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BOUNDARY LAYERS OF INVISCID COMPRESSIBLE NON-ISENTROPIC FLOW IN
HALF SPACE

CHENG-JIE LIU, YA-GUANG WANG, AND TONG YANG

1. INTRODUCTION

In this paper, we consider the asymptotic behavior of inviscid compressible non-isentropic flow in half
space of R¢,d = 2,3, as the heat-conductivity tends to zero. As Prandtl found in his pioneering work [30],
away from the boundary the flow is mainly driven by the inertia while the friction force is negligible, where
the flow can be described approximately as inviscid, and the friction force plays a key role in determining
the behavior of flow near physical boundaries, in which it generates large vortices. On the other hand, as
observed by many physicians and mechanicians, cf. [31, 32, 28, 2, 17, 37|, the heat conduction also has large
gradient near physical boundaries, thus it is challenging and very important to analyse the flow behavior
near boundaries. In our case, the boundary layers can be describe by the following initial-boundary value
problem in {(t,z’,y): ¢t > 0,2’ € R}y e Ry }:

B:up + (up - Vi + ugdy)up = 0,
80 + (uh Vi + uday)O = 5}56359 + %"9,
(1.1) Vi up+8ug = %359 — .(_1—;)-”:’
] / . _ ,
(’Ud,e)ly:o (0,0 (t, X )), yl{_n‘-]oo 0(t’ z, y) —_ e(t,x )’

(un, 0)|e=0 = (uno,60)(=’,y),

where P = P(t) and ©(t,z’) are positive known functions, and x > 0 is a constant. One can find the
derivation of (1.1) in Appendix. This paper is devote to show the local existence of smooth solution of
boundary layers problem (1.1) without monotonicity condition for initial data, and give a simple solution
which forms a singularity in finite time. The limit of smooth solutions is studied when the temperature tends
to a constant state. Then, we consider the linear stability of the problem (1.1) around a shear flow.

The mathematical theory and stability analysis of boundary layers in fluids are classical and challenging
problems. The concept of boundary layers was introduced in Prandtl’s seminal work [30] in 1904, and its
importance in mechanics was first studied by Prandtl in [31, 32]. It was also studied throughly by many
mechanicians in [2, 17, 28, 35, 37] and references therein. Oleinik and her collaborators in [29], obtained the
well-posedness of the two-dimensional Prandtl boundary layer equations in viscous incompressible flow in the
class of tangential velocity being strictly monotonic with respect to the normal variable by introducing the von
Miss or Crocco transformation. Recently, Oleinik’s well-posedness result was reproved by the energy method
without using the Crocco transformation by [1] and [27] independently. Under the Oleinik monotonicity
assumption and an additional condition of favorite pressure, Xin and Zhang ([43]) obtained a global weak
solution to the two-dimensional Prandtl equations. Without the monotonicity assumption of the velocity
field, the Prandtl equations are ill-posedness in general in the finite order Sobolev spaces of solutions, it is
related with the separation of boundary layers, it is studied by many mathematicians, cf. [3, 4, 5, 6, 8, 10, 12].
The well-posedness of the Prandtl equations in the frame of analytic solutions was studied in [16, 23, 33],
and the almost global existence of analytic solutions was obtained recently by [13, 44]. Recently, the authors
[20, 21, 22] have studied the stability and instability of the Prandtl equations in three space variables. Among
the mathematical problems of boundary layers, the convergence from the Navier-Stokes equations to the
composition of the Euler equations for outflow and equations of boundary layers in the small viscosity limit
is almost completely un-known, except some special cases, such as under additional diffusion conditions of
energy [14, 15, 38], for circularly symmetric flows {24] or anisotropic viscous flows [18], in the space of analytic
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solutions [34], under the assumption of support of vortices being away from boundary [25], a steady flow over
a moving plate [11], the problems of non-characteristic boundary layers [9, 26], the flows with Navier-slip
boundary conditions [41] and so on. All above theoretical works were focused on the incompressible flow,
for which there are only viscous boundary layers near the boundaries. As studied in [2, 17, 35, 37], the
compressible flow near boundary is much complicated, there are not only viscous layers but also thermal
layers, in which the heat transfers quickly, and there exists interaction between viscous layers and thermal
layers. There are a few works on compressible viscous flows, the linearized compressible Prandtl equations
were studied in [42], the well-posedness of the Prandtl equations in two-dimensional isentropic compressible
flows in the monotonic class of tangential velocity was studied in [39] and [7] independently, and the large
Mach number limit of the compressible Prandtl equations was also considered in [7], the small viscosity limit
of the compressible isentropic viscous flow with the Navier-slip condition was obtained in [40], and the Kato
theory of the limit from the Navier-Stokes equations to the Euler equations was extended to the compressible
flow in [36]. These results are only limited to the isentropic flow which avoids the thermal layers, and so far
there are few mathematical theories on the thermal layers. In [19], we have studied the behavior of viscous
layers and thermal layers in nonisentropic compressible circularly symmetric flows with the viscosity and heat
conductivity having the same scale.

2. MAIN RESULTS

Firstly, we show the local existence of solutions to problem (1.1). Let Iy be the k x k identity matrix for
some integer k, and denote det(A) by the determinant of the matrix A. Then, we improve the method of [12]
and have the following local existence result for the above problem (1.1), where no monotonicity condition is
required on the initial data.

Proposition 2.1. Let upo(z’,y),80(2',v),0°(, '), P(t) and ©(t,z') be smooth functions satisfying that

t:i=inf{¢t: inf det(ly_ ,y)) >0, Vs € [0,¢]} > 0.
(2.1) inf { (m',ly)elki et(Ig-1 + sVruno(z',y)) s €[0,¢]}

and there ezists a positive constant Cy such that for t € [0,£*) and (z',y) € R‘fl,
(22) ||“h0||02a “90”C1a IPt' < CO? C()_l < Ho(xl,y), 00(t7x,)7 e(tvx,)’ P(t) < CO'
Then, there exists a to : 0 < to < t* and a unigue classical solution to (1.1) in [0,0) x R% given by
uh(t7 '77/73/) =Uro (§(t’x’7 ﬂ(taw',y)),ﬂ(tyx':y))> e(t’wlv y) = é(t)xlv n(t7x/’y))’
(2.3) n(te’y) g n(t,z’,y) o
witd )= [ D e+ [ oo n(e,e)  In(,2)]d
0 0
Here, the vector function £(t,2’,z) € R%™1 is the solution of
(24) a' = €+ tun(€, 2);
the scale function a(t,2’, z) and vector function b(t,z', z) are given by the initial data and £(¢, %', 2):
a(t,z',z) = %Qo(g(t,x’,z),z) - det(Ig—1 + tVauno) (€(t, 2, 2), 2),
b(t,a',z) = uno(£(t, 2, 2),2);
the function 0(t, ', 2) is a positive smooth solution to the following problem in {0 < t < to,z > 0,2’ € R4~},
8,0 +b- Vi — £5:0 - 525,(%8.0) = 0,
o ) / : 0 /
(26) ?]z:o =0 (tax )1 Zl}g—loo 6= @(t,:l? )7
Bli=o = Oo(a', 2);

and then the scale function n(t,z’,y) is the solution of

(2.7) y = /On Mdz

at,z’',z)

(2.5)
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Proof. We use the method of characteristics to solve the problem (1.1). We assume that (u,v,) is a smooth
solution to (1.1), and introduce characteristic coordinates:
t=r, o = xl(Ta§1 77), y= Zl("'aEﬂ?)
with £ = (&1, ,€4-1) € R¥™1, which satisfies that

28) {afw,y)(r,s,n) = (un,uad) (@' (1,€:1),y(r, &),
(@, 9)©0,&m) = (&n)
Then, let
(2.9) (h, U, 0)(1,€,m) = (un,uq,8) (7, 2'(7,€,m),y(7,€,m)),
the equations of (1.1) are deduced as
o-up, = 0,
(2.10) {a,é h= £0020 + =56,
with the initial data:
(2.11) (@h,0)l-=0 = (uno,b0)(&,n)-
Combining (2.10) with (2.11), it is easy to obtain
(212) an(r,6,m) = upo(é,m),
Plugging (2.12) into (2.8) yields
(2.13) ' = £+ Tupe(é,n).

Note that from (2.13), Vez’ = I4_1 + 7Veupo with the derivative operator Ve = (8¢, - - ,O¢,_,)T, which is
positive for 0 < 7 < t* by virtue of (2.1), it implies that the equation (2.13) is invertible to give £ = &(7,2',7)
when 0 < 7 < t*.

Next, denote by J(r,£,7) the Jacobian of the transformation between (2',y) and (¢,7):

d—1

J(1,&,n) = %%)- = det(Vez') - Opy — Z [det(Vla:') - 8¢.y),

where the derivative operators
Vi=(- 10 1,000, )T, 1<i<d-1.
From (2.8), we have J(0,£,7n) = 1, and by combining with the divergence condition in (1.1),
8-J(7,6,m) = J(1,€,1) - (Vi - up + Byua) (1, 2'(, €', 1), y(7, €', m))
= J,60) - [ e - (-0 55
which implies that by virtue of (2.10) and (2.11),
P(0)

We(ﬂ&ﬂ)-

(2.14) J(r,&n) =
From (2.13), we have
det(Vez')(1,&,m) = det(ld_l + TVguho(T,ﬁ,n)) >0, forT<t¥,

then combining with the above relation (2.14), it follows that

d-1

det(V;z') _ P(0) =
(219 =3 [aetver) % = P dervemmen 6

i=1
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We obtain that by calculation, the characteristics of the equation (2.15) are &’ = constant or £ = &(r,2',7)
given in (2.13), then denote by

(2.16) b(r,@',n) = 8(r,&(r,a',m),m),

and it implies that from (2.15),

-(2 T &(r,x’ = P(0) o(r, &(r, 2
o 5, (e M) = e dev e e ) e
' R
B a(Tvx’an)’

where the scale function a(r,2’,7) is given in (2.5). Moreover, as ug4ly=0 = 0 and the characteristic equation
(2.8), the boundary y = 0 is a particle path, thus we may set y = 0 when 7 = 0. Therefore, integrating (2.17)
along characteristics, we obtain

7 6(r, 2, 2)

a(r,a',2)

(2'18) Yy = y(7'7§(7',1",77)771) = \/0

Consequently, when 0 < 7 < #* and § > 0, we have that a > 0 from the definition (2.5), and then by virtue
of (2.18),

f(r, ', n)
=—=<>0
oY= om0
the equation (2.18) is invertible to give n = n(r,z’,y) with
/
(2.19) ny = anayn) g,
6(r,z',m)

Moreover, the domain {y > 0} is changed as {n > 0} with the boundary {y = 0}, y — +00 respectively,
being changed as {n = 0}, n — +oc respectively.

Now, we will derive the formula (2.3) and the problem (2.16) for 6(r,z’, 7). Note that the inverse function
of (z',y)(7,€,n) is

(§(T, ', n(r,2',y)), n(r, a:',y))
given by (2.13) and (2.18). Thus, combining (2.9), (2.12) and (2.16) yields that
uh(T7 xla y) = Up0 (5(77 LL‘/, 77(7', xla y))a 77(7‘7 xl, y)) ) 0(Ta 111/, y) = é(T? :L‘/, U(Ta xla y)) )
which gives the formulas of u,(t,2’,y) and 8(¢,2',y) in (2.3). Denote by

K é(T: z', 2)

i ! = ———=d
§(r ', m) /0 alr.a2)
then from (2.18) and (2.13) we have y(7,&,n) = §(7,£ + Tuno(£, 1), n), which yields that

(2.20) Y- (1,6,m) = 8, (1, € + Tuno(€,m),m) + uno(€,7) - Vag(r, £ + 7uno(§, 1), m)-
Combining (2.8) with (2.20), we get that

ud(Ty .’1)’(7', Ea n)»y(7’€7 77)) = y'r('r?é-’n)
n d n g

= / ar(_)(T7€+TuhO(gyn);z)dz‘F/ uh0(€yn) 'vh('—)('r,g+Tuh0(£1n)7z)dza
0 a 0 a

which implies the formula of ug(t,z,y) in (2.3) by using that (2.13) and (2.18). Next, from (2.16) and the
relation (2.13) we have

é(’ﬂfﬂ?) = é(Tyf‘l'TUho(&Tl)aTl),
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and then,
8:0=0.0+up-Vl,  Ved= (Is1+7Veupo) - Vrb,
8,0 = 8,8 + TOyung - V6.
Moreover, from (2.13) it follows that
(Ia—1 + TV¢uno) - &, + TOpupe = 0,
thus we obtain that by virtue of (2.19),

8,0(r,(r, s 1)un) = [(6 - Vi + 8008 (7, Er, /o)) -y = By, ) - 22D

O(r,2'\m)
Therefore, the problem for # given in (2.10) and (2.11) can be reduced as follows,
{8754- uko (&(7,2',m), M) - Vil = -“1(;—%"!18,, (ﬂ%"'lla,,é) + 5;;—2};20: in [0,¢*) x R4,
Blr=0 = bo(z', n)-
Then, from the boundary conditions of 8 in (1.1), we get

Blp=o = 0°(r,a’),  lm O(r,z',m) = O(r,2),

100

so we obtain the problem (2.6) for 6(r,z’,n). Then, by the standard Picard method, we may know that the
problem (2.6) admits a positive classical solution in [0,%o) x R for some to < t*. Finally, One can check

directly that (2.3)-(2.7) defines a smooth solution to the problem (1.1).

O

Remark 2.1. From (2.3) and (2.7) with the definition of the function a in (2.5), one can deduce that there

may be a loss of derivatives in the horizontal variables ' for the solution to (1.1).

2.1. Singularity formation. In this subsection, we establish a singular solution of problem (1.1) based on
the inviscid Prandtl equations. For this, we consider a simple case of the problem (1.1) with the constant

outflow, i.e., functions P(t) and ©(t,z') are constants. More precisely, we consider the following problem

Spup + (up - Vi + ugdy)up = 0,
80 + (un - Vi + uqabdy)0 = 0026,
(2.21) Vi -up + ayud = (959,
(ud’0)|y=0 = (07 eo(t’xl))’ yEI_Poo 0(t,x7:‘/) =1,
(un, 8)le=0 = (uno, 60) (=, y)-
Then, the following proposition shows the singularity formation of the solution to (2.21).

Proposition 2.2. Assume that the initial-boundary data of problem (2.21) is given by
(wno,00)(z',9) = (Ulw+ fol@),1), 6°ta) =1,

where U(y) = (U1(y), Ua2(y)) and fo(z') are smooth functions. Then, there eists a solution to (2.21) with

o(t,z',y) =1 and
uh(tam’a y) = U(y + f(tv xl))v ud(t1x’7 y) = “ft(ta a;l) - U(y + f(t,:l,‘l)) ) vhf(t)x/))
where the function f(t,x') is the solution of
fe+ U(f) - Vaf =0,
f(0,2') = fo(z').
If B
th = -[Jg& U (fo(z')) - Vhfo(z')] >0,

then Vyup and ug blow up ast 1 t*.
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The proof of the above proposition is similar to the one of Proposition 3.1 in [12], so we omit it here.

2.2. Convergence to the inviscid Prandtl equations. In this subsection, we investigate the asymptotic
behavior of solution to (1.1), as § tends to a positive constant. We take the simple case (2.21) for brevity,
and the general case can be studied by similar arguments. More precisely, we will consider the asymptotic
behavior of solution under the condition

(2.22) 00(t,z') = 1+, '), Oo(z',y) = 1+ebo(z’,y)

with € << 1. Formally, (2.21) tends to the following inviscid Prandtl system for small e,
Oyup, + (uh -V + uday)uh =0,

(2.23) Vi up + Oyug = 0,
Udly=0 =0, Uplt=0 = upo(z’,y).

Through analogous arguments in Proposition 2.1, it’s not difficult to show the local exsitence of solution to
(2.23), where we don’t need monotonicity condition on the initial data, either.

Proposition 2.3. Let ug(z',y) be smooth initial data of problem (2.23) such that

(2.24) t] :=inf {t : (x',iyr)lglki det(I4—1 + sVaupo(2',y)) >0, Vs € [O,t]} > 0.

Then, (2.23) has a unigue classical solution in [0,t*) given by

uh(tv .T,, y) =Uno (El (t, IE,, T (t) zja y))7 m (ta "Ela y)) »

m(ta’,y) 1
wea)= [ e+ [
0 ai 0

Here, the vector function €1(t,x,z) € R*! is the solution of

(2.25) ﬂl(tﬂ"»y) [

1
bt m(t,a,y)) - Vh(a—l)(t,:c’,z)] dz.

(226) z = &+ tuho(£1,z);
the scale function a1(t,z’, 2) and vector function by (t,x’,z) are given by the initial data and &1(t, ', 2):

ay1(t,x’,2) = det(ly—y +chuho)(€1(t,x’,z),z),
bi(t,z',z) = wuno (§1 (t, 2, 2), z);

and the scale function m(t,2',y) is the solution of

2.28 " —1
( . ) vy = /; al(t;x,7z)dz.

Now, we show that the solution of (2.21) given in Proposition 2.1 converges to (up,uq,1), where (up, ug)
is a solution of (2.23) given in Proposition 2.3.

(2.27)

Proposition 2.4. For the problem (2.21) with smooth initial-boundary data (uno,8) and 6° satisfying (2.22)
and the assumptions of Proposition 3.12, let (up,uq,6)(t,z’,y) be the solution of (2.21). Also, we assume
that

(2.29) (1 +)*6(z',y) € HLZ(R*, Hy(Ry))

for some constant k > 1. Let (up1,uq1)(t,2',y) be the solution of problem (2.23) with smooth initial data

Uno -
Then, for sufficiently small € there is a constant C' > 0 independent of €, such that for (t,z',y) € [0,t0) xR%
with to being given in Proposition 2.1,

(230) ](uhi Ud, 6)(ta x” y) - (uhla Ud1, 1)(t’ .’E’, y)' < Ce.
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Proof. Firstly, by (2.22) the representation of 8 in (2.3) can be rewritten as

(2.31) o(t,a',y) = 1+ef(t,2,n(t,2,y)),
where 6(t, 2, z) satisfies
0 0 ; * d-1
(2.32) (?t0+b'~V0h6‘—l (1:980) 0, m{OSt<t,z>0,x’€R },
0|z=0 =0 (t,.’L‘ ) 9|t_0 = 00(1: 73)'

Then, through classical Picard method we may have the local existence of solution to (2.32). Moreover, under
the assumption (2.29), by the standard energy method it’s not difficult to obtain that there is a constant
C1 > 0 independent of ¢, such that

(2.33) (1 +2)*8l 1o (2,13 < Cn,

which also shows the component of 8 in (2.30) by the Sobolev embedding inequality.
Secondly, compare Propositions 2.1 with 2.4, we know that the auxilary function £(¢,2’, z) given by (2.4)
coincides with & (t,2’, z) in (2.26), which implies that by combining (2.5) with (2.27),

(2.34) a(t,z’,2) = ai(t, @, 2)[1 + efo(E(t,2',2),2)], b(t,,2) = ba(t,a,2).
Then, from (2.7) and (2.28) we have

n(t,z’,z) 1 é / m(t,z’,z) 1
/ L+ et a'z), / 4
0 a(t,z’,z) 0 al(t,z’,z)

which implies that by (2.34),
) it 0t ) - Bolel,2),2) RO 1
(2.35) € t dz = ——/—dz,
0 a( x z) n(t,z’,z) a1 (t,(l} ’Z)

From (2.27) we know that the functions a and @, are bounded and have positive lower bounds, that is, there
is a constant C, independent of € such that

C;l < alt,7,2), ai(t,2',z) < Cay (t,2',2) € [0,t0) x RY,
then the right-hand side of the above equahty gives that
(2.36) ‘ /m(t ') dz‘ > In — ml(t 2’ z)
ntaz) 01t T,2) C,
On the other hand, we have that for the left-hand side term of (2.38),
‘/"(t"‘ ) G(t, 2, z) — Bo (E(t, 2", 2), 2)

a(t,x’, z)

dz| < Ca(I6(t, ', 2) s + 1o (€t ', 2), ) I2)

< a1+ 2)46(t,2',2)lz2 + 11+ 2)o £, 2),2) s ).

Note that for t € [0,%) and z’ € R4,
16(t, 2", 2) < 118(t, ', 2)| a2, »
and ~ ~ _
leo(g(ta @, Z),Z)| < ||00(§(t,x’,z),z)||H:, < 04”00(‘77’7'2)”1!:,’

where we use that £(¢,z’, z) has bounded derivatives up to order two, provided that the smooth initial data
Upp. From the above three expressions we obtain that

,/”(“” 2) f(t, 2, z) — O (E(t, 2/, 2), 2)
a(t,x’, 2)

for some constant Cs > 0 independent of €. Plugging (2.36) and (2.37) into (2.35) implies that

(238) |77 7’]1|(t x’ Z) CZC5H(1 + Z) 0”L°°(H2 L2)€, V(t, x’,z) € [0, to) X Ri

(2.37) dz' < Ol + 2)*0l ooz, 12,



CHENG-JIE LIU, YA-GUANG WANG, AND TONG YANG
Now we will prove the components of uy, and ug of (2.30). Since £(t,2’,2) = &i(t,a', 2), it follows that from
the formulas of 4 and u; given by (2.3) and (2.25) respectively,
Iuh(t7xlay) - uhl(ta mlvy)l < ”gz(t’ !I:/,Z) . thhﬂ(g(tvx/az)vz) + 3yuh0(€(t7$'az)a2)||L°° ' |77 - nl|(t7$’ay)'

Combining (2.38) with the above inequality yields that there is a constant Cs > 0 independent of ¢, such
that

(2'39) Iuh(tvmla y) — Up1 (t,:l:', y)| < GCs €,
provided the smooth initial data upg. Similarly, we can show the component of ug in (2.30), and complete
the proof of this proposition. a

2.3. The linearization around a shear flow. In this subsection, we study the well-posedness and stability
of the linearization of problem (2.21) around a shear flow. It is easy to know that under the proper initial-
boundary values, (2.21) has a shear flow solution:

(240) (uh> Ud, 0>(ta -’Ela Z/) = (Uh(y)) 07 1) .

Then, the linearization of (2.21) at the shear flow (2.40) is

Syuy, + Uh('g) -Vaup + U;z(y)ud =0,

80 + Up(y) - Vi = 850,

Vi up + Gug = 850,

(udv 9)|y=0 = Oa (uh» 9)|t=0 = (uhOa 00)(1"’7 ZU)

We may solve the problem (2.41) by two steps. Firstly, we determine 6(¢,2',y) through the following linear
initial-boundary value problem:

(2.41)

(2.42) { 8,6 + Un(y) - Vi = 526,

Bly=0 =0, Bli=0 = bo(2,y).

It’s easy to know that the problem (2.42) with smooth initial data has a global classical solution and the
solution is unique. Secondly, with the known function 8(¢,z’,y) given by (2.42), we solve (up,uq)(t,z’,y) by
the problem:

dyup, + Un(y) - Vaup + U (y)ua = 0,
(2.43) Vh - up + Oyua = 826,

Ugly=0 = 0, Up|t=0 = Upo(z’, 7).
Therefore, we have the following result for the problem (2.41).

Proposition 2.5. Let Up(y), uno(a',y) and 6o(z',y) be smooth functions, then there exists a classical solution
(un, uq,0)(t, 2, y) to the problem (2.41), where 8(t,z',y) is solved by the problem (2.42), and (un,uq)(t,z’,y)
is given by

(2.44)

up(t, ', y) =upo(z' — tUn(y),y) + t U, (y) /y(Vh - uno) (2’ — tUn(z), 2)dz
v ‘ v
+ U'h(y)/ bo(z' — tUn(2),2)dz — U;L(y)/ o(t,z', z)dz,
0 0
ug(t,z’,y) = — /0 {(Vh - upo) (2 — tUn(2), 2) + t[Un(y) — Un(2)] - Va(Vh - upo) (' — tUh(z),z)}dz
- foy {[Uh(y) — Up(2)] - Virbo(2' — tUh(z),z)}dz +0,(t, 2, y) — 0,(t,2',0)

+ _/Oy {[Uh(y) = Un(2)] - V1o (t, “”I’Z)}dz'
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Proof. According to the above arguments, we only need to show the expressions (2.44) of (up,ug). From the
problem (2.41), we know that uy, satisfy a transport equation, and from the equations of (2.41), it follows
that 8,ug satisfies the equation

(2.45) (8t + Un(y) - Vi) (Byug — 830) — (U, (y) - Va)ug =0,

and the initial data

(2.46) Byua(0,2',y) = 8360(2',y) — (Vh - uno)(@’,y).

Thereby, we introduce the following coordinate transformation:

(2.47) T=t E=z' -tUn(y), n=y

with £ = (&1, - ,€4-1) € R%"}, and obtain the corresponding partial derivatives as follows:
(2.48) 0r =8+ Un(y) -V, Ve=Vh, 8, =208,+tU,(y) Vh.

Then the first two equations of (2.41) and (2.45) are reduced as

: = = 52
(2.49) Orun + Up(n)ua =0,  0:0 =56,
0r(0yuq — 8,0) — Uy (n) - Veua =0,

where V¢ = (0¢,, - ,,_,)T. Moreover, we have the initial data:

(2.50) (uh,8,8,ug)(0,€,m) = (uno, 80,0260 — Vi - upo)(€,n).
Set a Lagrangian streamfunction ¥ satisfying that
(2.51) U, = Oyuq, ¥lp=o0=0,
then, from (2.50) we have the following initial data:
(2.52) Vplr=o = (8260 — Vi - uno)(€,m).
Combining (2.51) with the third equation of (2.49), and using the second equation of (2.49) we have
(2.53) Bry — Ul(n) - Veua = 0%,
which implies that by virtue of (2.47)
(2.54) 3r(T¥,) = Bpua + 7020, or Onug = Oy(T¥), — 7826.

Integrating (2.54) in n and using the boundary values of ug and ¥, it yields that

Ud = (T‘I’),— - Talz' ( ‘/.n 0(T7£ + TUh(C)rC)dC)
(2.55) 0 "
= o, (re- TaT/O 8(r,€ +TUR((), ¢)d( +/0 8(r,€ +7Un(C),€)d¢ ).

Then, substituting the expression (2.55) of u4 into the equation of uy, in (2.49) and combining with the initial
data (2.50), we have

(2.56) \ , \
un = wno — Up(n) [0 - 787/ 8(r,€ + TUR(C), ()¢ +/ 8(r,€ + TUR(C), €)dC ~ / 60(£,O)dC).
0 0 0
Also, plugging the expression (2.55) of uq4 into (2.53), we get
8. (¥ — U} () - Ve¥)

. n n
= 026 - 5, (rUL(n) - Ve(@- [ 0(ri& + TUAO), O)0)) + Vst - Ve (0 [ 6(r,6+7UM(0),C)cc)
Ul ° n ’
=, (o0 (o /0 6(r€ +7UA(C),)dC) — TUR() - Ve (0, /0 6(r,€+TUA(Q), Q)¢ )|
+0, [U’,,(n) : Vf(/on (r, ¢+ rUh(C),C)dC)],
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which implies that by virtue of (2.48),

51 o (v-0, [ on6+1UN0,0K), =0, [V Ve( [ 60+ 700, )ac)]

Integrating this equation with respect to 7 and using the initial data (2.52), we have
(v-o /ne (r,e+ TUh(g),g)dc)
= (T w)(€1) ~ V() Vel [ ol 1) + Uy Ve [ 607, +70M(0),0)
= (Va0 @ - 004(0).8) = U (0) - [ 0(e' = tUM(0),2)c)

+Up(y) - Vh(/oy 8(t,a’ — tUn(y) + tUn(2), Z)dz)

Then, integrating the above quality in y we obtain that by using the boundary condition ¥|,—¢ = 0,
n
¥ -0, [ 6(r¢+ 10N Ok
0
y y ¥ , . .
—/ (Vi - uno) (¢’ — tUw(2),2)dz — / / (Uh(g) - Vhbo(z' — tUL(D), z))dzdy
0 o Jo
Yy
1 (U@ Va6~ 004(@) + 1URE),2) )
o Jo

which implies that
(2.58)

n n
r(¥=0r ["8(r6+ 700, 0) + [ 0r ¢+ U0, Qe
y y v v
= —t/ (Vh - upo) (2’ — tUn(z), 2)dz +/ 0o (z' — tUn(y), 2)dz — / 6o (z' — tUn(2),2)dz +/ 6(t, ', 2)dz.
0 0 0 0
Therefore, we substitute (2.58) into (2.55) and obtain the expression of ug :

Ud(t:z", y) =— /Oly [Vh “Upo + (Uh(y) - Uh(z)) - Vi (tvh sUpo + 00)] (.’E' — tUh(z),z)dz

Y
+/ (6: + Un(y) - Vi0) (¢, 2, 2)dz
(2.59)
/ [vh Upo + Uh(y) Uh(z)) -Vh (ch s Upo + 90)] (17’ - tUh(z), z)dz
[

/ (Uh(y Uh(z)) * Vhe] (t’ w,a Z)dZ + ey (tv xlv y) - ey (ta xls O)a
where we use the equation of § in (2.41) Meanwhile, plugging (2.58) into (2.56) yields that
Y Y
uh(ta x',y) =Up0 (1', - tUh(y)vy) + U;‘z(y)/ [ch ‘Uupo + 90] (xl - tUh(z)) z)dz - U;l(y)w/() e(t,x/7 Z)dz
0

Consequently, we obtain the expressions of (up,u4) and complete this proof. a

The representation (2.44) in Proposition 2.5 shows that there is a loss of derivatives with respect to the
horizontal variables z’ for the solution of problem (2.41). Denote by

(260 e = ([, e sPas)’,
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and we use the following anisotropic space:

LP% = {f = f(2',y) measurable : ||fllLe.c := ||| fllLrazyllLa(ay) < 0}, 1< pig < oo,
1
2
H™ = {f = {(',y) measurable : [flgms = (3 1080, fI3ramrayy)” <0}
la|<m,0<e<k
with
5 = 0g .- B4, a= (a1, ,04-1), |loj=a1+: -+ ag-1.

Then, from Proposition 2.5 we have the following result.
Proposition 2.6. Assume that Uy (y) € W2°(R..) is smooth and the initial data of problem (2.41) satisfies
that

luroll(), IVh - wroll(®), IVA(Vh - uno) i), 160ll(%), IVaboll(y) < oo.

Let (up,uq,0)(t,x’,y) be the solution of (2.41). Then, there exist positive constants M, =
Mo(|| Un(W)l| Lo r,)) and C2 = Co(]| Un(y)llwzee(r,)) independent of t, such that

(2.61) 16, Mzawey < 10ollz2me ), IVaO(E: lLamey < 1VrbollLare ),
and
(2.62) 16112, ), 16,11(t,y) < Mo(||6oll 1.0 + 160]|zr0.2), IVAOII(E, ) < Mo(160ll 20 + [|60ll m11.2),
' 183611(t,y) < Ma(l6ollz20 + |60l z1.2 + 160l zr0.4),
moreover,
Y
llunll(t,y) <llunoll(y) + t| U, (¥)| '/0 [Vh - unoll(2)dz + 2/|60]| L2 mey - VY UL®)|,
y y
(2.63) lluall(t,y) S/o [V - unol|(2)dz +t/0 [| Un(y) — Un(2)| - Va(Va uho)H(t,z)] dz

v 2.\3
+ 2/ Vaboll 2 /0 |Un(v) - Un(@)["d2) " + Mo (60llmr.0 + 10l 10 )-

Proof. Firstly, from Proposition 2.5 we know that 6(t,£’, y) satisfies the linear problem (2.42). Then, it is
easy to obtain that by energy estimate,

d
5100 MEame) + 18,6(t Eacagy = O,

which implies that

(2.64) 16, MNLawey < 1600,)llzawey = lfollLaqwe)-
Denote by the operator
o7 = aglagf'a::-ﬂ a=(a, " ,0q), lal=a+ " +ag.

Applying the operator 8%, |a| =1 to the equation of (2.42), and similarly we have that,
(2.65) 1076(t, Mrawe) < 11076(0,)ILs(we)-
Combining the equation of (2.42) with the estimates in (2.65), and using that
0t(0?$l)y) = Bjﬁo(x',y) - Uh(y) : Vhoo(fb‘/,y), 9331.(07 xlay) = Oo%(x',y), 1<i<d-1,
it follows that

A

1856(, ) lLarey < 16e(ts)llLame) + 1O Loory) - IVROE )l L2 re

(2.66)
2[Un)llzeo®y) - IVab0ll L2 way + 185601l L2 Re -

IA
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By the classical interpolation inequality we obtain that from (2.64) and (2.66),
164 Maagg) < O 100t M zaget + 1836 zaqus))
< C(||90||L2(Rd+) + U)o ry) - “Vh90||L2(1R1) + ”6590”L2(Ri))a

where C is a positive constant independent of t. Then, from the estimates (2.64), (2.66) and (2.67) it implies
by the imbedding inequality that there is a positive constant Co = Co(||Un(¥)ll L (r,)) independent of ¢,
such that

(2.67)

16(¢, )lz2.0o < N16(E, )lzroa < Co(llfoll 10 + 1160l zr0.2),
16y (£, M z200 < (16 (Es Mlrror < Co(ll6oll 20 + (|60l pro.2)-
Next, we apply 8%, |a| =1 to the equation in (2.42) and get

0,020 + Up(y) - Va3 — 82090 = 0,

(2.68)

moreover, we have the following boundary value of 836(t, ', y):
048, (t,2',0) = 0.

Thus, through the above analogous arguments we can obtain that there exist positive constants C; =
C1(|Un(®)ll L (ry)) and Cz = C2(|Un(y)lw2(r,)) independent of ¢, such that

[Va8(t, )l|L2o < Ci(ll60ll 20 + |60l z12),
16¢(t, ) 2.0 < Ca2([1Bollzr20 + [|Boll 1.2 + 1160l ro.s)-

Thus, from the equation in (2.42) we obtain that there is a positive constant C3 = C3(|[Un(y)|lwzeo(r,))
independent of ¢, such that

1826(t, Yl L20e < [16:(t, L2 + U W)l Lo gy) - VRO L2:00
< Cs([16oll 520 + |60l 12 + [|60]| 0.4

Combining (2.68), (2.69) and (2.70), we obtain the estimates (2.62).
Finally, it is easy to establish the following estimates for (up,uq)(t,z’,y) by the expression (2.44) in
Proposition 2.5,

Yy Yy
a8, ) < lunoll(y) + [T / [160112) + 18112, 2)] d2 + HU (w)] /0 195 - wnoll(2)dz

(2.69)

(2.70)

(2.71) .
< Il ) + U@ [ 19 - wholl ez + | VGO W] (Bollzaagy + 1068 Miaas) ).
and
Juall(t, ) < 206, (¢, Mzae + /0 " [1Un) - U] - (I94601(2) + 194815, 2)) a2
Yy Yy
+ [ IVh - unoll(2)dz + ¢ |Un(y) — Un(2)| - VA (Vh - uno) [I(¢, 2) |d=
(2.72) /" /0 [ ]

<2088 Moo+ " [UA @) - Un(2)dz) - (I9B0llzaqesty + 1740 oces

+ [ 19n wl2)az +t/oy [104®) = V)] 194(Tn - wno) 1, 2)] =

Combining (2.64) with (2.71), we obtain the estimate for uy, in (2.63). Substituting (2.62) and (2.65) into
(2.72), the estimate for ug in (2.63) follows immediately. O

Now, we show that under some certain conditions of Uy, (y), the shear flow solution (U (), 0, 1) to problem
(2.21) is linearly unstable, that is, solutions to the linearized problem (2.41) of (2.21) grow algebraically in
time. More precisely, we have the following result:
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Proposition 2.7. Suppose that for the problem (2.41), Uy (y) and the initial data are smooth, and up(z',y)
decays rapidly in z'. Let (up,uq,6)(t, z,y) be the solution of (2.41).
(1) For d =2, if U(y) has no critical points, then |us||(t,y) is bounded uniformly in t :

lul.) < 2D ol + [ { [T - 0y woll) + hgx |- ol (@) =

+ 2”00”L’(R )\/—i U, ()|,

(2.73)

and as t — +o0,

4 U
(2.74) [+ Thw) [ ot0.0" s, = Ianol0)-| |
0 (0)
IfU(y) has a single, non-degenerate critical point at y = yo, then when y > yo, we have that when t — +o0,
Y |UL)
(275) wn+ U) [ 6(6,2' 2)dz(t) ~ VR unoly ()~
s o3 [ o NEcal

where .
L2
lunally @) = ([ 16l [inol6 1))
R2
Also, for sufficiently large t we have

(276) Il > 5 ol ) PR

Furthermore, we have similar results as above for dyuy,uy and dyuy.
(2) For d = 3, suppose that Uy (y) satisfies that U;(y) (i =1 or 2) has no critical points (we assume that
i=1), and Uz(y) = kU1(y) for some constant k. Then |ug||(t,y) is bounded uniformly in t:

fualt,) <[ 2B 9 wol0)+ [ {190,

2.77) +| i) ((Lg,(:/) ))—ZUI(Z)) | 195 - unoll(2) }dz

+2[Vhboll L2 (re ) / | Un(y) — Un(2)| dz) +M0(||00||H1°+“90HHM)

Moreover, as t — +0o0,

(2.78)
Jua =036, + 8,(62,0) ~ [ [(T) — T@) - 900t 2] 6:8) — 19 - w0 2L 2

Assume that Ui(y) (i =1 or 2) (we assume that i = 1) has a single, non-degenerate critical point at y = yo,
and Uz (y) = kU1 (y) for some constant k. Then when y > yo, we have that when t — +oo:

Hw—%maw+@mam—43amw~mu»vwmfwwﬂww

(2.79) b
VIR - ol ) )
1

b

where .
IVh - unolly x(y) = (/ €1 + k& [€ - ﬁholz(ﬁ,y)dﬁ)a-
R2
Also, for sufficiently large t we have

(2.80) lluall (2, y)>\/7”\7h um”%(y)lUl(y) Ur(yo)l

UT (30)!
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If Uy(y) # kU1(y) for any k € R, then there is a point yo such that, when y > yo we have that for sufficiently
large t,

(2.81) luallt,y) > CVt
with the constant C = C (y,yo, U, uho) > 0 independent of t. Moreover, we have similar results as above for
Oyuq and Vi, - up.

Proof. We will prove the second part of this proposition, the first part of two-dimensional case is similar
to Proposition 6.1 of [12]. From Proposition 2.5, we have the expressions (2.44) of the solution to problem
(2.41), then we take the Fourier transform with respect to z’ for the expression of u4(¢,2’,y) to obtain that

%&&w=—lqﬁﬁm@w+ﬁﬂﬂh@—UMmyUﬁﬂm@@+%@@nf“mmﬂ
(2.82) ., )
+ [ i€ - (Unt) = U @)I0(t.6,2)dz + (1,6, = (16,00

When Us(y) = kUi (y) for some constant k, then (2.82) is reduced as

ﬁd(t, Ly =— /(;y [1 + it(fl + kEz)(Ul(y) - (z))] [zg . ﬁhO(Ev z)] e i1 +kE)U1(2) g,
(2.83)
- Ag [ZE . (Uh(y) - Uh(z))] : [90(57 z)e—ztﬁ'Uh(z) + é(tr 6’ Z)} dz + éy(t,f, y) - éy(t>€7 O)

If U;(y) (we may assume that i = 1) has no critical points and for £; # —k&2 in the above equality, we obtain
that by integration by parts,

5 _ @ -t . —t(€1+k€2)Us Y (Ui(y) — Ui(2)
Ud(tyf, y) - U{ (0) [’Lf . uh0(§70)]e e +k&2)01(0) _A { U{(Z)
5. u 4 v —U 0 —it(&1 2)U1(z
(2.84) [i€ - ay“ho(ﬁ,z)] - (Z)(([;{(:(yz)))z 1(2)) [4€ - Dpo (€, 2)] }6 (61+k€2)U1(2) 4,

—1Ayh&(th»—Uh@»]-Wdazk““‘““%—ﬂmazﬂdz

+8y(t,€,y) — 6,(t,€,0).
Then, from the above equality (2.84) it implies that by Parseval’s identity,

fualt) <[ 2L 19, w0+ [ [| 2SO 19,2l 2
(285) yU{'(z)(g;fz’z)))‘zUl(z)) |19 - wnol2)]
1

y
+/0 [Un(y) = Un(2)| - [IVab0ll(2) + VA0 (2, 2)]dz + 2016y (t, )| 2.0,
thus, by using Proposition 2.6 in the above estimate (2.85) we obtain (2.77). Moreover, from (2.84) we have

’ad(ta f, y) - /Oy [7'6 : (Uh(y) - Uh(z))] ' é(tv E? Z)dZ - é‘y(tsg’y) + é'y(ta £> 0)
(2.86)
— Ul(yg'&ol)h (0) [zf tupo(€, 0)]e—zt(§1+k§2)U1(0), as t — +oo.

Thereby, (2.78) follows from (2.86) and Parseval’s identity.
If Us(y) = kU1 (y) for some constant k and U;(y) (we may assume that ¢ = 1) has a non-degenerate critical
point at y = yo, then for y > yo and & # —ké&;, by an application of the method of stationary phase to

109
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(2.83) yields that when ¢ — +o00,
Yy N ” A
'&d(tvé'v y) - /[; [7'6 : (Uh(y) - Uh(z))] . 9(t>§’ z)dz - ey(tigiy) + 6y(t: 57 0)

(2.87) ~ sgn(€1 + k€2)\/2mtl€s + k2| - [€ - Qno (€, m0)] Hhiy) - Thise) (yﬁUT’(Z:()ZrO)
1

exp { — it(61 + k€2)Ua (vo) — i sgn((€1 + K&2)UY (y0)) /4 }

By using Parseval’s identity in the above equality, we obtain (2.79). Then, from the uniform boundedness of
16, 11(t,y) and ||V48]|(¢,y) with respect to ¢ in Proposition 2.6, we obtain (2.80) for sufficently large t.
If Ux(y) # kUi (y) for any k € R, then there is a point yo such that

(2.88) Ui(yo)Us (wo) # Uz(30)U1 (%0)-

We may assume that Uj(yo) > 0 and Uj (y0)U4 (yo0) — Us(yo)U? (o) > 0. Then, we affirm that for any é > 0,
there is a interval S5 C (yo — J, yo + &) such that

(2-89) Ui(y) >0, U(y) #0, Ui()U7(y) -Uz()Ui'(y) >0, VyeSs.

Indeed, from (2.88) and the smoothness of Ui (y),Uz(y) we know that there is a & > 0 such that for any
Y € (Yo — b0, 0 + o),

Ui(y) >0,  Ui(y)U3 (y) — Uz(y)U{ (y) > 0.
Then, by virtue of (2.88) again we have Uz(y1) 5 0 for some y; € (yo — o, %o + do), thus we take some small
neighborhood of y; as the required set S5. Moreover, (2.89) implies that the functions %é%% is monotonically
increasing in S;. Next, denote by

(2.90) If = {¢=(6,6) eR*\{0}; [¢(/<R, and3yeSs, st ¢ Upy) =0},

and from the monotonicity of gé%% in S5, we know that the point y € Ss satisfying £ - U}, (y) =0 for £ € If

is unique. Moreover, by virtue of the continuity of U}, (y), it is easy to know that the measure of I is
positive, i.e., m(If) > 0. For y > yo and any ¢ € IF with § < y — yo, there exists a unique y¢ € S5 such that
€ - Uj(ye) = 0, and then, from (2.89) we have ¢ - U} (ye) # 0. For such (¢,y) in (2.82) it yields that by an
application of the method of stationary phase,

ﬁd(tafw y) - /:l ['LE . (Uh(y) - Uh(z))] : é(t’fv Z)dz - éy(t’sa y) + éy(tv 670)

Wi% - [€ - (Un(y) — Un(ye))][€ - Gro(€, 9e)]
Note that when § is small enough, we have that for any ¢ € IE,
‘5' (Un(y) — Un(ye)) (Un(y) — Un(yo)) (
N 2\/I¢ - Up(wo)|

Thus, for sufficiently large ¢ we obtain that by using Parseval’s identity in (2.91),

(2.91)

[f-ﬁho(é,ye)]‘ > ’5' € - o€, yo)”.

“ud —0,(t, 2, y) +6,(t,2',0) — /Ou [(Unly) — Un(2)) - Vib(t, 2, 2)] dzH(t,y)

S \/2?“6 (Uh(y) - Uh(yo))
VTR ]

[€ - QR0 (€, 0)]

)
Li(IF)
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and then, combining with the uniform boundedness of ||6,|/(¢,y) and [|V8]|(¢,y) with respect to ¢ in Propo-
sition 2.6, it implies that

||udf|(t,y)>\/—”£ (Un(y) - Uh(yO))[

€ - Uk (o) |

Consequently, we get the estimate (2.81). Through analogous arguments as above, we can obtain similar
results for ug and Vj - up, as the ones of ug.

£ - po(€, yo)]‘

LE(IF)

O

3. APPENDIX

Now, we will give a formal derivative of boundary layer problem (1.1) of compressible flow. Consider the
following problem in the domain Ry x R with d = 2,3,

Op+V - (pu) =0,

(3.1) p{Gu+ (u-Viu} + Vp(p,8) =0

cvp{8:0 + (u-V)0} + p(p,0)V - u = eAd,
where ¢ > 0, the spatial variables z = (z',z4) € R% with 2’ = (21, -+ ,@4—1) € R%"! and the scale variable
zg > 0, p is the density, u = (u1,--- ,uq)” is the velocity, 8 is the absolute temperature, p(p,0) is the

pressure, the constant ¢y > 0 is the specific heat capacity, ¢ = €(p,) is the coeflicient of heat conduction.
For the equations (3.1), we endow they with the following boundary values:

(3.2) Udla:g:ﬂ =0, [a@wdﬁ + ,30] ’

where a = a(t,z’), 8 = B(t,z') and v = (t,z’) are given functions. In the paper, we consider the ideal gas
model for the problem (3.1)-(3.2),

(3.3) (p,0) = Rpd

with a positive constant R. We are concerned with the asymptotic behavior of solutions (p, u,8)(¢,z) to the
problem (3.1)-(3.2) when the heat conduction coefficient tends zero, i.e., € — 0.

Formally, we can obtain that when ¢ — 0, solutions (p,u,8)(¢,z)} to problem (3.1)-(3.2) tend to
(p°,u®, 6°)(t, ), which satisfy the following compressible non-isentropic Euler equations in R x Ri :

8p® + V- (p*u®) =0,
(3.4) pe{Bpuc + (u° - V)ue} + RV (p°6°) = 0,
ey p{8:6° + (u€ - V)6¢} + Rp®6¢(V - u) =0

=7

2q4=0

with the boundary condition
(3.5) U§|z4=0 = 0.

So, the inconsistent of boundary conditions between (3.2) and (3.5) leads to the appearance of boundary layer.
Since the diffusion terms are important in the boundary layer and should be balanced by the convective terms,
and note that the vertical component of velocity field vanishes at the boundary in the problem (3.1)-(3.2), we
may just consider the characteristic boundary layers, that is, the sizes of boundary layers are /€. Therefore,
we express solutions to (3.1)-(3.2) via (p¢, ut, §¢) as

(pyu,0)(t,2) = ( (t, w’f) ,up(t, 2, md) \f{ud( SAR
= (P 7uh7ud’ )(t,.’t ’y)’

where we introduce the scale variable y = ff, the tangential component Uy = (uy,- - ,uq-1) of the velocity
field u and note that the scale normal velocity u§ is \/- of the original velocity ug. In these new variables

2y ot )
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above, the problem (3.1)-(3.2) reads that in the domain {(¢,z/,y) : ¢ > 0,2’ € R%"1,y > 0} :

Bup + Vi - (p°u5) + By (p°ug) = 0,
P05, + (uf, - Vi + u50,)us} + RV4(p°6°) =0,

(3.6) p{Bus + (Uf, - Vi + ugd,)us} + Z2ue®) _ o,
cvp*{B0° + (uf, - Vi +u58,)6°} + Rp0°(Vh - 0§ + B,u5) = eApb° + 826°,
Wly=o =0, [B:8,0° + 6] |y=0 = c,

where the derivatives Vi = (8z,,++ ,0s,_,)7 and 8 =82, + -+ 82_.
Similar as the hypothesis of Prandtl boundary layers for the incompressible flow, we assume that solutions
of (3.6) can be approximated as follows:

e
(3.7) (p°, uf, ug, 6)(t, 2, y) = (p°, u, y\/% 6°)(t, 7', Vey) + (0°, uf, ug, 6°)(t, ', ),

where (p%,u®,6°)(t,z) denotes the Euler flow given by (3.4)-(3.5) with u® = (u§,u$)7, and the boundary
layer profile (pb,ul,uf,8%)(¢,2’,y) decrease rapidly as y — +00. We plug the ansatz (3.7) into the problem
(3.6) and take the leading terms with respect to e. By virtue of (3.5) and then the asymptotic expansion for
the Euler flow

(p%,uf, \U)JE: 6°)(¢, 2, ‘/Ey) = (p% uﬁ’yal‘dugyee)(tax’, 0) + O(\/E)’

we obtain that the new boundary layer profile
(b un,ua, 0)(t, ', y) = (p°, 5, y0s,u5, 0°)(t,2',0) + (0%, u}, ug, 8°)(¢, 7', y)

satisfies the following problem in Ry x RY :

O:p + Vi - (pup) + 8, (puq) = 0,
p{atuh + (uh -Vn+ uday)uh} + RVh(pG) =0,
(3.8) 9y(pf) =0,
evp{8:0+ (up - Vi + uda,,)()} + Rpb(Vp, - up, + 8yud) = 339,
ud|y=0 =0, yll;gloo(p’ uhie) = (pe7ui’9e)(t’ :L",O),

with the boundary values for 6 :

(3.9 {8y9|y=0 =0, when a #0,

8l,=0 = 6°(t, '), when o =0,

where 8°(¢,2) := %(tt%,), provided B # 0.

Then, from the third equation and boundary conditions in (3.8), it implies that

(] 7
(3.10) @0)(t,,9) = (#6°)(t,a0,0) = B0,
where p® is the pressure of Euler flow and p® > 0. The relation (3.10) shows that there isn’t boundary layer
of size of O(:/€) for the pressure. Note that for the problem (3.11) endowed with the Neumann boundary
condition for 8 in (3.9), i.e., 8,0|,=0 = 0, it is easy to check that

(pvuhvo)(t’z,vy) = (PG,UZ,OC)(t,xl,O)’ ud(t7x,>y)=y6¢du§(tax,?0)

satisfies the problem (3.8). Indeed, we can investigate this by restricting the equations (3.4) on the boundary
{z4 = 0} and using the boundary condition (3.5). In this case, it means that the state (p,u,d) doesn’t exist
boundary layers of size of O(y/€). Therefore, we focus on the problem (3.8) with the Dirichlet boundary
condition for 4 in (3.9).
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Plugging (3.10) into the problem (3.8)-(3.9), which can be reduced as the following problem in R} x R%
for the profile (uy,ug,0)(t, 2’,y) :
Sup + (up - Vi + uday)uh + RTﬁVhP =0,
88+ (up - Vi +v48y)0 = rayp8(836 + ur - VaP + Py),
Vi up + 0yug = (R+§V)P8§0 - (R-:XV)P (uh -VpP + Pt),
(ud, 0)ly=0 = (O,HO(t,(L")), yggloo(uhag) = (Us, 0)(¢,2)

(3.11)

where the known functions
(P,U,0)(t,z') = (p°,uf,6%(t,x',0)
given by the Euler flow, and satisfy by using (3.4)-(3.5),
Uy + Uy ViU, + B2V, P =0,
{3t9+Uh'Vh@— %'(Pt+Uh‘VhP) =0.
We endow the problem (3.11) with the initial data

(3.12)

(313) (uh79)(07 1",7 y) = (uhOyOO)($’7y)7
and under the compatibility condition of upg :

14 i = /
(3.14) yl}liloo up = Ux(0,2'),

we can remove the infinity condition for uy, as y — +o0o in (3.11), since the condition BI-POO u, = Up(t, o)
y
holds automatically from (3.12); and (3.14). Therefore, we obtain the following initial-boundary value
problem in Ry x RY:
Gyup + (up - Vp + Uday)uh + %Vhp =0,
80 + (up, - Vi + uday)e = ”—13(830 +up-VpP+ Pt),
(3.15) Vi - up + 8yug = 5826 — 15 (up - VaP + By),
(ua, ayg)|y=0 =0, y-l—:r-f{loo 0(t, x,y) = O(t, '),

(ur, 0)|t=0 = (uno, 6o)(’, y),
with the constant « := ﬁ. In this paper, we focus on a simple case of the problem (3.15), i.e., the pressure
P(t,2') of the outflow is a positive function depending only on the variable ¢,
P(t,z') = P(t) > 0.
Consequently, the problem (3.15) is reduced as follows:

Byup + (up - Vi + ugdy)up =0,
840 + (up - Vi + ugdy)0 = £0020 + =£0,
(3.16) Vi up + Byug = 5020 — L2
(uda0)|y=0 (O’GO(t,ml))’ yll;r_foog(t>$7y) = 0(t,z'),

(uh7 0)|t=0 = (uhO, 00)($,7 y)
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