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On the Cattabriga problem appearing in
the two phase problem of the viscous fluid flows

Yoshihiro SHIBATA *

Abstract

In this paper, we report results concerning the two phase problem for the viscous fluid flows
without surface tension in a bounded region, which was announced in the RIMS Workshop on
Mathematical Analysis in Fluid and Gas Dynamics organized by Professor Takayuki Kobayashi of
Osaka University and Professor Tatsuo Iguchi of Keio University held at RIMS, Kyoto University,
July 8-10, 2015. Especially, we prove the unique existence theorem for the Cattabriga problem which
is obtained as a statinary problem for the linearized two phase problem system. Moreover, we proved
the unique existence theorem for some weak Dirichlet problem with jump condition on the interface.
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1 Introduction

Let Q be a bounded domain in N-dimensional Euclidean space RN (N > 2), and let Q. be a subdomain
of Q. Let Q_ = Q\ Q;. The 1 are occupied by some viscous fluids. Let I'_ and I" be the boundary
Q and Q, respectively. Note tht I'_ NT = @. Assume that I'_ and I' are compact hypersurfaces of
w2 ~1 Class (N < r < o0). Let Q¢ 4, I'y and T'; _ be the time evolution of Q4, I' and I'_, respectively.
Set € = Q,+ Uy _ and 0= Q4+ UQ_. Then, the two phase problem for the viscous fluids without
surface tension is formulated mathematically as follows:

Oip+div(pv) =0 in Q 4,

p(Bv + (v-V)v) = Div(S(v) —pI) =0 in Q, 1,

[(S(v) - pDn} =0, [v]] =0 on T, (L)
(S_(v_) = p_Dng,_|r,_ =0 onTy._,

(P, v)|t=0 = (p* +0—3V0) in Q

for t € (0,T). Here, p. = p.(z,t) is a piece-wise constant function defined by p.(z,t)|a,. = Pu+
with some positive constants p«,+ describing the mass density of reference bodies Q4+; v = v(z,t) =
(v1(z,t),.-.,vn(z,t)) denotes a velocity field; p a pressure field; and p a density field. In the case of the
compressible fluids, the mass field p+ = p|q, , are unknown functions; the pressure field p+ = p|o, , are
functions of mass densities p1 as p+ = P1(p4+), that is, the barotropic fluids are considered, where P (r)
are C* functions defined for r > 0 satisfying the conditions: P, (r) > 0 for r > 0 and P4 (p«,+) = 0; and
initial data 8y and v are prescribed functions. In the case of the incompressible fluids, the mass fields p
is given by pla, , = ps,+, so that the balance of mass is read as div vt = 0 in Q; 3 with v4 = v|g, ,, the
pressure term p; = p|o, are unknown functions, and for the initial data 6y = 0 and vy is a prescribed
function.
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As for the remaining notation, I is the N x N unit matrix; n; is the unit normal to I'; pointing from
Q4,4+ to Q,_ while n, _ is the unit outer normal of I'; _; the [[f]] denotes the jump quantity of f along
I'; defined by

[(fll(@o) = lim f(z)— lim f(z) forzo €Ty

E )

x€n+ z2€Q__

and S is a stress tensor defined by
S(wa, = peD(us) + (v& — pr)divuzl, D(ug) = Vug + (Vuz)'

with uy = ulq, ,, where (Vu)T denotes the transposed Vu, and p+ and vy are positive constants
describing the first and second viscosity coefficinets. Furthermore, p; = 8;p = 9p/0t, for any matrix
field K with (4, ) components X,;, the quantity Div K is an N-vector with components E;V:1 0; Kij,
where 0, = 0/0x;, and for any vector of functions w = (wy,...,wn), we set w; = (Qws,...,Bwn),
. N N
divw =3.", 0jw; and w- Vw = (3_;_; w;jw, ..., Z;\_Ll w;OwN).
Let x = x(£,t) be a solution of the Cauchy problem

dx .
prie v(x,t) with x|;=0 =¢&.

The kinematic condition is:

Ii={z=x({1) (€T}, Ty-={z=x(1t)|{el-}.

Notation. Throughout the paper, for any domain D, L,(D), W(D) and B; (D) denote the usual
Lebesgue space, Sobolev space and Besov space, while || - || (p), || - lwr(py and || - ||8s (D) are their
norms, where 1 < p,¢ < oo, n is any natural number and s is any non-negative real number. Let
Wao(D) = {u € W}(D) | ulsp = 0}, where D is the boundary of D. Given function v defined on Q

or €, we set vy = vla, or v+ = v, . Given functions v+ defined on Q4 or on Q4+, v is defined by
v(z) = vi(z) for z € Q4 or v(z) = vi(zx) for z € Oy 1. Let

W) = {v € Le(Q) | v+ = vla, € W}(Q1)}, B3, (Q) = {v € L(Q) | vz = vla, € BS, ()},
Ivllz, @) = llv+llzg@p) + llv=llzg@-)s ||v||w;((z) = |lvtllwp s + llv-llwp @y,
Iollss oy = llv+liBy 24y + llv-llBs (2-)-

Let
(u, v}, = ‘/Q u(x)wm)dx, (u,v)g = (u,v)q, + (u,v)a_,
(uyv)r=/ru(-’v)m)_d0r, (u,v)r_ =AU($)@d0r_,

where v(z) denotes the complex conjugate of v(z), and dor and dor_ denote the surface elements of I'

and I'_, respectively. For any two N vectors a* = (a},...,ay) (i = 1,2), we set a! -a%? =< al,a? >=
Zf;l ajaZ. The [[f]] denotes also the jump quantity of f along I' defined by

[fli(zo) = lim f(z) - Jim f(z) forzo €T

z€Q+ z€EQ_

For two Banach spaces X, Y, £(X,Y) denotes the set of all bounded linear operators from X into Y,
while || - |lz(x,y) denotes its norm. When X = Y, we use the abbreviation: £(X) = £(X,X). The
d-product space X¢ is defined by of X?¢ = {u = (u1,...,uq) | u, € X (i =1,...,d)}, while its norm is
written by || - | x instead of || - || x« for short, where | - || x is the norm of X. The boldface letter is used
to represent vectors of functions. The letter C is used to represent generic constants and the value of C
may change from line to line.
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Statement of main results. Let u(£,t) be the Lagrangean description of the velocity field in Q,
and then the Euler coordinate z and the Lagrangean coordinate £ are related by

:1:=§+/0tu(§,s)ds=Xu(§,t) for £ € Q.

The Jacobi matrix of the transformation z = X,(§,t) is invertible, if

T
/ IVu(, )l @) dt < 00 (1.2)
0

does hold with some small gy > 0. By the Banach fixed point argument based on the maximal L,-L,
maximal regularity theorem for the linearized equations, we can prove the local well-posedness which is
stated in

Theorem 1.1. Let N < q,r < 00, 2 < p < 00, and R > 0. Assume that max(q,¢) < r and that T' and
T'_ are both compact hyper-surfaces of Wrz T clgss. Then, there exists a positive time T > 0 depending
on R such that for any initial data 6o+ € W) (+) and vo,+ € Bg,(,i_l/p)(ﬂi)N with

160 lwzc@s) + Vot ll g2a-1/ g, ) < B

satisfying the range condition:
Prt/2 < pr,x + bo,:(7) < 2042

and the compatibility conditions which is described as follows:

e compressible-compressible case:

[[(S(vo) — P(po)I)n]] =0, [[vo]] =0
(S-(vo,-) = P—(po,~)I)n_|r =0,
where po,+ = px,x + bo,+;
o 0, compressible and Q_ incompressible case:
[[S(vo)n— < S(vo)n,n >n]] =0, [[vo]] =0, divve_ =0,

(S_(vo,-)n_— < S_(vo,-)n_,n_>n_|r_ =0,

o Q. incompressible and Q— compressible case:
[[S(vo)n— < S(vo)n,n > n]] =0, [[vo]]=0, divve+ =0,
(8—(vo,~) = P_(po,-)I)n_|r_ =0,
o incompressible-incompressible case:
[[S(vo)n— < S(vo)n,n >n]] =0, [[vo]] =0, divve+=0,
(S—(vo,~)— <S_(vo,—)n_,n_>n_)|r_ =0,
where n is the unit normal to T pointing from Q. into Q_, while n_ is the unit outer normal to ', the
equations (1.1) described in the Lagrange coordinate admit unique solutions

o compressible-compressible case : 6+ and uy with

61 € WH((0,T),WE(Q)), us € WE((0,T), Lg(Qx)N) N Lp((0,T), W2 () ™);

o Q4 comp.-Qx incomp. case : O+, T and ux with

0+ € W2((0,T), W} (Qx)), mx € Ly((0,T), W, (%)),
uz € W((0,T), Lo(Q2)™) N Ly((0,T), WZ(Q2)™);



o incompressible-incompressible case: w4+ and uy with
UESES LP((O’ 1), qu (Q4)), us € W;((O’T)’LQ(Q:E)N) N Lp((ov T), qu(Qﬂ:)N);
where u satisfies (1.2). Here, 8+ and ny denote the density fields and pressure fields in the Lagrange
coordinate, that is, p+(Xu(€,t),t) = 04(&,t) and p+(Xu(§,t),t) = mx(§,t) for § € Q.
Next theorem is concerned with the global well-posedness theorem for small initial data.

Theorem 1.2. Let N < ¢q,r < 00, 2 < p < o0, and R > 0. Assume that max(q,q’) < r, that T’
and T'_ are both compact hyper-surfaces of WE™/" class, and that 2/p+ N/q < 1. Let {p¢}sL; be the

orthonormal basis of the rigid space Rq = {u | D(u) = 0} with inner-product
[u,v] = (p*,+u+)v+)ﬂ+ + (p*,—u—’v—)ﬂ-'
Then, there exists an € > 0 such that if initial data 8o 1 ( in the incompressible case, we interpret 6y, + = 0
) and Vo + satisfies smallness condition:
Heo,i”qu(Qi) + HVOHB;;VP(Q) <e
and orthogonal condition:

(s, + O0,+)Vo,+ ), Pe)a, + ((ps,— +60,—)Vo,- ), Pe)o_ =0 (£=1,...,M)

as well as regularity condition, range condition and compatibility condition, then the equations (1.1)
described in the Lagrange coordinate admit unique solutions defined on the whole time interval (0,00),
which decay exponentially.

Remark 1.3. The rigid space Ry is the set of all N-vector of first order polynomials of the form: Az +b

with anti-symmetric N x N matrix A and constant N vector b. Namely, R, consists of all linear combi-

nations of constant N vectors and polynomials of the form: z,e;—z;e,, where e; = (0,...,0, .tlh, 0,...,0).
?

To prove Theorem 1.2, the main tool is the exponential stability of semi-group associated with the
linearlized equations:

9¢0 + yodivv =0 in  x (0, 00),

dv —1Div(S(v) —pI) =0  in Q x (0,00),

([(S(v) —pDn]] =0, [¥]=0, (1.3)
(S_(v-) —p-In_|r_ =0,

(6, v)|t=0 = (60, Vo) in Q,

where v; (2 = 0,1) are piece-wise constant functions defined by v;lo, = ;,+ with some positive constants
Y., +. Moreover,

e the compressible-compressible case: p = ¥’ with some piece-wise constant function ' defined by
¥ |as =Y with some positive constants v, ;

e the Q4 comp. - Qy incomp. case: pi = ¥10+, while 6 = 6+ = 0 and px is unknow function;
e the incompressible-incompressible case: 8 = 6y = 0 and p is unknown function.

In fact, to prove Theorem 1.2, the key step is to prove the existence of C® semigroup {T'(¢)}:>0 associated
with (1.3) on Hy(Q), which is analytic. Here,

Hy(2) ={(6,v) € qu(Q) x Lqe()} in the compressible-compressible case,
Ho () = {(6+,V) € W;(Qi) X Lg(Q) | divvy =0} in the Q4 comp. - Qx incomp. case,
Hy(Q) ={v € Ly(Q) | divve =0} in the incompressible - incompressible case.

Moreover, if v satisfies the orthogonal condition:
(1i'v,pe)g =0 forall¢=1,...,M, (1.4)
then {T'(t)}+>0 is exponentially stable on H,(£2), that is,
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e compressible-compressible case:
T )0 V) liws@yxLo@y £ Ce OV liws @)x Lo
e 4 compressible - Q5 incompressible case:
IT () (62, V)lIwis)xLo(@) < Ce™ (84, VWi (@) x Lo(@)s

¢ incompressible-incompressible case:

ITEWVIz,@) < Ce ™ IVIL,@)

with some positive constants C and ¢ for any ¢ > 0.
To prove the exponential stability, one of key steps is to prove the unique existence theorem for the
following problem:
Yodivv = f in Q,
-v1(DivS(v) - Vp) =g in Q,
[[(S(v) —pDn]] =[[b])}, [[v]]=0 onT,
(S_(v_)—p_Dn_|r_=h_|r_ onT_.

1.5)

Dividing the first equation in (1.5) by 7o, we may assume that o = 1 in the following. This paper is
concerned with problem (1.5) with vy = 1, and we prove

Theorem 1.4. Let1 < g < oo and N < r < 0o. Assume that r > max(q,q’) with ¢ = q/(¢—1) and that
T and T'_ are both compact hyper-surfaces of Wy " class. Let {pe}}L, be the orthonormal basis of the

rigid space Rq = {u | D(u) = 0} with respect to the inner-product: [u,v] := (Y 'u, V)¢ on Ly($2). Then,
for any f € W1(Q), g € Lo(Q), h € WHS) and h_ € W}(Q_) satisfying the orthogonal condition:

(vi'g pe)a + (h,pe)r + (h_,p)r_ =0 foralll=1,..., M, (1.6)
then problem (1.5) admits a unique solution v € Wf(Q) satisfying the orthogonal condition:
(viiv,pe)a=0 forallt=1,....M (1.7)
and the estimate:
IVllwz@y < CUIfllwaay + 181z @) + IBllws @y + Ib-llwsa-))- (18)
Moreover, we discuss the unique solvability of the weak Dirichlet problem:
(11Vu, V) = (£, Vi) for any ¢ € W) 4(Q). (1.9)

For problem (1.9) we prove

Theorem 1.5. Let 1 < g < 0o and N < r < oc. Assume that r > max(q,q’) and that both of T and I
are hyper-surfaces of W2 Class. Then, for any £ € Ly(Q)N, problem (1.9) admits a unique solution
u € Wyo(9) satisfying the estimate: |lullwzca) < CllfllL, ()

2 On the weak Dirichlet problem

In this section, we discuss the weak Dirichlet problem (1.9).



2.1 The weak Dirichle problem in RY

Let
RY = {z = (z1,...,2n) € RY | £ay >0}, RY ={z = (z1,...,28) €R"Y |2y =0},

and set RN = RY URY. First of all, we consider the variational equation:

)‘(ua w)RN + (71 Vu, V‘P)]RN = (fa v<p)RN for any ¢ € qu’ (RN)a (21)
where 1 is a piece-wise constant function defined by 7|R¥ = 71,4+ with some positive constants v;,+. To
solve (2.1), we consider the strong form of (2.1):

Aug —y1,+Auy =divy in Rﬁ,
Y1,+ONU+ oy =0+ — V1,~ONU=|zy=0- = ¢, (22)
Utloy=0+ = U—|on=0--

If f € Ly(RN)V, then fy = flry € Ly(Q4)N. Since C°(RY) is dense in Ly(RY ), we may assume that
fr € Co(RY)N. First of all, we construct solutions of (2.2). For any functions hy defined on tzy > 0,
let

% (a) = he(z',zn) xzy >0, he.(z) = hi(z',zN) +zy >0,
* —ha(z',—2zN) +zy <0, * he(z',—znN) +zy <0,
where ' = (z1,...,Zn-1). Let F and F ! be Fourier transform and Fourier inverse transform defined

by
PN = [ e @)t FEUAE) = gy [ @SSO

Since (divf1)® = Y05 9;(f9) + On(f%) with £ = (fx1,..., fn), we have

N-1

Fl(div £2)°1€) = D i F[£2,1(6) + i€n FLFEN(E)-
Jj=1
Thus, if we set
[ FIAivEDNE) | i 6 Ff21(8) + EnFIFENIE)
us1 = F 1[ A+ v, 0€)2 ] =% 1[ ’ )\-;71,&:|§|2 ] 23)
we have
My —v1,+Auy =divfy in RY. (2.4)

In the following, we calculate u+;(2’,0) and (Onu+1)(z’,0). Recall that f1 € C(RY)N. Especially,
fen(2',0) = 0 with fy = (f+1,---, fen). Let
. / 1 /7 /
a(& —_ 3 / / —1r (. N — 1’ € 4 /.
3€ o) = [ e an) s oo le) = G [, e o€ aw) de
The g and F¢, ![g] denote the partial Fourier transform with respect to ' and its inversion formula with

respect to & = (&1,...,&n—1). Writing w+ = \/A/71,+ + |¢’|?, we have
ﬁ+1(€/,0) =0,

N-1
; o A b A 2.5
(Onie)(€,0) = = 3 S [T ey iy + 2 [T e fo@ . @0
-1 1L+ Jo M+ Jo

In fact, by the residue theorem

N-1
. 1 oo 0o Zf (ezyNﬁN - e—zyNin) R

,,0 = / / L d j ,7 d
441(£',0) ;zl: 2171+ Jo ( o >\/’71,++l§'12+§12v EN)f-f-](g YN) dyn
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1 /°° (/°° igN(einEN +e—in§N) d{N)f+N(§I’yN)dyN

+ ——
27r71 4 oo M4 I+
z§~e_y”“’+ igje vt >] P (et
- — (- . (€, yn) dyn
=1 ’71+/ 2twy ( —2iwy P8 um) dy

L/ [ i(lwy )e ¥N@t + (_i(—iw+)e‘y"""+ )]f+1v(§',y1v)dy1v

M+ 2wy —2iwy
=0.

+

Analogously,
00 EjgN(el?JNEN _ e—inEN)

N-1
(ONnti41)(€,0) = ; 27r71+/ ( oo A+ HIE+EE

1 [0 [ eV pemmtn) o
d
27r71+ / ( oo MM+t |§I‘2+§12v d‘EN)f+N(€ yYN) dyN

§J (fws )e YN+ {j(—iw+)e_y"’“’+ .
’71 + / 2wy + — 2w, )] f+5(€' yn) dyn

dén) f,(€', un) dyn

/ / (einEN +e—zyNEN)f+N(€,,yN)d'yNd§N

27?’71,+
e YNW+

= [T oma +leB) (G - S ) Een € ) d
P A T,+ Qiwy “2iw, +N\&YN) QYN -

Thus, using

_1_/_00/0 (eWNEN e WNEN) fL (€, yn) dyn dEN = /_oof[fiN](f)dEN _ f/fLTv(E',O) —0,

we have (2.5). Similarly, we have
G-1(¢',0) = 0,

0 . 0 .
(Owi-1)(€,0) = Zl 5[ e s 2 [ e fteam)dun

(2.6)

In fact,

N-1 0 o Z-Ej(_e—iniN +eiUNEN) o ,
€0 =X o [ (L S repeg )

1 [0 [® ibn(e~WnEN fewnin) o
27!")/1 — / (/—oo ,\/71 + |£I|2 +£]2V d&N)f_N(g ayN)dyN

lf eyNw— i&.eysz— “ ,
= Z m _/ —]-2iw_ )f—:(§ »UN) dyN
+ 1 / ('I«(Zw_)ey""‘" B i(-iw_,)eww—)f_N(f',yN)dyN

",— 2iw_ —2iw_
=0;

< 2 - M-+ EF+ &

1 0 00 _§I2V(e—in€N + ewaN) . ,
* 2, /_ (/_m M- +1EP+ &, ) §-w(E ) dy

N-1 0 0o ¢ __p—tyNéN wWNEN A
F —o00




1 [®r&(Gw_)e¥Nw+  £i(—iw_)e¥N-\
=2 71’_/0 (* +> ) F-s(€'yn) dyn

1 o poo ) )
— Gy~ / / (e—zyNEN +ewN§N)f—N(§,,yN) dyn déy
y— J—o0 JO
L ’ nay (e eUNEE N /
- _ 2 ’ d
to— [ O+l (S~ ) (€ ) duw

N-1 . 0 )
Dl B RO

=1 -

o0 0 .
[ rpm e 2 [ e e m) don,

M- Joo

and therefore we have (2.6).
Let
L.={AeC\{0}||argA|<m—¢€} forO<e<m/2

Let 1 < g < 00, and then by the Fourier multiplier theorem,
|/\|1/2”ui1||Lq(1RN) + IVutllr,@yy < Coell fllr my) (2.7)

for any A € X, with some constant Cy . depending solely on ¢, ¢ and 71,+.
Next, we construct the compensating function uts. In view of (2.5) and (2.6), u+2 should satisfy the
equations:
A=7,+0)ut2 =0 in RY,
M,+ONU+2|oy =0+ — V1,—ONU—2|zy=0— = P, (2.8)
u+2|wN=0+ = u—ZIZEN:O—’
where h = g— (Onu4(-,+0) —Onu—(-,—0)). We find G42(¢, zn) of the forms: G4+2(¢',2n) = areTE™N,
Obviously,
A +71,21€1P)az2 — 71,205 Gx2 = 0.

Since 71,40Nt42(¢,0) = Fy1 101wt and G12(£,0) = ag, from the interface condition of (2.8) and
(2.5) and (2.6), we have

N papwy —Y1,-0-wo = hy(€,0)—h_(£,0), ay=a,

which, combined with (2.5) and (2.6), we have

o —a. = €0 - h-(€,0) _ __ §(€.,0)
M, 4wt + Y1, -W— V1,4+Wi +Y1,—W—
1 {NZ_IE/OO —yNw+f (&, yn) dyn + i /ooe‘ysz.{,f (&, yn)d
", +Wt + V1, —w— = 7 /s € +i(&HYN) YN +wt A +n(§YN) aYn
N-1 0 R 0 R
+ fj/ e f_; (€, yn) dyn -W—/ ey”“"f—N(E',yN)dyN}
j=1 Y~ —o0

so that

e;$N§(§’> 0)
M AWt 71, w—
e:Fw:tzN N-1

{Z & /0°° e YN+ £ (¢, un) dyn +iw+/0 eI+ fun (€, yn) dyn

=1

'a:tZ(gl’xN) =—-

MWt +71,-w-
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0 A
v f_n(¢',un) dun |-

-0

N-1 0
+ Z 51'/ evN et f_i(€' yn) dyn — iw_/
P

Therefore, we have

e—w+(EN+uN) 0 o=wi(TN+YN) 5, (&
NG+ (£ yn) dyN—/ € wi§+ (€ yn) dyn
0

(€ om) 4w + Y1, -w- M 4w + 1, -w_

e+ @V FUN) fL (¢ yn) dyn

N—
g 1+w++’)’1— —/o

twy /oo e—w+(zN+UN)f+N(€,’ yn) dyn
M, +W+ + N,-w- Jo

N-1 ¢ oo )
+ 3 o [T (e ) dyn

T N 4+W+ 7w
. o0
14w u:-—v w / e~(Wrante-IN) £ (¢, —yn) dyn;
AWt +7,-w- Jo
/o ew_(zN+yN)aN§_(§',yN)d /0 e“’—(”*'y"’)w_ﬁ_(ﬁ',yzv)d
N —
—oo M, 4+wW4 + 71, —w— v —0 M +W+ +71,-w-

'&’—2(6,7 :L‘N) = -

N-— 0
§j / (w—-zN+ ;
+ elw-agn+wiyn) (& —yn) dyn
>, vl I Fri (€, —yn) dy

e /o e@-aNFtoruN) £ (€, —yn) dyn
MNAW+ +7,-w- J_oo

N-1 £ 0 .
+ ; / e’ (IN+yN)f— '(611 yn) dyn
; MA+Wt +7M,-W- J o ! )

. 0
o - / eo-EN ) £ (¢ u) dyn. (2.9)
M+Wt +71,—w- J

To estimate ut2, we introduce some symbol classes.

Definition 2.1. Let = be a domain in C and let m(¢’,\) (A = v+ ir € E) be a function defined for
(¢',A) € (RN-1\{0}) x Z. Assume that m(¢, )) is an infinitely many differentiable function with respect
to £ € RN-1\ {0} for each ) € E.

(1) m(&,A) is called a multiplier of order s with type 1 on Z if the estimates:
105 m(€', )] < Car (AIV2 + JE'1)* 1 (2.10)

hold for any multi-index x’ € N(I)v 1 and (¢/,A) € E and (¢,\) € E with some constant C,
depending solely on «’ and Z.

(2) m(&,A) is called a multiplier of order s with type 2 on E if the estimates:
|95 m(€', M| < Cor (A2 + [€/])71¢| 71 (2.11)

hold for any multi-index x’ € NJ'~! and (¢,)) € E with some constants C,s depending solely on
k' and Z.
Let M;,,,(E) be the set of all multipliers of order s with type i on Z (i = 1, 2).

Obviously, M, ;(E) are vector spaces on C. Moreover, the following lemma follows from the fact:
(IA12 + |¢')~19'l < |¢/|~1'] and the Leibniz rule immediately.
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Lemma 2.2. Let s1, s be two real numbers. Then, the following three assertions hold.
(1) Given m; € M; 1(8) (i =1,2), we have mymg € My, 44,,1(Z).
(2) Given £, € M, (E) (2 = 1,2), we have €102 € Mg, 45,,2(E).
(3) Given n; € M, 2(E) (¢ =1,2), we have mymg € Mg, 4,,2(5).
In what follows, we use the following lemma due to Shibata and Shimizu (3, Lemma 5.4].

Lemma 2.3. Let 0 <9 < 7/2 and 1 < g < 0o. Given £o(&, , ) € Mo 1(X9) and £1(€',X) € Mop,2(Zy),
we define the operators L;j(\) (§ =1,2,3,4) by

[LaAGa) = [ 5t W26 AN e ) PR, ) i,
L@ = [ Fea(E ) A AN ) P (E 0, (&)
LaOIH(@) = [ 7 (A o) FAE I ) o,
LaAGa) = [ F (€ A M€ 2+ 1 N TIE 1))

Then, L, is a bounded linear operator on Ly(RY) and
1Ll ) < Clbllz .

Using the identities:

Mis + € Mis + €7
+ = 1= - 95
W+ w3
and applying Lemma 2.3, we have
IN2usa, Vuso) L myy < CUIE L @y + -]z, @y) + (A9, Vo) o, @ }- (2.12)

Setting uy+ = u41 + u4g and combining (2.7) and (2.12) yield that uy satisfy the estimate:
||()‘1/2ui,vuﬂ:)”Lq(mg) < C{lIfs N, wyy + =Nz, wy) + ||()\1/2917V9i)”Lq(Rg)}- (2.13)
Moreover, by the Fourier multiplier theorem and Lemma 2.3, we see that u4 € qu (RY) and uy satisfies
(2.2). Since fi|;y=+0 = 0, assuming that g = 0 in (2.2), using the integration by parts and defining u
by u(z) = us(z) for z € RY, we have
Theorem 2.4. Let 1 < g< oo and 0 < ¥ < /2. Set
Y9 ={A€C\{0}||argA| <7 -9}

Then, for any £ € Ly(RN) and X € Zy, the variational problem (2.1) admits a unique solution u €
W2(RN) satisfying the estimate:

1A 20, V)l @y < Clfllz, vy (2.14)

with some constant C > 0.
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2.2 Bent half-space problem

Let ® : RV — RY be a bijection of C? class and let ®~! be its inverse map. Writing V®(z) = A+ B(z)
and V&~ 1(y) = A_; + B_;(y), we assume that A and A_; are orthonormal matrices with constant
coefficients and B(z) and B_;(y) are matrices of functions in W}!(RY) with N < r < co such that

(B, B-1)|lLwmry < My, [[V(B, B-1)|L, vy < Mo (2.15)

We will choose M; small enough eventually, so that we may assume that 0 < M; < 1 < Mj; in the
following. Set Dy = ®(RY), I'y = ®(RY') and let ny be the unit outer normal to I'y. Setting ®~! =
(®_1,1,...,P-1,n), we see that Iy is represented by znx = ®_;1,n(y) = 0, which furnishes that

V®_i;,v _ (An1+ Bni1,...,ANN + BNN)

_ 2.16
IV®_ N (i (Ani + Br,)2)1/2 e

ng = )
where we have set A_; = (A;;) and B_; = (B,;). In particular, ng is defined on the whole R". Since

o1 (Ani + Br,)? =14+ 31 (24N, Bw, + BY,), by (2.15) |[Vno||z, vy < O Ma.
Moreover, we have

N 6-7% o N
a—yJ = 2=:1 5‘—5—“ k2=: -Afz] + B‘LJ (I)(x)))-—— (2'17)
By (2.15),
“Bjk o q)”Loo(RN) < CM1, ||V( ik © (I))”L (RN) < CM,. (2.18)

Let RN = D, UD_, and

(u, V)i~ =/D u(x)@da:+/D u(z)v(z) dz..

In this subsection, we consider the variational equations:
A, )gn + (MmVu, Vo)in = (F, Vp)gn  for any » € W] (RY) (2.19)

with f = (f1,...,fn) € Lg(R"), and 7; is a piecewise smooth function defined by v1|p, = 71,+ with
some positive constants 4. By the transformation: y = ®(z), the equation (2.19) is transformed to the
equation:

N
Awd, )pn + (110 )T D (Ajk + Bjk 0 ®)(Aje + Bje 0 8)0kv, 8ep)gn = (F, Vo) (2:20)
jka:l

for any ¢ € W;,(RN), where J = det ® and F = (F,...,Fy) with Fy, = Z;\Izl(,‘l.,-;c + Bj, 0 ®)f;. By
(2.15),
”J - 1”L°°(]RN) < CM,, ”VJ”L,(]RN) < CM,. (2.21)

Let Jv = w, and then

N
J > (Ajk + Bjk o ®)(Aje + Bje 0 8)v

7k, =1

N
Z .A]k-f-BkO(I))(.Ag-i-Bgo@)akw { Z (.A]k-i-BkOq))(A]e-l‘Beoq) 3kJ}J-2
k,6=1 7 k,e=1

Noting

N .

1 forj=k
E AjAjp = 0o = { s ’
= 0 forj#k,



and letting P = (Pre(z)) and Q(z) = (Q1(z),...,Qn(z)) with

N
Peo =Y {Aje(Bjeo®) + Aje(Bjk 0 ®) + (Bjk 0 ®)(Bje 0 )},
i=1

N
Qe= - Z (Ajk + Bjro)(Aje + Bjeo)(8x )T 2,

Jrk=1
we have
(Aw, @)gn + (110 )Vw, Vo)gn + (11 0 2)(PVw + Qu), Ve)iw = (F, Vip)ry (2.22)
for any ¢ € qu, (RM). By Sobolev’s imbedding theorem,
1-& N
labl iy < Ollally oy 181 o V81 v (23)
for any a € L.(RV) and b € qu(RN ) provided N < 7 < oo (cf. [2, Lemma 2.4]). So, applying (2.23)
and using (2.18) and (2.21), we have
1PV + Quily, ey < OO + )| Vaol o, + CoMallwl e (224)

for any small o > 0 with some constants C and C,, where C, is a constant such that C; — co as o — 0.
Given z € W}(RY), let w € W} (R") be a solution to the variational equation:

(dw, p)w + (11 0 2)Vw, Vp)an = (F — (71 0 @)(PV2z + Q2), Vip)rn (2.25)
for any ¢ € qu, (RY). By Theorem 2.4 and (2.24), such w uniquely exists, which satisfies the estimate:

[(AY 2w, V)|, @y < C(My + 0)||Vz]|L @yy + CoMal|z]|L @y + ClIfllL, @~y

Choosing o > 0 and M; > 0 small enough and |)| large enough, by the Banach fixed point theorem we
have

Theorem 2.5. Let 1 < g < oo and 0 < ¥ < /2. For Ay > 0, we set
T, ={A € Ty [ |A[ 2 Ao}

Then, there exists a Ao > 0 such that for any A € Sy,5, and £ € Ly(RN) problem (2.19) admits a unique
solution u € Wy (RYN) satisfying the estimate:

A2, V)| L@~y < ClIEl| Ly @y)-

Next, for the later use we consider two more variational problems. The first one is the variational

problem in RV:
A, @)ry + (YY1, Vo)pe = (£, Vp)gn  for any ¢ € W, (RY), (2.26)

where + is a positive constant. Then, we have

Theorem 2.6. Let1 < g < o0 and 0 <9 < 7/2. Then, for any A € Ty and f € Ly(RY) problem (2.27)
admits a unique solution u € W] (RN) satisfying the estimate:

IO, V)2, @y < OIS, @),
The second one is the variational problem in D, :
Mu,p)p, + (YVu,Vo)p, = (f,Vp)p, forany ¢ € Wy o(D4). (2.27)
Employing the similar argumentation to the proof of Theorem 2.5, we have

Theorem 2.7. Let1 < g < oo and 0 < ¥ < /2. Then, there ezists a A9 > 0 such that for any XA € Xy,»,
and £ € Ly(Dy) problem (2.19) admits a unique solution u € qu,O(D+) satisfying the estimate:

(A2, Vu)llL, sy < ClEllL,(py)-

127
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2.3 A proof of Theorem 1.5

To prove Theorem 1.5, first we consider the variational problem:
Ay, @)q + (Y Vu, Vp)g = (£, Vp)y  for any ¢ € qu,’O(Q). (2.28)
And then, we have

Theorem 2.8. Leet 1 < g < oo, N <r < oo and 0 < 9 < m/2. Assume that max(q,q’) < r and that

I' and T'_ are compact hypersurfaces of class 2 -, Then, there exists a Ay > 0 such that for any

f e L,(Q)N and X € T,»,, problem (2.28) admits a unique solution u € qu,o(Q) satisfying the estimate:
(A 24, V)|, 0y < Clfllz ()

To prove Theorem 2.1, we start with
Proposition 2.9. Let N <r < oo and let T and I'_ be compact hyper-surfaces of Wr2 “Ur | Set I'y="T
and T'y =T_. Let My be any positive number € (0,1). Then, there exrist constants Mz > 0,0 < d <1,
open sets Ux C Q, finitely many N-vector of functions ®; € W2RMYN (4 =0,1,j = 1,...,K;), and
points x; el, (i=0,1,j=1,...,K,) such that the following assertions hold:

(i) The maps: RN 5>z — &4 (z) € RN (i =0,1) are bijective.

(i) Q= (Uﬁi"l B(RN) N Bd(mg)) U (Uj.gl B (RY) N Bd(m;)) VU, UU_,
B(RY) N By(a?) =T N By(al), BIRY)N By(a)) = 2N Ba(a)),
1 (RY) N Ba(z}) =T_NBy(z}), @}RY)N Ba(z}) = QN By(z;).

(iii) There exist C* functions (}, f; (=0,1, j=1,...,K;), ¢3, and {3 such that

0<¢l, <1, 0<¢3, CE <1 supp(, suppl} C Bu(zh), supp(i,suppll C Uy,
1(¢E, Ellwa @y, 1CE CEllwz,mny S o, =1 onsupp(i, (I =1 onsupp(,

1 K, o
YD G+G+C =100, Y G=1onI" (i=0,1).

i=0 j=1 j=1
Here, ¢y is a constant which depends on Ma, N, q and r.

(iv) V& = Al + Bi, V(®%)™! = A% _ + B}_, where A} and Aj_ are N x N constant orthonor-
mal matrices, and Bt and B! _ are N x N matrices of Wit (R") functions defined on RN
which satisfy the conditions: ||Bi||L.. &~y < M1, ||B} _llL.wvy < M1, [[VBHlw:@yy < M2 and
IVB: _|lw:®vy < My fori=0, 1 and j =1,...K,. Here, WI(R") = L.(RY).

Since I and I'_ are compact hyper-surfaces of 21/ class, employing the argumentations due to

Enomoto and Shibata [1, Proposition 6.1], we can prove Proposition 2.9, so that we may omit its proof.
Let R;V = @?(Rf) U @?(Rf), DJI. = @}(R’I), and 1"} = BD;- = <I>11(]R(1,V) Given f € Ly(Q), let u?,

uj and u% be solutions to the following variational problems:

’\(u?’ ‘p)]R;V + ('Y?VU?, V‘P)R;V = ({?f’ Vp)ry  for any ¢ € qu’ (RN)’ (2'29)
Aul, @)t + (1, Val, V) ps = (1, Vio)ps  for any o € W (DY) (2:30)
Aud, @)ry + (M2 Vud, Volry = ((3f, Ve)gn  for any € W (RY). (2.31)

Here, 49 are piece-wise constant functions defined by ")’?I(p‘(’)(]kg) = 71,+. By Theorem 2.5, Theorem 2.6
and Theorem 2.7, there exists a constant A; > 1 such that for any A € £y, 5, problems (2.29), (2.30) and
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(2.31) admit unique solutions uJ € W}(R"), u} € W}(Dj) and u3 € W] (R") satisfying the estimates:

(A2, Vud) 1, @~y < CICSEN L, @),
(A ?u3, Vui)lz,on < ClIGEL, o), (2.32)
I(AY2ud, Vad)lln, @yy < CUCEE | L, mv)-

Let A()\) be an operator defined by
1 K,
ANE=D"5"Cul + Gl + 22,
=0 j=1
and then noting that (Z:=o Z;f_fl V + V(3 + V(2 =0, by (2.29), (2.30) and (2.31) we have
MAMNE, @)g + (7' VAL, Vo), = (f + Ri(VE, Vo), + (Re(VE, )¢ + (Rs(WE, o)r (2.33)
for any ¢ € W}, ,(Q) with

1 K,

RaNE =233 (Vi + 71,4 (V) + 1, (V22
=0 7=1
IJ K, )
RoNf = —{D D V(AU +11,+(AG )l +y1,- (A )2 },
1=0 j=1
Ko !
Rs(Vf == (11,4 — 11,-)@H(VE)) - n)|r.
Jj=1

By Poincarés’ inequality,
lellzy@) < CliVellL, @ (2.34)

for any ¢ € W, 4(), so that by (2.32)
[(R2(WV)E, 0)al < CINT2(Ell ooy I Vel L, () (2.35)
for any ¢ € qu,,O(Q). By the interpolation inequality for the trace operator and (2.32) we have

Ko
_ —.1
IRsMEllz, @) < (3 NV IV (TN ) < CINT3 (€] 2,0
j=1

which, combined with (2.34), furnishes that
R
[(Ra(ME, o)r| < CIAI72 |Ifl| @) IVl @)- (2.36)

for any € W}, ((Q). By the Hahn-Banach theorem, there exists an operator R4()) € £(Lg(92)V) such
that
(Re(NE, p)g + (Rs(Nf, 9)r = (Ra(Nf, V)

for any ¢ € W} (), and moreover by (2.35) and (2.36)
J
IRaMfllz 0y < CIAT27 [Ifll L (0 (2.37)

for any A € By, .
By (2.33) we have

MAMNE, ©)g + (V' VANE, Vo) = (I + (Ri(N) + Ra(\)E, V) for any o € Wy (),
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where I denotes the identity operator from L, () onto itself. By (2.32), we have
IR (N Ly ) < CINMY2IIE] Ly ()

which, combined with (2.37), furnishes that
IR1(A) + Ra(M) | 2L vy < 1/2

for any A € £y, with some large constant Ay > A;. Thus, v = A(A)(I + R1(A) + R4(X)) I solves
problem (2.28) uniquely, which satisfies the estimate:

|20, V0)lI1 @) < Clfllz, -

This completes the proof of Theorem 2.8. ]

Finally, we give a

Proof of Theorem 1.5. For any f and g € L,(Q)V, we have (f,Vp)a = (8, Vy)a for any
¢ € W} 4(Q) provided that div(f — g) = 0 in ©, so that we consider the quotient space Ly(@) =
Ly ()N \ PL,(Q), where PLy(Q) = {f € Lo()" | divf = 0in Q }. By the Helmholtz decomposition,
for any f € L,(Q), there exist g € Lg(?)" and ¢ € W](Q) uniquely such that f = g + Vi and
divg = 0in Q. Here, v € qu(Q) is a unique solution to the weak Neumann problem:

(V4, V) = (f, Vop)a for any ¢ € W), ().
In other words, v is a weak solution to the Neumann problem:
Ap=divf inQ, n-Vyy=n_-f onI_.

For f € Ly(Q)V, let [f] be the representation of f in Ly(), and then [f] = V4. If divf = 0, then [f] = 0.
Moreover, by the regularity theorem of the solutions to the Neumann problem, [f] € W;(Q)N provided
that £ € W}(Q)V.

Under these preparation, we prove Theorem 1.5. Let A be a large positive number such that A > A,
where A; is the number given in Theorem 2.8, and then by Theorem 2.8 for any f € Lq(Q)N , problem
(2.28) admits a unique solution u € W, (1) satisfying the estimate: lullwia) < CllfllL @) Let R be

an operator € L(L,(), W},(Q)) defined by Rf = u. We look for a solution (1.9) of the form: u = Rg
with g € L,(), and then

(MY, Ve)g = (8, Vo) + (O, p)g  for any ¢ € Wi o(). (2.38)

Since 2 is a bounded domain whose boundary is a hyper-surface of W2 class, there exists a h € Wq2(Q)

solving the Dirichlet problem:
Ah=-X inQ, hlr_=0

uniquely and satisfying the estimate:
[Rllwz) < ClidullL,@) < CllgllLq)-
Let S be an operator defined by Sg = [Vh], and then
(u, p)g = —(Ah, p)g = (VSg, Vp)g for any ¢ € Wy 4(Q),
and therefore the equation (2.38) is transformed to
(MmVRE, Ve)g = (I +8)8, V), for any p € Wy (), (2.39)

where I is the identity operator in £(L,()). Since VA € WHQ)V, Sg € W}(2)N. Moreover, Q is
bounded, so that the Rellich compactness theorem yields that S is a compact operator from L,,(Q) into
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itself. Thus, in view of the Riesz-Schauder theorem, especially the Fredholm alternative principle, in
order to prove that the I + S is invertible, it suffices to prove that the kernel of I + & is trivial. Thus,
let g € Ly(Q) satisfy (I + S)g = 0, and then by (2.39)

(1VRg,Vp)g =0 forany ¢ € qu,yo(Q). (2.40)

The task is to prove g = 0 in L,(Q), that is, divg = 0. First, we consider the case 2 < g < co. Since
RE € Wyo(Q) C W3,(Q) C Wy 4(), setting ¢ = Rg in (2.40), we have |11 VRg| 1, @) = 0, that is,
71 VRg = 0 in €, which yields that Rg is constant in Q4. Thus, Rg(x) = c4 for z € Q1 with some
constants cx. But, Rg € W} (), which furnishes that |[Rg]] = 0 and Rg|r_ = 0. Thus, c; =c_ =0,
which implies that Rg = 0. So, we have g = 0 in Ly(Q). In fact, we have

0= A(Rg,¢)g + (MVRE,Vp)y = (8, Vi)y for any ¢ € Wy (Q),

which furnishes that divg = 0. Thus, the inverse operator (I +8)~! of I +8 exists in £L(L,(Q)). In view
of (2.39), we see that for any f € L,(Q), u = R(I +8)"'f € WJ(€) is a solution of (1.9) satisfying the
estimate:

lllws ey < CUEllz, -

Next, we consider the case where 1 < g < 2. In this case, 2 < ¢’ < 00, so that for any h € Ly ()" there
exists a p € qu,,o(Q) which solves the variational equation:

(M Ve, Vi)g = (h, V) for any ¢ € W, 4(Q).
Setting 1 = Rg, by (2.40) we have
0= (11VRg,Vp)g = (h, VRg)q.

The arbitrary choice of f implies that VRg = 0 in ©, so that Rg = c4 in Q.4 with some constants cy.
But, Rg € W, ,(), so that Rg = 0. Therefore, employing the same argumentation as above, we see
that (/ +S)~! exists in £(L4(f2)), which furnishes the existence of a solution u € W ((£2) of problem
(1.9) for any f € L, ()Y satisfying the estimate: lullwz(e) < Cllfllzy0)-

The uniqueness of solutions follows from the existence of solutions of the dual problem. In fact, let
u € W}o(Q) satisfy the homogeneous equation:

(MmVu,Ve)y =0 forany ¢ € qu/’O(Q).

For any f € Ly(Q), let o € W, 4(Q2) be a solution of the variational problem:

(MmVe, Vip)g = (£, Vip)y for any ¢ € qu,’O(Q).
Setting ¢ = u, we have
0= (MVp,Vu)g = (f, Vu)g.

The arbitrary choice of f implies that Vu = 0 in ), so that u is a constant in 2. But, u € W;,O(Q), s0
that u = 0. This proves the uniqueness of solutions, so that we have completed the proof of Theorem 1.5.

3 Stokes equations and reduced Stokes equations

Let A be a complex number. In this section, we consider the following generalized resolvent problem of
the Stokes equations:
divv=f in Q,
v — v (DivS(v) —Vp) =g in Q,
[(S8(V) —pDn]] = [h]], [v]]=0 onT,
(S—(v_)=p_In_|r_=h_|pr_ onT_.

(3.1)
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Let K(u) be a solution to the variational problem:
(11 VK (u), V), = (71DivS(u) — Vdivu, Vi), for any p € Wy 4(Q), (3.2)
subject to
[K(u)]] = [[< S(u)n,n > +divu]], K(u)jr_ =(<S_(u_)n_,n_ > +divu_)|r_.

In view of Theorem 1.5, for any u € W2(Q)¥ NW}(Q)" problem (3.2) admits a unique solution K (u) €
W2(S) possessing the estimate:

1 ()l y < Cllalhaen, (33)
We also consider the following equations:
Au - v (DivS(u) - VK(u)) =g in Q,
[[(S(u) = K(u)Dn]| =[], [[u]]=0 onT, (3.4)
(S—(u-) — K(u))n_|r_ =h_jr_ onT_.

Problem (3.1) is called the Stokes equations, while problem (3.4) is called the reduced Stokes equations.
We discuss the equivalence of both problems (3.1) and (3.4).
First, we assume that problem (3.1) is solvable. Let J,(Q2) be the set of all N-vector of functions g
satisfying the condition:
(8 Vp)g =0 for any ¢ € Wy o(Q). (3.5)

Let g € J4(2). Let v and p be solutions of problem (3.1) with f = 0. Then, noting that divv =0 in Q
and [[v]] =0, by (3.1), (3.2) and (3.5) we have

0 = (Av — n1(Div S(u) — Vp), Vp)g
= —MdivVv, ) — (1DivS(u) — Vdivv, Vp)g + (71Vp, Vp)g
= (mV(p— K(u)), V), for any ¢ € Wy o(9).

Moreover,
[Pl = [[< S(v)n,n >]| = [[K(V)]], plr. =<p-S_(u-)n_,n_>|r_ = K(V)|r_,

because divv = 0 in Q. Thus, the uniqueness implies that p = K(v), which shows that v is a solution
of problem (3.4). -

Conversely, we assume that problem (3.4) is uniquely solvable. Moreover, we assume that it does
hold the uniqueness of the variational problem:

(O, @) + (Vw, Vo) = (£, V) for any o € Wh o(®), (3.6)

subject to [[w]] = g and w|r_ =g|r_. Let f € qu(Q), g€ L (N, he W] ()N and h_ € L, (Q-)N
be given. Let 6 € qu(Q) be a solution to the variational problem:
(mV8,Vp)y =—(g, V), forany p¢€ qu,’o(Q), (3.7)
subject to [[6]] =< [[h]],n > and f|r_ =< h_|r_,n_ >. Using this §, we rewrite (3.1) of the form:
divv = fy in Q,
Av — 71 (DivS(v) = V(p+8)) =g+ Vo in Q,

[((S(v) = (p + 6)D)n]] = [[h]] — [[f]]n, [[v]]=0 onT,
(S_(v_)=(p+8)Dn_|r_=h_|r_ —6r_.n_ onT_.

By (3.7), g + V8 € J4(Q), < [[h]],n > —[[f]] =0onT, and < h_|r_,n_ > —f|r_ =0 on I'_. Thus,
in (3.4) we may assume that

g € J,(Q), <[h],n>=0, <h_|p_,n_ >=0. (3.8)



Let € qu(Q) be a solution to the variational equation:
MVY, Vp)g = —{Mf,9)q +(VF,Ve)a} for any p € Wy (9), (3.9)

subject to [[]] = [[f]] and $lr_ = fle_. In fact, since |A(f, @)l < NIl Vollz, (@) for any ¢ €
qu',o(Q) as follows from Poincarés’ inequality, by the Harn-Banach theorem there exists a G € Ly (Q)V
such that

Mf@)g = (G, Vo) for any p € W}, 4(R)

with |Gz, ) < CIAIfllL, @) Let ue WZ() NW2(RQ) be a solution to the reduced Stokes equations:
Au— v (DivS(u) — VK(u))=g+mVy in Q,

[[(8(u) = K(u)D)n]] = [(h]] - [[f]]n, [[u]]=0 onT, (3.10)
(S—(u-)—-K(uI)n_|r_=h_|r_ — flr_n_ onI_.

Note that [[u]] = 0 in (3.10). For any ¢ € W, ,(?), by (3.8) and (3.10) we have
(M VY, Vo)g = (Au— 1 (Div S(u) — VK (u)), Vi)
= —{A(divuy, p)g + (Vdivu, Vp)a 1,
which, combined with (3.9), furnishes that
A(f —divu, @)g + (V(f —divu),Vp)g =0 for any ¢ € W ().
Moreover, by (3.2), (3.8) and (3.10),
[divul] = —{[< S(un,n > ~K()] = [If]l, divulr_ = —(< S(wn_,n_ > -K@)lr_ = fIr_,

and therefore by the uniqueness we have divu = f in Q. Since [[¢]] = [[f]] and ¥|r, = f|r,, u and
p = K(u) — 1 solve problem (3.1).

4 A proof of Theorem 1.4

Concerning the reduced Stokes equations (3.4), we have
Theorem 4.1. Let 1 < g<oo, N<r<oo and0< e < mw/2. Let
Zero ={A€C|largA < m—¢ A2 Ao}

for A > 0. Assume that r > max(q,q’) with ¢ = ¢/(¢ — 1) and that T and I'_ are both compact
hyper-surfaces of w2 YT Class. Then, there ezxists a constant Ao > 0 such that for any A € .5, and
g € LN, h e WHQ)V, and h_ € WX(Q_), problem (3.4) admits a unique solution u € W2(Q)N
possessing the estimate:

(v, X/297u, V23u)|l 1 6y < C{llgllz @) + 1O 2R, VB)l L ) + IA*R VRO, ) (41)

Theorem 4.1 was proved by Saito and Sri [5]. In fact, the interface problem in the whole space with
interface zx = 0 and the one phase problem in the half-space were treated in Shibata and Shimizu [3, 4).
And then, according the the method due to Shibata [2], we can construct a parametrix by using the
partition of unity, so that arguing similarly to Shibata [2] we can prove Theorem 4.1.

Moreover, if g, h and h_ in Theorem 4.1 satisfy the orthogonal condition (1.6), then u satisfies the
orthogonal condition (1.7), that is

(7', pe)y =0 forallé=1,...,M. (4.2)

In fact, multiplyingthe first equation in (3.4) by v, 'u and using divergence theorem of GauB, we have

(718, Pe)e = A1 u, Pe)gy — (Div (S(u) — K (w)I), pe)e,
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1 .
= )\(’71—1,11, pl)Q - ([[hlla pl)f‘ - (h—,PIZ)I‘ + E(D(u),D(pl))Q - (K(u)vdlv pe)Q
Since D(p¢) = 0 and divp, = 0, the condition (1.6) yields that )\('yl_l,u,pg)s-2 = 0. Since A # 0, u
satisfies the orthogonal condition (4.2).
;From now on, we prove Theorem 1.4. For this purpose, first we consider the reduced Soktes equations:

—-v1(DivS(v) —VK(v))=g in Q,
[(S(v) - K(v)Dn]] = [h]], [v]]=0 onT, (4.3)
(S=(v-)—KM¥)I)n_|r_ =h_|r_ onT_.

By Theorem 4.1, there exists a large Ay > 0 such that problem (3.4) with A = A; admits a unique
solution u € W2(12) possessing the estimate:

lallwaey < C{lI8llz ) + Illwy ) + Ib-llwz @} (44)

Here and in the following A; > 0 is a fixed positive constant. We look for a solution v of the equations
(4.3) of the form v = u + w, and then w satisfies the equations:

-1 (DivS(w) — VK (w)) =f in Q,
[[(S(w) - K(w)D)n]] =0, ([w]j=0 onT, (4.5)
(S—(w_)—K(w)I)n_|r_=0 onT_.

witn f = —A;u. Moreover, by (4.2), f satisfies the orthogonal condition:
(v, pe)y =0 foralll=1,...,M. (4.6)
In view of Theorem 4.1 again, there exists a unique z € Wf(Q) which solves the equations:

Az — v (DivS(z) - VK(z)) =f inQ,
[[(S(z) — K(z)I)n]] =0, [z]]=0 onT, (4.7)
(S_(z_) - K(z)I)n_|r_ =0 onT_.

Moreover, f satisfies the orthogonal condition (4.6), so that z also satisfies the orthgonal condition (4.6).
Let R be an operator defined by Rf = z. Then, we have

IRE w2y < ClIElLy ()5
(WT'RE, pe)y =0 forall=1,...,M. (4.8)

We look for a solution of (4.5) of the form z = Rg. Inserting this formula into (4.5) and using (4.7), we
have
—71(DivS(Rg) - VK(Rg)) =g - MRg inQ,
[[(S(Rg) — K(Rg)I)n]] =0, [[Rg]]=0 onT, (4.9)
(S-((Rg)-) — K(Rg)D)n_|r_ =0 onT_.

Since Rg € W2(?)N and since [[Rg]] = 0, Rg € Wy (). Moreover, Q2 is bounded, so that the Rellich

compactness theorem yields that R is a compact operator from L, ()Y into itself. Thus, to prove that
(I — M\ R) is invertible, it is sufficient to prove that the kernel of I — AR is trivial, where I denotes the
identity operator of £(L,(Q2)"). Let g be an element in L, ()N such that (I — \R)g = 0. The task is
to prove that g = 0. Let u = Rg, and then by (4.9), u € Wq2(Q) satisfies the equations:

—~1(DivS(u) — VK(u)) =0 in Q,
[[(S(u) - K(uw)D)n]] =0, [u]=0 onT, (4.10)
(S—((u=) - Ku)I)n_|r_ =0 onI_.



As was observed in Sect. 3, u satisifies the divergence free condition:
divu=0 inQ. (4.11)
In fact, for any ¢ € W, 4(?) by (4.10) with 1 = 1 and (3.2),
0 = (DivS(u) — VK(u)), Vo)g = (Vdivu, Vi),

subject to [[div u]] = [[< S(u)n,n > —K(u)]] = 0 and divu|r_ = (< S_(u_)n_,n_ > —K(u))|r_ =0.
Thus, the uniqueness implies (4.11). )

First, we consider the case where 2 < ¢ < co. In this case, u € W2()¥ C WZ(Q)V, so that
multiplying the first equation in (4.10) by u and using the divergence theorem of Gau8, the interface
condition and the boundary condition in (4.10) and (4.11), we have

.
B D)0, + 5 ID@)IE 0y = 0. (4.12)

But, u satisfies (2.40) and {p¢}}Z ; is the orthonormal basis of Rq with respect’to the inner-product
[u,v] := (774, V)¢, so that u = Rg = 0. Since Rg satisfies (4.9), we have g = 0, which furnishes that
(I-=MR)™t € L(Ly(M)N). Thus, w = R(I — AR)~f solves the equations (4.5). Moreover, by (4.8) w
satisifes
Iwlhwzy < ClIlL, @,
(vitw,pe)g =0 forallé=1,...,M. (4.13)

Next, we consider the case where 1 < ¢ < 2. We consider the problem

—DivS(z) - VK'(z)) =g in ,
([(8(z) - K'(z)Dn]] =0, [z]]=0 onT, (4.14)
(S_(z_) - K'(z)I)n_|r_=0 onT_,

where K'(z) is a solution to the variational equation:
(VK'(z), Vo) = (DivS(z) — Vdivz, V) for any ¢ € W, (),
subject to
[K'(2)]] = [[< S(z)n,n > +divz]], K'(z)[r. =(<S_(z_)n_,n_> +divz_)|r_.

Employing the same argument as above, we may assume that problem (4.14) is uniquely solvable for
2 < ¢ < oo. Thus, for any g € Jy(Q), let z € W2 ()N be a solution of (4.14). As was seen in Sect. 3,
z € Jy (). Noting u satisfies the first equation of (4.10) with ; = 1 and using (4.14) and the divergence
theorem of Gaufl, we have

(4,84 = —(u, DivS(z) - VK'(2))g, = 55 (D(w), D(2)a, + 5 (D(w), D).,

0= (DivS(w) ~ VK (w),2) = £-(D(w), D(@))a, + 5 (D(w), D@)a_,
and therefore, (u,g)y = 0. For any f € Ly (Q)N, let ¢ € W;,’O(Q) be a solution to the variational
problem:
(Vo, Vo) = (£,9)g  for any o € W, ().
Since f — V¢ € J,(€2), we have

(ua f)Q = (ua f - v’d’)n + (ua Vw)n = (ll, vd))ﬂ

Since (u, Vi))g = 0 as follows from (4.11) and [[u]] = 0, we have (u, f)y = 0, which, combined with the
arbitrary choice of f, furnishes that u = 0. Thus, employing the same argument as above, (I — \;R)~!
exists in £(L,(Q)Y), so that w = R(I — \;R)™'f solves the equations (4.5) and satisfies (4.13). The
uniqueness of solutions follows from the existence of solutions of the dual problem, so that we have proved
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Theorem 4.2. Let 1 < ¢ < 00, N <r < o0 and 0 < € < w/2. Assume that r > max(q,q’) with

g =gq/ (g - 1) and that T' and T'_ are both compact hyper-surfaces of w? M class. Then, for any
g € Ly(2), h € W}() and h_ € W(Q_) satisfying the orthogonal condition (1.6), problem (4.3)

admits a unique solution v € Wg(ﬂ) satisfying the orthogonal condition (1.4) and the estimate:
IVliwz @y < CLIRNL @y + 12, VR, gy + 1A ?h, Vho )] o0} (4.15)

As was discussed in Sect. 3, Theorem 1.4 can be proved by using Theorem 4.2. In fact, let f € qu ),
ge LMV, he W;(Q) and h_ € qu(Q_)N be given and satisfy the orthogonal condition (1.6). Let
XS qu (Q) be a solution to the variational equations:

('Ylvga V‘P)Q = _(gv V(P)Q for any ¢ € qu',O(Q)a

subject to [[0]] =< [[h]},n > onT and f|r_ =< h_,n_ > |r_ onI'_. By Theorem 1.5, such 6 exists and
satisfies the estimate:

191l ey < ClIgllL, ) + Bllwa ey + b-llwi@o))-
Using this 8, we rewrite problem (1.5) with 9 = 1 of the form:

divv=f in Q,
—n(DivS(v) = V(p+0)) =g+7V8 in Q,
[((8(v) — (p + 6)D)n]] = [h]]- < [(b],n>n, [v]]=0 onT,
(S_(v_)—-KV)In_|r_=(h_—<h_,n_>n_)|r_ onl_.

(4.16)

Note that g + 71 V0 € J,(Q), < [[h]]- < [[h],n>n,n>=0and <h_—-<h_,n_>n_,n_>=0.
Next, let ¢ € W}((2) be a solution to the variational equation:

(M, Vo)g = ~(Vf,Ve)g for any p € Wh(R), (4.17)

subject to [[¢]] = [[f]] on T and ¢|r_ = flr_ on T_. Let v € W2(2)" be a solution to the reduced
Stokes equations:

—v1(DivS(v) = VK(Vv)) =g +mV8+7 V¢ in Q,
[[(8(v) = K(v)D)n]] = [[h]]- <[h],n>n—[[f]ln, [[v]]=0 onT, (4.18)
S.(v)—-K¥)In_|p_=(h_—<h_,n_>n_—fn_)r. onT_.

Since g, h and h_ satisfy the orthogonal condition (1.6), we have

(' (& +mV6 + 11VY), pe)g + ([[(h]]- < [(h)],n > n = [[f]]n, pe)r
+(h_—<h_,n_>n_— fn_,ps)r_

= ([[f]ln, pe)r + (6n_, pe)r_ + ([, Pe)r + (¥n-, po)r_ + (6 + ¢, divpe)g

— (< [(b],n>,pe)r — (<h_,n_>n_,py)r_ ~ ([[flln, pe)r — (fn_,pe)r_

=0.

Thus, by Theorem 4.2, problem (4.18) admits a unique solution v € Wg(Q)N satisfying the orthogonal
condition (1.7) and the estimate:

I¥llwzcay < CLUIBHL @) + IBllwz @y + Ib-llwz@o) + 1 Flwzen}s
where we have used the estimate:

1960w 0 + V¥l < CLllglz, @) + llwaey + - lw) + L flwaen}
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Moreover, for any ¢ € qu, 0(€2), by (4.18) we have
(1Y, Ve)g = (-=1Div (8(v) — K(V)I)), Ve)g
= —(1DivS(v) — Vdivv, Vp)g + (VK (v), V), — (Vdivv, Vo),
which, combined with (3.2) and (4.17), furnishes that
(V(f —divv),Vp)y =0 forany p € qu,yo(Q).

Furthermore, by (3.2), (4.18) and (4.17)

[[divv]] = =[[< S(v)n,n > ~KW)]] = [[f] onT,

divvir_ = —(< S_(vo)n_,n_ > —K(v))|[r_ = flr_ onl_,

where the facts that < [[h]]- < [[h]ln,n >n,n>=0onTand <h_ -~ <h_-n_,n_>n_,n_>=0
on I'_ have been used. Thus, the uniqueness of the variational problem implies that divv = f in ).
Setting p = —0 + K(v) — v, we see that v and p are required solutions of problem (1.5) with v = 1,
which completes the proof of Theorem 1.4.
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