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R-BOUNDEDNESS OF SOLUTION OPERATOR FAMILIES FOR TWO-PHASE
STOKES RESOLVENT PROBLEM AND ITS APPLICATION

HIROKAZU SAITO

ABSTRACT. The aim of this paper is to show the R-boundedness of solution operator families of
a two-phase Stokes resolvent problem and an application of the R-boundedness to some (time-
dependent) two-phase Stokes problem in a bounded domain ) = Q4 UQ_. More precisely, let Q
be a bounded domain, with two boundaries I'y (I't+ NT'~ = @), of N-dimensional Euclidean space
RY (N > 2), and then some closed hypersurface I' divides 2 into two domains 24 C Q such that
Q:0Q- =0 and Q\T = Q4 UQ_. We here suppose that TNT, =@, TNT_ = §, and the
boundaries of Q4 consist of two parts I, I'1, respectively. The domains Q4 are filled with viscous,
incompressible, and immiscible fluids with density p+ and viscosity p+, respectively. In addition, on
the boundaries I', I';, and I'—, we consider some interface conditions, free boundary conditions, and
the Dirichlet boundary condition, respectively. This is a joint work with Sri Maryani from Waseda
University.

1. INTRODUCTION

This article is a brief survey of [MS], mainly.

Let £ be a bounded domain of RN, N > 2, with two boundaries I'y. satisfying 'y NT_ = 0.
Assume that some closed hypersurface I' divides © into two subdomains of €2, that is, there are
domains Q4 C Q such that ., NQ_ =0 and Q\I'=Q, UQ_. It is also assumed that NI =0,
I NT_ = 0, and the boundaries of Q4 consist of two parts ', 'y, respectively. Set = Q, UQ_
and Tcx, = {A € C | |arg\| < 7 —¢€, |A] > X} for 0 < & < m/2 and Ao > 0. In this paper,
we consider the R-boundedness of solution operator families for the following two-phase Stokes
resolvent problem with resolvent parameter A varying in X, »:

Mu—p !DivT(u,6) =f, divu=g inQ,
[T(u,6)n]) =fh], [u]=0 onT,

(1.1)
T(u,f)ny =k on Iy,
u=20 onl_.
Here the unknowns u = (u;(z),...,un(z))T’ and 6 = (z) are an N-component vector function

and a scalar function, respectively, while the right members f = (fi(z),..., fn(z))T, g = g(),
h = (hi(x),...,hn(z))T, and k = (k1(z),...,kn(z))T are give functions. Let pi, pus be positive
constants, and let xp be the indicator function of D C RN. Then p = pyxq, + p-Xa_, ¥ =
p+xa, + d-xa_, and T(u,0) = pD(u) — 61, where I is the N x N identity matrix and D(u) is
doubled deformation tensor, that is, the (¢, j) entry D;;(u) of D(u) is given by D;j(u) = G;uj+ 0ju;
fori,j=1,...,N and §; = 8/6z;. In addition, n denotes a unit normal vector on I', which points
from 24 to Q_, and n, the unit outward normal vector on I';. For any function f defined on Q,
[7] denotes jump of f across the interface I' as follows:

[F1=1f1@)= lim  f@)-  lm f@) (z€D)

y—z, y€9+ -, yen—

tMT denotes the transposed M.



Here and subsequently, we use the following notation for differentiations: Let f = f(z), g =
g(z) = (q1(z),...,gn(z))T, and M = (M;5(x)) (4,5 = 1,...,N) be a scalar-, a vector-, and a
matrix-valued function on some domain of RY, respectively, and then

N
Vi=(af,....onf)T, Af=D0if, Ag=(Ag,...,An)7,
7=1

N
divg = _08;g;, V’g={0;0ea |4 k,l=1,...,N},

j=1

091 ... Ong1 N N T
ve=| : . i |, DivM= ) 8;My,...,> 8iMy;

819]\] ‘e BNgN J=1 Jj=1

The two-phase Stokes resolvent problem (1.1) arises from a two-phase problem of the Navier-
Stokes equations, which describes the motion of two viscous, incompressible, and immiscible fluids
without taking surface tension into account. There are a lot of studies of two-phase problems for
the Navier-Stokes equations. To see the history of the studies briefly, we restrict ourselves to the
case where the two fluids are both viscous, incompressible, and immiscible in the following. Such a
situation are treated in several function spaces as follows:

Lo-in-time and La-in-space setting. Denisova [Den90, Den94] treated the motion of a drop Q4+,
which is the region occupied by the drop at time ¢ > 0, in another liquid Q_; = R3\ Q;;. More
precisely, [Den90] showed some estimates of solutions for linearized problems and [Den94] the local-
in-time unique existence theorem of the two-phase problem describing the above situation with or
without surface tension. In addition, Denisova [Denl4] proved the unique existence of global-in-
time solutions for small initial data and its exponential stability in the case where _; is bounded
and surface tension does not work. Concerning non-homogeneous incompressible fluids, Tanaka
[Tan93] showed the global-in-time unique existence theorem for small initial data under the same
assumption about Q_; as in [Den14], but surface tension is taken into account.

Holder function spaces. A series of papers Denisova-Solonnikov [DS91, DS95] and Denisova
[Den93] treated the same motion as in [Den90, Den94] mentioned above. Especially, [DS91, Den93]
established estimates of solutions for some linearized problems, and [DS95] proved the local-in-
time unique existence theorem of the two-phase problem with surface tension. The global-in-time
unique existence theorem was proved by Denisova [Den07] without surface tension and by Denisova-
Solonnikov [DS11] with surface tension in the case where Q_; is bounded. Furthermore, there are
other topics due to Denisova [Den05] and Denisova-Necasové [DNO08], which consider thermocapil-
lary convection and Oberbeck-Boussinesq approximation, respectively.

Ly-in-time and Lyp-in-space setting. Priiss and Simonett [PS10a, PS10b, PS11] treated the situa-
tion that two fluids occupy Q¢ = {(2/,zn) | 2’ € RN, £(zn — h(z',t)) > 0}, respectively, where
h(z’,t) is an unknown scalar function describing the interface Ty = {(z/,zn) | 2’ € RN}, 2y =
h(z',t)} of the fluids. [PS10b] and [PS11] proved the local solvability of the two-phase problem with
surface tension and with surface tension and gravity, respectively, for small initial data. On the
other hand, [PS10a] pointed out that the Rayleigh-Taylor instability happens if the gravity works
and the fluid occupying € is heavier than the other one . Furthermore, Hieber and Saito [HS]
extended the results of the Newtonian case of [PS10b, PS11] to a generalized Newtonian one.

Ly-in-times and Lg-in-space setting. Shibata-Shimizu [SS11] showed a maximal L,-Lg regularity
theorem for a linearized system of the two-phase problem considered in [PS10a, PS11] mentioned
above. In addition, [MS] extended [SS11] to general domains, which contain e.g. R = RY URY,
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perturbed RY, layers, perturbed layers, bounded domains, and exterior domains. Here Rﬁ’ , RY
are the open upper and lower half spaces, respectively.

In the present paper, we restrict ourselves to the case where 2 is bounded, and introduce the
R-boundedness of solution operator families of the two-phase Stokes resolvent problem (1.1), which
is one of main objects proved in [MS]. In addition, as an application of the R-boundedness, we prove
a maximal Ly-L, regularity theorem with exponential stability for some time-dependent problem
associated with (1.1). The maximal L,-L, regularity theorem plays an important role to prove the
global-in-time unique existence theorem for two-phase problems of the Navier-Stokes equations.

This paper consists of four sections.

Section 2 first introduces notation and definition used throughout this article. Next, our main
results, that is, the R-boundedness of solution operator families of (1.1) is stated.

Section 3 first gives us some reduced problem of (1.1), which are obtained by elimination of
pressure term @ from (1.1). To elimination the pressure term 6, we use a result concerning the
unique solvability of the weak Dirichlet-Neumann problem. In addition, we introduce some auxiliary
problem, which is corresponding to the weak Dirichlet-Neumann problem with resolvent parameter
A. Subsection 3.1 tell us the fact that solutions to (1.1) is also solutions to the reduced problem
with help of the auxiliary problem for suitable right members f, g, h, and k. Subsection 3.2 shows
that the opposite direction of Subsection 3.1 also holds. Namely, solutions of the reduced problem
become one of (1.1). Subsection 3.3 introduce the R-boundedness of solution operator families of
the reduced problem, and then we have Theorem 2.3 in view of subsections 3.1, 3.2.

Section 4 proves a maximal L,-L4 regularity theorem with exponential stability for some time-
dependent problem associated with the two-phase Stokes resolvent problem (1.1). To show the
maximal regularity theorem, we divide the time-dependent problem into two parts as follows: one
is equations for non-zero initial data with homogeneous external forces and the other is equations
for zero initial data with non-homogeneous external forces. In Subsection 4.1, we show an estimate
with exponential stability of solutions to the case of non-zero initial data by means of analytic
semigroup. In Subsection 4.2, we show an estimate with exponential stability of solution to the case
of zero initial data.

2. NOTATION AND MAIN RESULTS

In this section, we first introduce the notation used throughout this paper. After that our main
results will be stated.

2.1. Notation. Let D be an open set of RV, and let 1 < ¢ < oo and 1 < 7 < oo. Then
Ly(D), W*(D) with m € N, and W?(D) with s € (1,00) \ N denote the usual Lebesgue spaces,
Sobolev spaces, Sobolev-Slobodeckij spaces on D, while || - [|z,(p), || - lwyn(p), and | - llwg(p) their
norms, respectively. For two Banach spaces X and Y, £(X,Y) is the set of all bounded linear
operators from X to Y, and £(X) the abbreviation of £(X,X). Let U be a domain of C, and
then Hol (U, £(X,Y)) stands for the set of all £(X,Y)-valued holomorphic functions defined on
U. For d € N with d > 2, X% denotes the d-product space of a Banach space X. Let || - ||x
be the norm of X, while || - || x also denotes the norm of the product space X¢ for short, that is,
Ifllx = E?=1 | fillx for £ = (fir-.., f2)T € X% Let a= (a1,...,an)T and b = (b1,...,bn)T, and
then we writea-b =< a,b >= Z;\;l a;jbj. On the other hand, for any vector functions u, v on D,
we set (u,v)p = fDu -vdz and (u,v)sp = faDu -vdo, where 8D is the boundary of D and do
the surface element on 9D.
We here introduce the definition of the R-boundedness of operator families.



Definition 2.1. Let X and Y be two Banach spaces. A family of operators T C L(X,Y) is called
R-bounded on L(X,Y), if there exist constants C > 0 and p € [1,00) such that for each natural
number n, {T;}]_1 C T, {fj}}=1 C X and for all sequences {rj(u)}}_, of independent, symmetric,
{-1, 1}-valued random vamables on [0,1], there holds the inequality:

1,.m p 1, .n »
r-uT-f-H duSC/ ” r'(u)f‘H du.
J I rwmslyasc [T]3 nwn],
The smallest such C is called R-bound of T on L(X,Y'), which is denoted by Rz x y)-

Remark 2.2. It is well-known that 7 is R-bounded for any p € [1,00), provided that 7 is R-
bounded for some p € [1,00). This fact follows from Kahane’s inequality ((KW04, Theorem 2.4]).

To state our main results, we here introduce several function spaces. Given 1 < ¢ < 0o, we set
¢ =q/(g—1). Let qum Q) ={feW (Q)|f=00nT,}, and also we define a solenoidal space
Jq(Q) by

Jo(Q) ={f € Ly()" | (£, Vp)a=0 forall p € Wy, ()}
Set Wl(Q) + W, r+ Q={0=61+62]01 € Wl(Q) 02 € qu,I‘+(Q)}' In addition, we introduce a
space DI, (Q) defined by
(2.1) DI,(2) = {g € W () | 3G st. (9,9)q = —(G, Vo) for all ¢ € W b ()}

In this case, we write G = G(g). Let n_ be the unit outward normal vector on I'_. The space
DIq(Q) is a date space for the divergence equation divu = g in © with boundary conditions:
[ul]  n=0o0onT and u-n_ =0 on I'_. This fact arises from the following observation: suppose
that the divergence equation is solvable, and then

(9,9)g = (divu,9)y = —(u, Vi), for any ¢ € W1/ I, (),
which implies the existence of G in (2.1). On the other hand, let g € DZ, ( 2), and then
(22)  (9,9)a = —(9(9), Vi)g = (divG(9), ) — ([9(9)] - 1, ) — (G(9) - m—, p)r_

for any ¢ € W(;}',FJ, (©). Choosing ¢ € C§° (Q) with suppy C Q in (2.2) ylelds that divG(g) = g in

Q. We also see that [G(g)] -n=0on T and G(g) - n_ =0 on I'_ by choosing suitable ¢ in (2.2).
Thus, u = G(g) solves the divergence equation. If we set [|gl|pz, @) = ||g“W1(Q) + 199 L @) for

g € DT, (Q), then DZ,(R) is a Banach space with norm || - oz, -

2.2. Main results. We here introduce main results of [MS].

Theorem 2.3. Let 1 < qg< 00, 0< 7 <7/2, N <r <oo, and max(q,q’) <r with ¢ =q/(¢g—1).

Suppose that § is a bounded domain and T', Ty are closed hypersurfaces of W YT class. Then the

following properties hold.
(1) Existence. Set

Xo={(f,9,h,k) | f € L(DV, g € DI,(), he W}, k e W} ()"},
X, ={(Fi,...,Fg) | F1,F, Fy, Fs € L ()",
F3 € Ly(), Fs € Ly(M™, Fr € Ly(Q)™", Fs € Ly(24)}.
Then there exist a constant Ao > 1 and operator families:
A(X) € Hol (B¢ 5, L(Xg, W2Q)Y)),  P(X) € Hol (S¢ 5, L(Xg, W) (Q) + Wyr, (2)))
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such that, for any A € I, 5, and (f,g,h,k) € X,
u=AMF\(f,9,b,k) and 6=P(\)F\(f,g,h k)

are solutions to the equations (1.1), and furthermore,

d l
R o o)) ({ (a) (GrAW) | A € z}) <M,

d l
Re(xe wi @) ({ (d—,\) PA)[re Ee,’m}) <M (1=0,1)

with some positive constant M. Here we have set N =N34+N24+N , Gyu = (V2u, A/2gy, Au),
and
F\(f,g,b,k) = (f, Vg, \/2g, AG(g), Vh, \1/?h, Vk, \1/2).
(2) Uniqueness. There exists a Ao > 1 such that ifu € qu QN NJ() and § € qu (Q)+qu’1-+ ()
satisfies the homogeneous equations:
M-p!DivT(u,0) =0 inQ, [T(u,dn]=0, [u]=0 onT,
T(w,ny =0 only, u=0 onl_

with A € E¢ 5, thenu=0 and § =0.

Remark 2.4. (1) In the original paper [MS], we can treat a more general case such that the
viscosity coefficients u4 are functions on €2, and domains are not necessarily bounded.

(2) The symbols Fy, Fy, F3, Fy, Fs, Fg, F7, and Fg are corresponding variables to f, Vg, A 29,
AG(g), Vh, A\1/2h, VK, and A!/2k, respectively. The norm of space X, is given by

IFL o Bo)llzg = NP, - Bl @y + 1P, F)l g

(3) We do not give any proof of the results of [MS] in this article, but an application of Theorem
2.3 is presented in Section 4.

3. STOKES AND REDUCED STOKES

The aim of this section is to show some equivalence between the two-phase Stokes resolvent
problem (1.1) and its reduced problem. Here “reduced” means that the pressure term 6 of (1.1)
is eliminated. Such a reduced problem plays an important role to construct an analytic semigroup
generated by the Stokes operator A associated with the equation (1.1).

To introduce the reduced problem, we start with the following proposition, which will be an-
nounced in [MS].

Proposition 3.1 (Unique solvability of the weak Dirichlet-Neumann problem). Let 1 < q¢ < oo,
N < r < 0o, and max(q,q') < r with ¢' = q/(q — 1). Suppose that Q is a bounded domain and T,

'y are closed hypersurfaces of Wr2 —r class, and set p = pyxa, +p-Xxa_ for positive constants px.
Then, for any f € Lq(Q)N , there is a unique 8 € qu,l“+ (2) satisfying the variational equation:

(p71V8, V) = (£, Ve)a for all o € W) (Q),

which possesses the estimate: |6]lwy(a) < CllfllL @) with a positive constant C independent of 6,
, and f.



Remark 3.2. (1) Let f € Lq(ﬂ)N, and let Q,f :=6 € qu,l‘+(Q) in Proposition 3.1 with p; = 1.
Then, setting Pf = f — VQ,f, we have P,f € J,(2). We thus obtain a decomposition: f =
Pf 4+ VQ f € J, () + G4(Q) with G4() = {g | g =V, ¢ € qu,F+(Q)}‘ Moreover, we see
that the decomposition is determined uniquely. In fact, let £ € J3(2) N G4(2) with £ = Vi) for
some ¥ € W, (), and then f € J,(€) implies that

(V§,Vp)a= (f,Vp)a=0 forallpe qu’,l"+ (),

which, combined with the uniqueness of Proposition 3.1, furnishes that ¥ = 0. Hence, it holds
the so-called Helmholtz decomposition: Ly(Q)N = J () ® G4().

(2) By Proposition 3.1, we see that, for any f € Lq(Q)N, g € qu‘l/q(l‘), and h € W;_l/q(l‘+),
there exists a unique 8 € qu(ﬂ) + qu’m () satisfying the weak problem:
(p71VO,Vp), = (f, V), forall p€ qu'yI‘+ (),
[fl=9g onT, #=h onTy,

which possesses the estimate:

160wy @) < © (1€ zqqay + I9lpa-vraqry + Ilhya-sraqe,)

with some positive constant C independent of 8, ¢, f, g, and h. Thus, it is possible to define a
linear operator K as follows:

K : Lo(@N x WD) x W YaTy) — WHQ) + Wir, (Q)
satisfying the following weak problem:
(0~'VK(E, g, h), Vp)g = (£, Vi) for all p € Wy r, (),
[K(f,g,h)]=9 onT, K(f,g,h)=h onTl4
and the estimate:
1KC(E 9, Bz < © (IElLzyqey + 19ya-rraqey + WAllga-vrace,)
with some positive constant C independent of ¢, £, g, and h.
By using the operator X mentioned above, we set, for u € Wq?(Q)N , K(u) = K(f, g, h) with
f = p~! Div(uD(u)) — Vdivu,
g =[<puD(un,n > —divu], h=<uD(u)ni,n; >—divua
Then the two-phase reduced Stokes resolvent problem is given by
M-, DivT(u,K(u))=f in,
[T(u,K(u))n] =[h] onT,
(3.1) [ul=0 onT,
T(u,K(u))ny =k onTly,
u=20 onT_.

In the following subsections, we will show some equivalence between (1.1) and (3.1). To this end,
we consider an auxiliary problem as follows:

(3.2) (M, ) + (Vu, Vo)g = (£, V) for all o € Wy, (),
(3.3) [ul=[¢g] onT, wu=h onTly.
Let ¥. = {A € C\ {0} | |argA] < w — €} for 0 < € < w/2. Then the following proposition holds.
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Proposition 3.3. Let0 < ¢ < 7/2,1 < q< o0, N<r <00, and max(q,q') < r withq = q/(q—1).
Suppose that § is a bounded domain and I, 'y are closed hypersurfaces of W2 class. Then, for
any A € L, U {0} and any f € Lq(ﬂ)N, g € qu(Q), and h € qu(Q.,_), there is a unique solution
u € WqZ(Q) to the equations (3.2)-(3.3).

Remark 3.4. The symbols Hy, Ho, Hs, Hy, and Hs are corresponding variables to f, Vg, \}/2g,
Vh, and A\/2h, respectively.

3.1. Stokes implies reduced Stokes. We shall solve (3.1) by means of solutions to (1.1).
Given f € Ly(Q)N, h € qu(Q)N, and k € W;(Q.,.)N, we choose by Proposition 3.3 some g in
such a way that g solves the weak problem:
(3.4) (Ag, ) + (Vg, V) = —(f, Vo)g forallp e W¢11',I‘+(Q)’
(3.5) [¢l=<[h],n> onT, g=<kn,> only,.
Letu e WqZ(Q)N and 0 € qu(Q) + qu,l“+ () be solutions to (1.1) with f, g, h, and k mentioned
above. Let ¢ € W;',m (). Then, by the definition of K(u), [ul=0onT,and u=0o0nT_,
(£, Vp)g, =(Mu— Vdivu— p ' VK (u) + p71V8, Vi),
== (A, 9)e, — (V9, Vo) + (07 V(0 — K(u)), Vip)g,
which, combined with (3.4), furnishes that
(p71V(6 - K(u)),Vp)q =0 for all p € W, ().
In addition, we have [K(u) — 8] =0 on I’ and K(u) — 6 =0 on I'y, since g satisfies (3.5) and
< [h],n >=[< uD(u)n,n >] — [6] = [K(u) — 6] + [div u]
=[K(u)-6]+[g] onT,
<kn; >=<pDuny,n; >—-0=K(u)—-60+divu
=K(u)-6+g onl,.
Thus. the uniqueness of Proposition 3.1.implies K (u). = @, which means that the solution u €
W2()N of (1.1) solves (3.1) for f € Ly(2)N, h € W}(2), k € W, (Q4), and g of (3.4)-(3.5).

3.2. Reduced Stokes implies Stokes. We shall solve (1.1) by means of solutions to (3.1).
Given f € Ly(2)N, h e qu(Q)N, and k € qu(Q.,.)N, let k € WHQ) + qu,l‘+ (Q) be the solution
to the weak problem:

(p—vi/, VW)Q = (f’ VSO)Q for all pE qu’,l".,_ (Q)a

[k]=—<[h],n> onl, k=-<kmn;y> onl,.
Then the problem (1.1) is reduced to
Au — p ! DivT(u,6 — k) = f — p~1Vk, divu=g inQ,
[T(u,6 — k)n] =[h]— <[h],n>n, [u]=0 onT,
T(w,6 — k)ny =k—<k,n, >n, on Iy,
u=20 onI_.

It thus suffices to consider the problem (1.1) under the condition that
(3.6) (f,Vp)g =0for all p € W i, (@), <[hl,n>=00onT, <kmni>=0onTy.



Given g € DI,(), let Kx(g) = K(A\G(g) — Vg,—g,—g) by the operator K of Remark 3.2 (2),
that is, K(g) satisfies the weak problem:

(pTIVEA(9), Vo)g = (AG(g) — Vg, V)g forall o € Wy r, (),
[Kx(9)]=-[g] onT, Ki(9)=-g onTl..
Let u e qu (Q)N be a solution to the two-phase reduced Stokes resolvent problem as follows:

Au— p I DivT(u, K(u) =f + p 'VK)(g) on,

[T(u, K(w)n] = [b] + [g]n onT,

[u] =0 onT,
T(u,K(u))ny =k +gn4 onIy,
u=20 onI'_.

Let ¢ € qu,’n(ﬂ). Then, by (3.6) and the definitions of K(u), Kx(g),

0 = (f, Vp)g = (Au— p~' Div(uD(u)) + p~' VK (u) — p7'VK(9), Vp)g
= —(Adivu, @) — (Vdivu, Vo)g — (AG(9) — Vg, Ve)q
= —(A(divu—g),9)g — (V(divu —g), Vp)g.
In addition, by (3.6) and the definition of K (u),
[¢] = < [uD(u)n],n > —[K(u)] = [divu] on T,
g=<uDuni,ny >-K(u)=diva onTy,
which implies that
[divu—g]=0 onT, divu—g=0 onl,.
Thus, the uniqueness of Proposition 3.3 furnishes that divu = g¢ in , which means that u and

6 = K(u) — K)(g) solves (1.1).

3.3. R-boundedness for two-phase reduced Stokes resolvent problem. According to what
was pointed out in Subsection 3.2, we obtain Theorem 2.3 by the R-boundedness of solution operator
families for the two-phased reduced Stokes resolvent problem (3.1), which is also one of main objects
of [MS], as follows.
Theorem 3.5. Let 1 < g < 00,0 <e<m/2, N <r < oo, and max(q,q’) <r with ¢’ =¢q/(¢g—1).
Suppose that  is a bounded domain and T, T+ are closed hypersurfaces of W,? YT class. Let Xrg
and X'r 4 be given by

Xrg ={(£,h,k) | £ € L)Y, h e WAV, k e Wh@)M),

Xrq ={(F1,Fs, F3,Fy, Fs) | F1, Fs € Ly()N, Fy € Ly(0)N, Fy € L)V, Fs € Ly(94)V}.
Then there exist a positive number Ag > 1 and an operator family B(\) with

B()) € Hol (e g, L(Xr,g, W, (DY)

such that, for any A € X, and (f,h,k) € Xg 4, u = B(A)F\(f,h,k) is a unique solution to the
equations (3.1), and furthermore,
d\?
Ronara@n({ (A35) (GBO)IA€Zer}) <M (1=0,1)

with some positive constant M, where Fy(f, h, k) = (f, Vh, \1/2h, Vk, A\1/?k).
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Remark 3.6. (1) As mentioned above, Theorem 2.3 follows from Theorem 3.5.
(2) If u satisfies (3.1) with f € J;(Q), < [h},n >=0o0nT, and < k,n; >=0o0n Iy, then u belongs
to Jy(€2). This fact can be obtained in the same manner as in Subsection 3.2 with g = 0.

4. AN APPLICATION OF R-BOUNDEDNESS

In this section, we apply Theorem 2.3 to a two-phase problem of time-dependent Stokes equations
as follows:
( du—p !DivT(u,0) =f inQ x (0,00),
divu=g=divg in Q x (0,00),
[T(u,6)n] =[h], fulj=0 onT x (0,00),
< T(u,f)n;. =k onTI'; x (0,00),
u=0 onTI_ x(0,00),

(4.1)

\ u|t=0 =up in Qs

and prove some maximal regularity property of (4.1). To state the maximal regularity theorem, we
introduce some function spaces and symbols. For a Banach space X, we denote the usual Lebesgue
and Sobolev spaces of X-valued functions defined on time interval I by Ly(I,X) and W;*(I, X)
(m € N), and their associated norms by || - ||L,(z,x) and | - llwy(1,x), respectively. We set

Lyo(R, X) = {f € Ly(R, X) | f(t) =0 for t < 0}.

Let L, ,C;l, F, and F;! denote the Laplace transform, the Laplace inverse transform, the Fourier
transform, and the Fourier inverse transform, which are denoted by

LA = /_ Te M an L3 o) = 5 /_ T MgNydr (A= +ir),
Flfl(r) = / Teimwyd,  Folgl(r) = % /_ ™ girtg(r)dr.

—00

Note that we have the following relations:

42) LA =FleT 7). L3HeWI®) = e F (v +in)](E) (A =y + 7).

For any real number s > 0, let H;(R, X) be the Bessel potential space of order s defined by
HA(R, X) = {f € L(R, X) | F-'[(1 + |72)*2FIA(M](®) € Ly(R, X)}.

In addition, we set, for an open set D of R,

Hyp6 (D x R) = Hy/*(R, Ly(D)) N Lyo(R, Wy (D).

q p,0
Here, we introduce the Stokes operator A with domain Dy(.A) defined by
(4.3) Dy(A) ={u € W2V N Jy(Q) | [TaD(uw)n]=0on T,

[ul=00onT, T5,D(ujny=00onTy, u=0o0onT_},
Au=—p ! DivT(u,K(u)) for ue D,(A),
where K (u) is defined as in Section 3 and we have set
Taf=f—<fn>n, Topf=f-<fin, >n,
that are the tangential components of N-vector £ with respect to n, ny, respectively. Then we set
Dq,p(Q) = (Jg(2), Dg(A))1-1/p,p>
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where (-,)1-1/p,p denotes the real interpolation functor.
The aim of this section is to prove the following maximal L,-L, regularity property with expo-
nential stability for (4.1).

Theorem 4.1. Let 1 < p < 00, N < q < 00. Suppose that Q is a bounded domain and T', T+ are

closed hypersurfaces of qu Y49 Class. Then there exists a positive constant gy such that if the right
members £, g, g, h, k, and ug of (4.1) satisfy the conditions:

€f € Lpo(R, L)Y, e®ge HIF(QxR), eheH, (@ xR)Y,

etk € Hyo By x R)Y,  ug € Dyp(€),

e (g, 8) € Lpo(R, Ly(0)V*N with [g(t)] ' n=0o0nT, g(t)-n =0 onT_ (t>0),
then the equations (4.1) admits a unique solution (u,8) with

u € (W((0,00), Lg(€) N Ly((0, 00), W2, 6 € Ly((0,00), WH(Q) + Wi, (@),
which possesses the estimate:

(44) ”eaot(atu, u, Vu, Vzu) ”Lp((o,oo),Lq(Q)) + ”e€0t6”LP((0,oo),qu (Q)) S C(HUOHDZ,(;—I/P) (Q)

t . t €ot
+ €€, 008,8) |1, (0000 Lot * 1620 W) 12 my + 1Kl a2, cmy)
with some positive constant C.

Remark 4.2. The uniqueness follows from the solvability of some dual problem (cf. e.g. [Sail5,
Section 7]), so that we only prove the estimate (4.4) in the following subsections.

To show Theorem 4.1, we divide the equations (4.1) into the following two systems:

(Byv — p 1 DivT(v,n) =0, divv=0 in 1 x (0, 00)
[T(v,n)n] =0, [vl]=0 onT x(0,00),

(4.5) < T(v,7)ny =0 on I'} x (0, 00),
v=0 on I'_ x (0, 00),
. V]t=0 = g in €;

( Oyw — p~ ! DivT(w,k) = f, divw =g inQ x (0,00),
[T(w,k)n] =[h], [w]=0 onT x(0,00),

(4.6) { T(w,s)ny =k on Iy x (0, 00),
w=0 onI'_ x (0, 00),
\ W|t=0 = 0 in Q,

where we note that solutions of the equations (4.1) are given by u = v +w and § = 7 + . In the
following subsections, we will discuss the equations (4.5)-(4.6).

4.1. Analysis of the equations (4.5). In this subsection, we shall solve the equations (4.5) by
means of analytic semigroup. We start with the following equations:

Qv+ Av=0 inQx(0,00), Vo= 1uo in
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with ug € J(§2), which are equivalent to
v —p !DivT(v,K(v)) =0 inQ x (0,00)
[T(v,K(v))n]=0, [v]=0 onT x(0,00),
(4.7 T(v,K(v))np =0 onT4 x (0,00),
v=0 onl_ x(0,00),

V|i=o =up in Q.

Then, by Theorem 3.5, the resolvent set p(A) of A contains % ,. Denoting the resolvent operator
of A by (A+ A4)71, we have (A + A)~!f = B(A\)(f,0,0,0,0) for any A € &, 5, and f € J,(£2). Note
that (A + A)~'f belongs to J,(£2) by Remark 3.6 (2). Since the R-boundednee of B()) implies the
usual boundedness, we obtain

(4.8) 1w, A 270, V2u)(l;, o) < Cllflls@) (A€ Sepo),

where we have set u = (A + A)"!f. The resolvent estimate (4.8) furnishes that the following
proposition holds.

Proposition 4.3. Let 1 < ¢ < 00, N < r < 00, and max(q,q’) < r with ¢ = q/(g —1). Suppose

that Q is a bounded domain and T, Ty are closed hypersurfaces of w? “YT class. Then the Stokes
operator A, defined as (4.3), generates a Co-semigroup {e *};>0 on Jq(Q2), which is analytic.

Let v = e*tuy and 7 = K(e *ug) for up € J,(Q). Then (v,) satisfies (4.5). In fact, since v
satisfies (4.7) and belongs to Jy(Q2), we see for any ¢ € qu',n(ﬂ) that

0=(v,Vp)g = —(divv,9)gq + ([v] ' m,0)r + (v-n_,0)r_ = —(divv,p)g,

which implies that divv = 0 in €.
The aim of this subsection is to prove the following theorem concerning (4.5).

Theorem 4.4. Let 1 < p < 00 and N < q < 0o0. Suppose that Q is a bounded domain and T,
T'y are closed hypersurfaces of qu ~Y4 clgss. Then, for any initial data vy € Dq,p(Q), (v,m) =
(e~ Atug, K (e™Atuy)) solves the equations (4.5) uniquely and

v € (W,((0,00), Lg(€)) N Ly((0, 00), WG ()™,

™ € Ly((0,00), Wy () + Wyr, (2))
with the estimate:
(49) e By, v, YV, V)l 1, (0,000, Lot + 1€ T 1, (000w ) < Clluolloy, ()
for some positive constants €9 and C.

Proof of Theorem 4.4. Tt suffices to show an exponential stability of {e”*t};>0, that is, there exits
a positive constant £¢ sufficiently small such that

(4.10) lle™**uol| 7,0y < Ce 2 |lugll ) (¢t > 0)

for some positive constant C. In fact, if the estimate (4.10) holds, then we can obtain the estimate
(4.9) in the same manner as [SS08, Theorem 3.9] since {e~**};>¢ is analytic.



To show the exponential stability, we consider the resolvent problem with resolvent parameter
A € C as follows:
Au—p ! DivT(u,K(u))=f in§,
[T(u,K(u))n]=0, [uj=0 onT,
T(u, K(u))ny =0 onTy,
u=0 onl_,

(4.11)

and prove that the resolvent set p(A) contains ¥ U {0} for 0 < & < 7/2. By Theorem 3.5, let
u = Rf be the solution to (4.11) with A = 2)g and f € Ly(Q)Y, where R is the solution operator
satisfying R : Ly(Q)N — W2(Q)N. Then we have

A(Rf) — p~' Div T(Rf, K(Rf)) = [ + (A — 2X0)R]f in Q,

[T(Rf, K(Rf))n] =0, [Rf]=0 onT,
T(Rf, K(Rf))n, =0 on Iy,
Rf=0 onI'_,

which means that if there exists the inverse mapping of [I + (A — 2X0)R] : Ly(Q)N — Ly()N,
then u = R[I + (A — 2Xo)R]™!f is a solution to the equations (4.11). On the other hand, the
invertibility of [I + (A — 2X0)R] (A # 2Xo) on Ly (Q)VN follows from the uniqueness of (4.11) by
the following observation: By Rellich’s theorem, Wg(Q) is compactly embedded into Lq(Q), S0
that R : Lq(Q)N — Lq(Q)N becomes a compact operator. This combined with the Riesz-Schauder
theorem furnishes that the existence of inverse mapping of [I + (A — 2Xo)R] is equivalent to the
injectivity of [I + (A — 2Xo)R]. We shall prove the injectivity under the assumption that the
uniqueness holds for (4.11). Suppose that [I + (A — 2X)R]f = 0. Then u = Rf satisfies (4.11) with
A € C\ {2)\o} and f = 0, which, combined with the uniqueness of (4.11), furnishes that Rf = 0.
Hence, we have f = 0 since f = 2)\o(Rf) — p~! Div T(Rf, K(Rf)) = 0 by the definition of R and
Rf = 0. This implies the injectivity. L

From now on, we shall show the uniqueness of (4.11). Let (f,g) = [, f(z) - g(z) dx and I£]12 =
(f,£). Since 2 < N < ¢ < 00, L,() is continuously embedded into Ly(€?), which means that it is
sufficient to consider the case L(2). We multiply (4.11) with f = 0 by U, integrate the resultant
formula over €2, and use integration by parts to obtain

(412) 0= Alypul® + [l VED@)|P = BN)lVBull + [|VED@)? + i(SN)|y/Aul®.

By (4.12), we have u = 0 when R\ > 0 or S # 0. In addition, when A = 0, we obtain D(u) =0,
which furnishes that u = 0 since u =0 on I'_. Hence, we have the uniqueness for A € C\ (—0,0).

Summing up the above argumentation, we see that p(A) contains ¥, U {0} for 0 < ¢ < 7/2, and
also we can show that the unique solution to (4.11) satisfies the following resolvent estimate:

(4.13) (L+ MDlull, @) + @+ YAVl @) + 1Vl @) < Clifll @)
for any A € £, U {0}. By (4.13) and noting Remark 3.6 (2), we have (4.10). O

4.2. Analysis of (4.6). In this subsection, we show the following theorem.

Theorem 4.5. Let 1 < p < 0o, N < ¢ < 0o0. Suppose that Q is a bounded domain and I', 'y are
closed hypersurfaces of Wq2 Y9 tlass. Let €o be the same positive number as in (4.10). If the right
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members f, g, g, h, and k of (4.6) satisfy the conditions:

e € Lpo(R, Ly()N, etg € HIVF(Q x R),
e*th € Hh (@ x R)Y, etk e HoMP (@ x R)V,
e (0,2, 8) € Lpo(R, Ly(R)N  with [g(t)] n=0o0nT, gt) -n. =0 onT_ (t>0),
then the equations (4.6) admits a unique solution (w, k) with
w € (W((0,00), Lg(€) N Ly((0,00), W)Y, & € Lyl(0,00), W) + Wr, (),
which possesses the estimate:

EQt

€%t (8w, w, Vw, V2 W)”L (0,00, Lo()) T e tg"Lp ((0,00), W2 (S2))

< O (I (£, 018, B)11, (000 2oty + 1€ @ W) arn gy + 169Kl ara, my)
with some positive constant C.

Proof of Theorem 4.5. We divide the equations (4.6) into the following three systems:

(Opw! + 2Xow! — p7 ! Div T(wl, &) = f, divw! =g in Q x (0,00),
[T(w!,«)n] =[h], [w!]=0 onT x(0,0),
(4.14) { T(w!,k)n. =k on I'; x (0, 0),
wl=0 on I'_ x (0, 0),
L Wl|t=0 =0 in &
([ Bpw? + 20ow? — p~ ! Div T(w?, k%) = VQ,(2Aw?), divw? =0 in Q x (0,0),
[T(w?, k%)n] =0, [w] =0 onT x (0,00),
(4.15) $ T(w?, k¥)n. =0 onI'y x (0,00),
wl=0 on I'_ x (0, 00),
L w0 =0 in Q;
( 8,w® — p~! Div T(w?, k%) = Py(2Xow') + 2Xow?, divw® =0 in Q x (0,00),
[T(w3, %n] =0, [w®] =0 onT x(0,00),
(416)  { T(w k3, =0 on I'; x (0, 00),
w3=0 on I'_ x (0, ),
\ W3|t=0 =0 in Q

As the first step, we show the following lemma.

Lemma 4.6. Let 1 < p < o0 and N < q < 0o. Suppose that Q is a bounded domain and I', 'y are

closed hypersurfaces of qu ~1% (lass. Let €o be the same positive number as in (4.10). If the right
members f, g, g, h, and k of (4.14) satisfy the conditions:

e € Lyo(R, Ly())", etg e HR (A x R),
e'h e H R(@ xR)Y, ek e H‘ SRy xRN,
€t (9,8,8) € Lpo(R, Ly(N))N  with [g(t)] mn=0o0nT, g(t) - ny =0 onT_ (¢ >0),
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then the equations (4.14) admits a unique solution (w', k') with
wh € (W ((0,00), Lg($2)) N Lp((0,00), W ()Y, ' € Ly((0,00), Wg () + Wor, (),
which possesses the estimate:

(417) [l @w!, W, VW, VPW I (0,000 La() 167 L1, (0,000 w2 )

< C(Hes(’t(f, 0e8: )| 1, (0,000, Lo() T 1€ (9 D) | vz ey + ||€5°tk||H;;;/2(n+xR))
with some positive constant C.

Proof. Smooth functions having compact supports with respect to time variable are dense in the
spaces for f, g, h, and k, so that we may assume that f, g, h, and k are smooth and supported
compactly with respect to time variable. Applying the Laplace transform with respect to time ¢ € R
to (4.14), we have

(A4 2Xo)u — p~ 1 DivT(u,8) = L[f](A), divu=L[g](}) inQ,

(4.18) [T(u,0)n] = Lh](A) [u] =0 onT,
T(u,6)n = LIk|(A) onTy,
u=90 onI_.

In view of Theorem 2.3, we define w! and «! by

wh = LA+ 200) Fagar, (LIE](A), LIg)(V), L[B](A), LK](V)]

k' = L3 [P+ 220) Fatax, (LIFJ(A), LIgl(A), L[R](N), LK](V))]-
Let A = —gg + i7, and we set
F =Fiyax, (L[fI(V), L[g](A), L[B](X), LIK](V))
= (Flerott], FleotVgl, FIAY B, (°0)], FIEw0G(9)] + 200 FleG (o)),

FleoVh], FIAY (0], Fle V], FIAT o, (100])-

Thus we obtain

w! = L3 [(A+2X0)A(A + 2X0)F] — £} { 20

m()\ + 2/\0)A()\ + 2)\0)F} ,

vw! = ;! [m(x +220)2VA() + 2>\0)F} . V2wl = £ [VPA(A + 200)F]
0
1
w! =}t {m(A +2X0)A (X + 2,\0)F] , K'=L{[P(A+2X0)F],

which, combined with (4.2), Theorem 2.3, and the Weis’s operator valued Fourier multiplier theorem
(cf. [Wei01, Theorem 3.4]), allows us to conclude that the estimate (4.17) holds. Here we note that
G(g) = g and have used the following proposition.

Proposition 4.7. Let m()\) be a bounded function defined on a subset A in the complex plane
C, and let M,()\) be a multiplication operator with m()\) defined by My (N)f = m(A)f for any
f € Lg(D) with an open set D C RY. Then,

Re(Lo0){Mm(A) | A € A}) < C|lm|Lo,(a)-

Finally, the same argumentation as in [Sailb, Section 7] furnishes that u(t) = 0, (t) = 0 for
t < 0 and the uniqueness holds. O
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We now apply Lemma 4.6 to (4.15) with f = VQ,(2Aow?!) in order to obtain
(419) Nl (Bw?, w?, VW2, VW)l 000, Ly + 16K 1, (0,00 w30
t , t t
< 165, 48,8 0ot + 170D i ey + 1Kl )

with some positive constant C, since ||e€°tVQq(2)\0w1)||Lp((0’°o)’Lq(Q)) < C’||65°tw1IILP((OYOO)’Lq(m).
Finally, we consider (w3,3). Let W(t) = P,(2Aow!) + 20ow? € J,(92), and then we have by
(4.17), (4.19)

(420) {1 Wl (0,000, o)
eot X eot t
< (e (£, 08, @)l 0.z *+ 1€ (0 /2 oy + 1€ Kl 2, cm))
Since it holds that
t
wi(t) = / e A= )W(s)ds and W(t)=0 fort <0,
0
setting x+(t) as x+(¢) =1 when ¢ > 0 and x4(¢t) = 0 when ¢ < 0 yields that
¢ ¢
eEOtHWB(t)“Lq(Q) < C[) eeote-—i’eo(t—s)”W(s)“Lq(Q) ds = C/(; e—eo(t—s) (esosllw(s)“Lq(Q)) ds
=0 [ x4(t = 5)em20) (25| W(s)lp, @) ds = C [(x+()e ™) * (X IWly(e)] B
o Lqg () + Lq(82)
Thus, by Young’s inequality and (4.20), we have
e W2l r,zq () < Clx+ (e Ly (0,00) 1€ Wl & 1, 2
< (1675, 08, 8)l, 0001208 + 1 (0 W) a3 ey + 1€ Kl 73, )

In addition, we rewrite the equations (4.16) as follows:

[ 8;w? + 20ow? — p~! Div T(w?, k%) = Py(20ow!) + 20ow? + 20ow® in Q x (0, 00),
divw® =0 in © x (0,00),
[T(w?, &3n] =0, [w?]=0 on I' x (0, 00),
< T(w?, &%), =0 on I'; x (0, c0),
wi=0 on I'_ x (0,00),
L w3|t=0 =0 in Q,

which, combined with Lemma 4.6 and the last estimate, furnishes that
3 W3 3 243 cot .3
(421) [l @w®, w?, VW7, VEWO) | (0,000 o)) + 1€ 1, (0,000 g 1)
< O (1€ (£, 4. 81, (0000 o) + 10 Dl asrzrmy + €Kl arage, gy )-
We thus obtain the required estimate in Theorem 4.5 by (4.17), (4.19), and (4.21). a

By Theorem 4.4 and Theorem 4.5, we obtain Theorem 4.1.
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