M(0) — Mper(o)’ E(0) — Eper(o))-

We have the following stability result of the time periodic solution.
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Theorem 2.2. Let s be an integer satisfying s > 2. Assume that g(z,t) satisfies (1.5) and
g € Cper(R; L' N LP) N L2, (R; HS). Let T (Ppery Mper, Eper) be the time-periodic solution
obtained in Theorem 2.1 and let iip € H*T! x H®. Then there exist constants €¢; > 0 and
€2 > 0 such that if

[gls+1 < €1, ol zrotrixas < €2,
then 4(t) exists globally in time and 4(t) satisfies
i € C([0,00); H*! x H?),
@O Frerr e + /Ot IVa(T) e waredr < ClltiollFrarrxge (t € [0,00)),
|@(t)||Le — 0 (¢t — 00).
Theorem 2.2 is proved as follows. We write (1.1)-(1.3) into (1.6)-(1.8). Let

T(Pperr Mper, Eper) be the periodic solution given in Theorem 2.1. We set Uper, fper and
Uper by

| Mper|*
20,

Mper 1
= —, 0 = — ( E —_
Uper Dper per Cu per

)’ Uper = T(ppem”pemeper)-

It follows from Theorem 3.1 that Up., satisfies the estimate
“T('Uper, Oper — 0*)||C([0,T];L‘1’°) < Clglet1, (2.1)
HV{T("’pera oper - ‘9*)}“0([0,T];L§°) < C[g]3+1. (2-2)

Let the perturbation be denoted by U = (¢, w,¥), where ¢ = p — pper, w = v — vpep, ¥ =
0 — Oper. Then the perturbation U = T(#, w,?) is governed by

( OiP + Uper - VP + ¢diviper + pperdiviw + w + Vpper = f1,

Syw — p—pl;-{pAw + (p + @) Vdiv w}
+B1(U, Uper) V¢ — £V AP + Bo(U, Uper) VI = f2,

{ 89 — &B3(Uper) A + By(U, Uper)divw = f3,

(2.3)

where
[t = —div(¢w),

f? = —(vper - V)w ~ (0 - V) (vper + w) = (B1(U, Uper) — B1(Uper))V pper
- (B2(U, Uper) - B2(Uper))veper

_ g‘;ﬁ:-}_E{ﬂA(Uﬁ:r + '(U) + (,u + ,u,’)VdiV (Uper + ’LU)},
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F2 = —(Wger - V) = (w - V) (Bper + 9) + &(Bs(U, Uper) — B3(Uper)) A(Bper + 0)
+ (B3 (U, Uper) — B3(Uper)) (¥ (vper) + ‘i)(pper’ Uper))
+ Ba(U, Uper) { W(0) = ¥(0per) + B(p, 5) = (pper, vper) }
— (Ba(U, Uper) — Ba(Uper))div vper,

_ Pe(Pper + &, aper + 9)

B1(U, Upey) = Pp(pperp + ¢J,re;er+0)’ By(U, Uper) = p— ,
er per
1 (Oper + 0) Py(pper + @, Oper + 6)
B U, Uer - B U) U r) = £ = P
3(U: Uper) Cy(pper + @) U, Uper) Co(Pper + @)
with
P ery 0 er P € 99 e
Bl(Uper) = Lp;—"i—)a B?(Uper) = o(p;:e 2 T)7
per r
1 Oper o (Ppers Oper
Bs3(Uper) = Copper’ By (Uper) = -F gv::er = )

We consider the initial value problem for (2.3) under the initial condition
Ule=o = Uo = " (¢, wo, Po).

One can show that if [g]s41 and || Up || grs+1x s+ are sufficiently small, then U (¢) exists globally
in time and U(t) satisfies

U € C([0,00); H**' x H*),

t
U () 15s+15 120 +/0 VU ()| fsrixme @ < CllUsl Frorixps (€ [0,00)),
[Tz = 0 (¢ — o0).

These can be proved by similar methods as those in (3, 7], since the Hardy inequality
works well to deal with the linear terms including " (pper, Vper, Oper) due to the estimates
for T (pper; Uper; Oper) in Theorem 3.1 and (2.1)-(2.2). We thus omit the details.

3 Outline of the proof of the main result

3.1 Formulation

To prove Theorem 3.1, we rewrite (1.1)-(1.3) as follows. Let

CUP(p*,O*) Pe(p*,e*)72
g (P 04), 2= Po(pa, 6) 3 1Cy
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We define ¢, m and e by ¢ = p — ps, m = 7—1‘{ and € = (p. + ¢)E;—2Ei, respectively. Then
(1.1)-(1.3) is rewritten as

Owu + Au = F(u, g), (3.1)
where
0 v div 0
u="(p,me), A= |mV—-kVA —vA-iVdiv (V |, (3.2)
0 (div —apA
Vzﬂ) ﬂ=u+ﬂla C:’hP(p*,g*)7 ’ioz"ip_ty Qo = a
Px Px 2P+ 4! C’vp*
and
0
Flu,9) = |F*(ug9)], (3.3)
F3(u)
Fou,g) = —{Zdv(mem)+ydiv(PO(@)om©m)
1
+p.vA(PD($)gm) + p oV div (PD (@)¢m) + 15V (PV () ¢e)
+ 2P0 - L9(Rpn 0000
%! 8%! 2C, (p* + ¢)2
1 @) nimP® N2 Afpeiml? | e
e PO v am) ~ vy * v o))
1 @) nte  Aim*4
+Cv71v{P ©) (p* +¢  2(p+ ¢)2)}
1
- dive(6) — —(p. + )9}, (34)
Bé! " \
_ 1 e 2 Im|
b = Cv (E* * P+ +¢ 712(9* +¢)2)’

PO(¢) = /01 f'(pe + 7¢)dr, f(1) = % (r €R),
PO (4 0) = /O 1-np, (. +76,6)dr,

POG) = /0 (1= ) Poo (e 0.+ 7(0 = 8.) ),

PYG) = /01 P (p*, 0. +7(0 — 9*))dﬂ

2
2(¢) = w600l + (Vo) (Vo) - V21— Vs@Vp),

Fu) = —{Ldiv(em) + ndiv(PD()ge) — aop A(PDV($)de),
Ps
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o5 (712|m12 )+%dw(f’“)(wquP(p*+¢,9))

Cora \2(ps + ¢)?
+p’j;2 div (mP® (4, 0))
T Copra div (mp(ﬁ)w) ((pj f ¢ 2 ZilT‘;)Q) )
—%:—div ((8(;}—?%) +K(p, + ¢)> TZ¢) - vi g}, (3.5)

1
PO@0) = [ B +7o0)ir
0
1
PO(g) = / Po(ps, 0, +7(6 - 6,))dr
0
Let us introduce a semigroup S(t) = e *4 generated by A;
S(t) = et = Flethe F,
where
A 0 im' € 0
Ag = | im€ +imlePe vIEPL +9€TE  iCE | (E€RY).
0 e aolé]?

Then S(t) has the following properties.

Proposition 3.1. Let s be a nonnegative integer satisfying s > 2. Then S(t) = e is a

contraction semigroup on H® x H*~1 x H*~1. In addition, for eachu € H® x H*"! x H*™!
and all T' > 0, S(t) satisfies

S(Hu e C([0,T'); H* x H! x H*™Y), S(0)u =u
and there hold the estimates
”S(t)uHstHs—les—l S ”’U,”stHs—le.s—l (3.6)

forue H* x H"' x H*"! gnd t > 0.

We set an operator I" using the time-7T-map by
L[F)=S@t)I - S(T))*A(T)F + L t)F (tel0,T)), (3.7)

where

L()F = /tS(t—T)F(T)d’T'.
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To solve the time periodic problem for (3.1), as in [9], we look for a fixed point u of
L[F(u,g)), ie.,

u=T[F(u,g)] (t€l0,T)), (3.8)

where u = (¢, m,€) and F(u, g) is given by (3.3)-(3.5). From (3.7) and (3.8), it holds
that u(T) = u(0). Therefore, we will investigate properties of the map I.

We next introduce function spaces. We define a space £ by
Z ={we LY, Vuw € H ||lw|| g~ < +o0},
where
1 _ 2
lwll g =Y 11 + &) Vowl| o + D II(L + |2 V]l o
=0 j=1

Note that w decays in the same order as the fundamental solution of the Laplace equation.
Accordingly, this space is a similar one to that introduced in the stationary problem [3].

Let ¢ be a nonnegative integer and let s be a nonnegative integer satisfying s > 2. We
define the weighted L?-Sobolev space %/ (a,b) by

Y (a,b) = [C(la,b]; H{t') N L*(a, b;; H] )]
x [C([a,b]; H{) N L*(a,b; H;Y)).

Let us introduce operators which decompose a function into its low and high frequency
parts. Operators P, and P, on L? are defined by
Pif = F';F(f] (f € L, j =1,00),
where
Xi(§) €C®R") (j=100), 0<% <1 (j=1,00)
S — 1 (|£| < Tl)a
wO={ 0 (65r
)A(oo(é-) =1- Xl(f)v 0< T < Too.

We fix 0 < rp < 1o < u—i"; in such a way that the estimate (3.10) in Lemma 3.7 below
holds for |€| < 7.

Let s be a nonnegative integer satisfying s > 2. We define a solution space Z*(a, b)
by

Z%(a,b) = {u; P € C(a,b; Z), Pyou € #5(a, b)},



and the norm is defined by

”u”fs(a,b) =||P1u”c(a,b;3{) + “Poou”@;(a,b)-

Observe that
PiL[F(u,g)] =T[P;F(u,g)] (j=1,00)

and

—

supp P1F(u,g) C {|€] < 7o},
supp PooF(u,g) C {|€] > r1}.

So we will investigate the restriction of I' to the space of functions whose Fourier trans-
forms have support in {|¢| < re} and will then establish estimates for I'P; in subsection
3.2. Likewise, the restriction of I" to the high frequency part will be investigated to
establish estimates for I' Py, in subsection 3.3.

In the remaining of this subsection we introduce some lemmas which will be used in
the proof of Theorem 2.1.

We will use the following lemma for the estimates for the integral kernels which will
appear in the analysis of the low frequency part.

Lemma 3.2. [16, Theorem 2.3] Let £ be a nonnegative integer and let E(x) = & —19,
(x € R?), where @, € C®(R® — {0}) is a function satisfying
0gd, e L' (o] <0),
07| < Cle|> P+ (0, 1812 0).
Then E(z) (z # 0) satisfies the estimate

|E(2)| < Cla|~0+9.

The following lemma is related to the estimates for the convolutions which appear in
the analysis of the low frequency part.

Lemma 3.3. (i) [17, Lemma 2.5] Let E(z) (z € R3) be a function satisfying

|05 E(z)] < (lal =0,1,2). (3.9)

T+ e
Assume that f is a function satisfying || f||renzr < co. Then there holds the following
estimate for |a| =0, 1.

C

07 E = fl(z)] < Wllf”Lg"nLl-
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(ii) [17, Lemma 2.5] Let E(z) (x € R®) be a function satisfying (3.9). Assume that f is
a function of the form: f = 9, fy for some 1 < j < n satisfying ||0z, fill g + || fillLge < o0
Then there holds the following estimate for |a| =0, 1.

C

[[07E * fl(z)| < (—1T|5-13|)'_°"H

10z, fillge + [ fillzge)-

(iii) [14, Lemma 4.9] Let E(z) (z € R®) be a function satisfying

C

|0z E(z)| < A5 [z (

la] = 0,1).

Assume that f is a function satisfying | fllzge < oo. Then there holds the following
estimate for |a| =0, 1.
Clog |z|

07 E * fl(z)] < (1—+W

11l zg-
3.2 Estimate of I for the low frequency part

In this subsection we estimate I' for the low frequency part. We introduce a L2 space
for the low frequency part. The symbol L(21) stands for the set of all u € L? satisfying

supp f C {|€| < r}. For any nonnegative integer k, we see that H* N L}y = L}, (CE,
Lemma 3.4 (ii) bellow.)
We next state some properties of P;.

Lemma 3.4. ([9, Lemma 4.3]) (i) Let k be a nonnegative integer. Then Py is a bounded
linear operator from L? to H* and P, satisfies the estimates

IV*Pifllzz < Clifllze - (f € L)

As a result, for any 2 < p < 0o, P, is bounded from L? to LP.

(ii) Let k be a nonnegative integer. Then there hold the estimates

IVEfillze + L Aillze < Cllfillze (f € Lyy),

where 2 < p < 0.

We derive the following inequalities for the weighted LP norm of the low frequency
part.

Lemma 3.5. Let k and £ be nonnegative integers and let 1 < p < oo. Then there holds
the estimate

IV fillez < Cllfillez (F € Ly N IB).



The proof of the estimate is given in [14, Lemma 4.3].
We define a space Z'(1) by
Z'wy={u€ Zsupp @ C {|¢] <ro}}.
We set operators S;(¢) and #(t) by

Si(t) = S(t)| g, Yl(t)Flz/otSl(t—T)Fl(’r)dT.

1)

Then we have the following

Proposition 3.6. (i) Si(¢) is a uniformly continuous semigroup on Z'(1y. In addition,
for each uy € X1y and all T' > 0, Si(t) satisfies

Si(tyuy € C([0,T"); ),
8tS1(t)’LL1 = —A181 (t)u1 (: —ASl (t)ul), 51(0)’[“ = Ui,
and there hold the estimates
||8fsl(')u1Hc([o’T/];g%"(l)) < C“Ul”%(l)

foruy € Xy, k=0,1, where T' > 0 is any given positive number and C is a positive
constant depending on T".

(i)
yl(t) : L2(07T; c%ﬁ(l)) - C([OaT], <%/'(l)) N Hl(O,T; '%'(1))

is a bounded linear operator for t € [0,T] satisfying
6ty1(t>F1 +A1y1(t)F1 - Fl(t), Yl(O)Fl = 0,

“yl(')plncqom];%l» = C”Fluﬂ(om;%l))’
||aty1(')F1||L2(0,T;3?f(1)) < C”F1“L2(0,T;£'(1))'
for Fy € L*(0,T; & (1)), where C is a positive constant depending on T.

(iil) It holds that
S10) A1)y = S1(F)[S1(¢) Fi]

foranyt >0, t €[0,T] and Fy € L*(0,T; Zw))-
Proposition 3.6 can be proved in a similar manner to the proof of [14, Proposition 5.1J;
and we omit the proof.

To estimate I', we prepare some lemmas. The following lemma plays an important
role to investigate the spatial decay properties of the time-T-map.
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Lemma 3.7. (i) Let

X 0 im € 0
A = | im€ +irol€lPE VIEPIs+PETE  iCE (€ eR?).
0 iCTE aol¢[?

Then there exists 09 > 0 such that if 0 < ro < do, the set of all eigenvalues of —A§
consists of \j(€) (j =1,---4), where

(€)= —vl¢? +O(g),

M(€) = — 5 |¢[? + O(leP),

Xa(€) = \/71 + Cle| — H2IER — 35 1612+ OlEP),
A(€) = A3 (complex conjugate).

(i) For |¢| < &, e~tA¢ has the spectral resolution

4
e—tAg — Z eb\,({)ﬂj(g),

j=1

where I1;(€) is eigenprogections for \;(€) (7 =1,--+ ,4), and I1;(§) (j =1, - ,4) satisfy

0 0 0
I (¢) = (o I - % o) +0(e)),
0 0 0

1—--2%_ o —-uC
1i+¢2 1+
I,(¢) = o 0 0 +O(l¢]),
0

’Yl +¢2 1- 1 +¢2
i T

W@ = | ~itms & i | T OUeD,
(o %’%

. /Al T

L e

s€) = 5 | e+c s zmlfl +O(¢D-
¢ i &

NHE i/l s

[

Furthermore, there ezist a constant C > 0 such that the estimates
I;EOI<CcG=1,---,4) (3.10)

hold for |€] < reo.
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Lemma 3.7 is proved by the analytic perturbation theory ([10]). We set
e, w=ro, ~Ae=rd, Je=Li+rla+rLa

where r = [£],

0 m'w 0 0 0 0
Li = —i|lmw 0 (wl], Le=-—1{0 vip+wTw 0
0 ('w 0 0 0 o
and
0 00
Ly=—|tkow 0 0
0 00

Applying the reduction process ([10, Section II-2-3]), we can prove Lemma 3.7. See also
[12, Lemma 3.1].

Hereafter we fix 0 < r; < ro < 8 so that (3.10) in Lemma 3.7 holds for [§] < re.

Lemma 3.8. Let o be a multi-index. Then the following estimates hold true uniformly
for & with |€| < reo and t € [0, T].

(@) 1ogX] < ClEPP ((Jal 20, 5 =1,2), [9gA] < Ol ((Jal 20, 5 =3,4).
(i) 1(BeTL,)F| < Clel~|E] (laf > 0).
(iii) |0g(eM)] < CleP (lal > 1, j =1,2).
(iv) 19g(eM)] < Clel* ! (lal 2 1, j =3,4).
(v) [(Bge~t4)F| < CleI7| P (lof > 1).
(vi) 19g(1 — )7 < Clel>l (la] 2 0, j =1,2).
(vii) |0g(I — eM) T < Ol (Jof 2 0, j=3,4).

Lemma 3.8 can be verified by direct computations based on Lemma 3.7.

We are now in a position to give an estimate of I" for the low frequency part.

Proposition 3.9. Let s be a nonnegative integer satisfying s > 2. Assume that u =
T(¢,m,€) satisfies

||u||ffs(0,T) << 1.
Then it holds that

I TP (0, )l oz, 2y < Cllulisn gy + C1+ 0l g 1l

uniformly for u.
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Proof. We set

I[P F(u,g)] = S@)I - S(T))"'S(T)PF(u,g),
Do[PF(u,g)] = FL@)[PF(u,g))

By using Lemma 3.8, one can easily obtain the required estimates for || V*T';{PLF(u, 9)]|l2_,

(.7 > k= 1, 2)
We estimate I'; in the weighted L space. As for the term I'y[P; F(u, g)], by Proposi-

tion 3.6 we have
I[PF(u,g)] = Si()I = Si(T) ' F1(T)[PF(u,9)]
N 2 T A A
= 9‘1{6"“‘5(I— e‘TAf)“l/ e~ DA F(r,u, g)dr}
0
T
- / Eu(t,7) * PoF(r,u, g)dr. (3.11)
0
where

Ei(t, 7_) _ ]_-—1{5(06—1&,45 (I- e—T/iE)—le—(T—'r)ziE},
Xo is a cut-off function defined by xo = F X0 with %o satisfying

Xo €CP[R"), 0<x0<1, Xo=1 on {|{| <7} and suppxo C {|¢| < 2reo}.

By Lemma 3.7, e~t4¢ has the spectral resolution

4
e_tA€ — Zet)\J(E)H (6)
j=1

where \; and II; (§ = 1,--- ,4) are the same ones in Lemma 3.7. Therefore, we see that

eTX) 711, (3.12)

M»

(I _ —TAE
]=1

Let a be a multi-index satisfying |a| > 0. It follows from Lemma 3.8 that

Y leE(z) < C |6]7%d¢ (z € R?).
j Ktsm'oo
Since fl{lgzrm |€]72d€ < oo, we see that
Y |02Ei(z)| < C (z € R?), (3.13)
j

where C' > 0 is a constant depending on a, T. By Lemma 3.8, we have

192 ((6€)*%0(I — eMT)'L;)| < CleIT2HAl for j=1,2, 18] >0,



102 ((3€)%0(I — eMT) ML) < Clg|~ el for j =3,4, 8] > 0.

It then follows from Lemma 3.2 and (3.12) that

|02 By ()| < Clag|~ (oD, (3.14)
From (3.13) and (3.14), we obtain that
105 Ex(=)] < C(1 + |a]) =1 (3.15)

uniformly for z € R3.

Concerning the estimate for the nonlinear term Pydiv(m ® m) in the estimate of
I'1 [P F(u, g)], due to the conservation form, applying Lemma 3.3, Lemma 3.8, (3.11) and
(3.15) w1th la| > 1, we see that

IPy (B )l 22, o) < cuuni@ﬁm, (3.16)

where Fi(u) = 7(0, Pidiv(m ® m),0). Similarly to (3.16), the remaining terms can be
estimated. Hence, we obtain the desired estimate for I';. The estimate for I'; can be
proved in a similar manner to the proof of the estimate for I';. This completes the proof.
O

3.3 Estimate of I' for the high frequency part

In this subsection we establish an estimate I" for the high frequency part. The following
function spaces are introduced for the high frequency part. Let & and ¢ be nonnegative
integers. The symbol Hf, , stands for the set of all u € H* satisfying supp @ C {|¢] > 1}

and the space HF (00),¢ 18 defined by

H(koo),é ={ue choo); ”U”Hf < +o0}.
We prepare some lemmas for the high frequency part.

Lemma 3.10. [9, Lemma 4.4] (i) Let k be a nonnegative integer. Then Pu, is a bounded
linear operator on H*.

(ii) There hold the inequalities
[Pofllz < ClIVfllz (f € HY),

Ifoollzz < CliVixllze (foo € Hin))-

Lemma 3.11. [14, Lemma 4.13] Let £ € N. Then there ezists a positive constant C
depending only on £ such that

1P fllzz < ClIVflizz.
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Let s be a nonnegative integer satisfying s > 2. By Proposition 3.1, we define an
operator
Seo(t) : Hify x Hiyy — HL) x Hiyy (¢ 20)
by Seo(t)teo = S(t)uo fOr Uy, € Hf’;; x H{,,. We also define

Foo(t) : L*(0,T; Hly x HiZ)) — Higy x Hiyy (¢ €10, 7))

by ,
F st Fop = / Suo(t — 7)Foo(7) dr-

for F, € L%(0,T; HE ) % Hf;; )

We have the following properties for Sy, and ¥ .

Proposition 3.12. (i) It holds that Soo(-)uose € C([0, 00); Hf;;z X Hiy,) o) for each ugeo =
T (G000, Mooos Evoo) € H(Sot;ﬂ X H{"’oo),2 and there exist constants a > 0 and C > 0 such that
S (t) satisfies the estimate

[Sue®toollzst s, < CMrtnellit crr

(00),2 (00),2

for all t > 0 and uoeo € Highy o, x H,, . Furthermore, THI xH (So(T)) < 1, where

(0),2% F(c0),2
THEN xH? (Seo(T)) denotes the spectral radius of Seo(T) on H(sotiz X Hiy o and I —

Soo(T) has a bounded inverse (I — Sy (T))™! on H(s(:g;’2 X Hi, ) o and (I—Se(T)) ™" satisfies

I = SooT) M llgess s, < Cllwllggs ey, Jor w € Hity X Hisy o

(c0),2 (00),2

(i) ¢ holds that S oo () Fao € C(10, T); HfLyx His) 5) for each Fo = T(Fl, F2, F3) €
L*(0,T; H ()2 X Hfo_o;ﬂ) and S «(t) satisfies the estimate

t 2
“‘yoo(t)[Foo]”H(’;;,szs <C {/0 e—a(t_‘r)”Fm”2 (aoo)2xH"1 dT}

(00),2 (00),2

ort €[0,T] and Fy, € L2(0,T; HS_,, x H*~} ) with a positive constant C depending on
T (00),2 {00),2

Proposition 3.12 can be proved by the weighted L?-energy method. In fact, Proposition
3.12 is an immediate consequence of the following proposition.

Proposition 3.13. Let s be a nonnegative integer satisfying s > 2. Assume that

Uoso = | (Pooo, Moo, Eoce) € Hfogﬂ X Hiwc) 2,



77

Foo =" (Fao, F&%, ) € L3(0,T'; Hiy p X Hig) )
for all T' > 0. Assume also that Ue = ' (doo, Moo, Eco) Satisfies

{ Otloo + Alloo = Foo, (317)

Uoo |t=0 = Upoo-
and

doo € C(I0, TN HiEH) N L0, T HEZ), T (Mo, 00) € C(0, T'); Hiy) N L2(0, T HEEY)

Then us satisfies
b0 € C([0, T} He ) N L0, T HES ), T (Moo, €00) € C(10, T']; Hiy 2) N L0, T Hiy )

for all T" > 0 and there exists an energy functional E°[u]| such that there holds the
estimate

B 5 lueal(t) + Al 6me (D202 + Imca(t)]

d i{;*'l + llsw(t)‘lfqgﬂ)
< C|IFo ()l

(3.18)

8 8—1
3xHy

on (0,T") for all T" > 0. Here d is a positive constant; C' is a positive constant depending

on T but not on T'; E%(us) is equivalent to |Iu°°”§1;+1ng’ i.e,
C_ll|uoo||§,,_g+1xg5 < Efuco] < C“uoonifzﬁ—lx}[;;

and E%[u|(t) is absolutely continuous in t € [0,T"] for all T' > 0.

Making use of the smoothing effect of p arising in the Korteweg stress tensor, we can
prove Proposition 3.13 in a similar manner to the L2?-energy method as in [1, 5], and we
omit the details here.

It follows from Proposition 3.12 that we obtain the following estimate of I' for the high
frequency part.

Proposition 3.14. Let s be a nonnegative integer satisfying s > 2. Assume that u =
T(¢,m, ) satisfies

||u||gs(0,T) << L
Then it holds that

IP{Poo P (w, )]l 0.y < Clule g gy + O+ 1l g g 1))l

uniformly for u.

By Proposition 3.9 and Proposition 3.14, as in [9], we obtain Theorem 3.1.
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