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1. INTRODUCTION

This note is a summary of well-posedness results in [4] concerning the Cauchy problem
of the compressible Navier-Stokes-Poisson system in R™.

[ O;p + div (pu) =0, (t,z) € Ry x R?,
Oy (pu) + div (pu @ u) + VP(p)
11) ¢ = div (2u(p)D(w)) + V(A(p)divu) + 1oV,  (¢,z) € Ry x R™,
- Ay =p—p, (t,r) € Ry x R",
[ (P, w)]t=0 = (po, uo), z € R,

where p = p(t,z), u = u(t,z) and ¥ = ¢(t,z) are the unknown functions, representing
the fluid density, the velocity vector and the potential force, respectively, P = P(p)
denotes the pressure depending on only p, and D(u) is the strain tensor. We denotes
the tensor product of velocity vector v and u by u ® u. The Lamé constants u, A
depend smoothly on p and satisfy 4 > 0 and A + u > 0, which ensures that the
operator div (2u(p)D-) + V(A(p)div ) is an operator of the elliptic type. The constant
p is positive and describe the background density. The first equation represents the
mass conservation law, the second one represents the equilibrium of momentum, and
the third equation is a Helmholtz type elliptic equation that determines the potential
force exerted by the electric field or the gravitational field.

The system (1.1) is the compressible Navier-Stokes-Poisson equation with a Coulomb
potential, which describes various physical models. If v < 0, (1.1) describes the trans-
port of charged particles under the electric field of electrostatic potential force (cf.
Markowich-Ringhofer-Schmeiser [14]). When v > 0, (1.1) describes the dynamics of
self-gravitating gaseous star (cf. Chandrasekhar [2]).

1.1. Scale-critical functional framework. The main purpose of this paper is to see
the advantage of using the Lagrangian coordinate (or the method of characteristic)
applied to the system (1.1) in in the critical or near-critical regularity framework. It
is a well-known fact that if we ignore the pressure and the potential term, the system
(1.1) is left invariant under the transformation (p,u) — (pg, ug) with

(1.2) pe(t,z) = p(£%t,€x) and wu,(t,z) = vu(f’t, fx).

The idea that the spaces that are norm-invariant under the above transformation should
give a candidate for the largest possible space to find a unique solution has been noted



by [10] for the incompressible Navier-Stokes system (with a constant density). This
idea was then extended to the barotropic compressible viscous flow in [6].

Inspired by the recent papers [9], [8] on the compressible barotropic and the incom-
pressible inhomogeneous fluids, we consider the solvability of the system (1.1) in the
low-regularity function spaces using the Lagrangian coordinates. The principal merit in
using the Lagrangian coordinates stems from the fact that it can be viewed locally-in-
time as a parabolic system with a lower-order term (this lower-order term corresponds
to the pressure), which has been noted by many authors. Effectively eliminating the
pressure by the Lagrangian transformation, we may treat the system as a simple heat
equation with variable coefficients, which enables us to use the contraction argument.
Recently, the flow estimates in the Sobolev-subcritical Besov spaces are clarified so as
to treat the scale-critical solvability (see [8,9] and the preliminaries below). The novelty

of the two papers [8,9)] is that the characteric is defined by a velocity vector only in the

critical Besov space.
Hereafter, we denote L? (1 < p < 00) as the Lebesgue space of p-th ordered integrable
functions. Let {¢;},cz be the homogeneous Littlewood-Paley dyadic decomposition of

an unity. Namely, let ¢ € S is a non-negative radially symmetric function that satisfies

suppp C {€€R™271 < [g] <2}, ¢;:=0(27€) (G €Z) and Y ¢;() =1(£#0).

JEZ
We set B(¢) :=1— > ¢;(€) and &; := B(27%¢).
j21
Definition(the Besov spaces) Let S’ be the space of all tempered distributions. For
s €Rand 1 < p < oo we define the homogeneous Besov space Bj ;(R") to be:

By (R") :={ueS; Z¢j xu=uind, ||u||1-3;',1 < oo},
jez
with [lullgy, == 3 27°]¢; * ull
jez
We define the hybrid Besov spaces g;f for s,s e Rand 1 < p < o0 by

lull 5oy = Yo 2lgs xullzs + Y 2% lgs % ullzs

j<0 j=0

We denote the low frequency of u by up, := Spu = @, * u for some fixed m and the
high frequency of u by ug. Then we may also express Bf,f as the space in which uy,

belongs to B;,l and ugy belongs to Bf;:l. The following relations hold:
E;:fl = Bf,,l N B;;:l ifs<s and E;f/ = B;yl + B;:l if s > ¢
In the low-regularity Besov framework, Hao-Li [11] gave the unique global existence of
the solution for (1.1) in the L2-based Besov spaces, using the method of [6] in dimensions
n > 3. Zheng [17] proved a global result, based on the work of [5], with a larger class
of inital data with Besov regularity. In both [11] and [17], two-dimension is excluded.
The main purpose of this paper is to prove the local solvability in the two and higher
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dimensions. Moreover, our result does not depend on the choice of v € R; in other
words, our main theorem also states a new local existence and uniqueness result for the
barotropic compressible Navier-Stokes system.

1.2. The Lagrangian coordinates. For n x n matrices A = (A;;)1<ij<n and B =
(Bij)1<ij<n, We define the trace product A : B by A: B = trAB = }_,; A;; Bji. By
adj(A), we denote the adjugate matrix of A, i.e. the transpose of the cofactor matrix
of A. If A is invertible then adj(A) = (det A)A~!. Given some matrix A, we define the
transformed deformation tensor and divergence operator by

Da(u) := 2(DufH—"AVu) and div qu:="*A:Vu=Du: A.

The flow X = X, of u is defined by

(13) X =v+ | ", Xo(r,y))dr

We denote p(t,y) := p(t, Xu(t,y)) and a(t,y) = u(t, Xu(t,y)). With the notation
J = J, = det(DX,) and A = A, := (DyX,)™!, the system (1.1) in Lagrangean
coordinate writes as follows

at(‘]ﬁ) =0,

o8y — div (adj(DX)(2uD T + Mdiv 47 — P(p)) +' adj(DX)Vy =0,
— div (adj(DX)A'VY) = po — J,

(P, @)le=0 = (po, uo).

From hereon, we may forget any reference to the initial Eulerian vector-field u in the
equations and redefine the flow of u as

(1.5) Xa(t,y) =y + /Ot u(r,y)dr.

We are going to solve the above system in homogeneous Besov spaces that are similar
to the critical space for the barotropic model.

(1.4)

1.3. Main result. In the following, we occasionally denote by I the time 1nterva1 [0, 7).

We define E,(T) as the space in which the tempered distribution v € B satisfies
ve OB NI BYY)
and Oy, Vivgy € L} B“’1 )
The norm of E,(T) is defined by

— 2
lollesr = l1vll o g o3y + 1DV gegos) + 100, Voonl 3

(1.6)

The first result concerns the existence and uniquenesss of the local-in-time solution
(9,4, ) to the system (1.4):



Theorem 1.1 ([4]). Let 1 < p <

1+2—s
(1.7) ﬁ—lgsgﬁ if n>3 and E—lgsgﬁ if n=2.
p p D p

= ’ﬂ_l ey . .
Let ug be a vector field in B;,f’ . Assume that the initial density po satisfies ag =

(po—1) € E;’_ll'% and
(1.8) inf po(x) > 0.

Then the system (1.4) admits a unique local solution (p,%,v) with@:=p—1 in
C(I;E;_ll’;), @ in Ey(T) and V9 in C(I;B;‘ll). Moreover, the flow map (ao, uo) —

~ ’ﬂ_
P

~5—1,2 1 ~3—1,2
(@,u) s Lipschitz continuous from B;,ll P X B;,l to C(I;B,; ") x Ep(T).

As one can see easily from the above, in terms of the admissibility of the exponent
p, taking s = 2 gives the best result. Now, Theorem 1.1 can be written as follows in

the Fuclidian coordinate:

Theorem 1.2 ([4]). Under the same assumptions as in Theorem 1.1, the system (1.1)
has a unique local solution (p,u, ) withu € E,(T), p bounded away from 0 and p—1 €

C(I;B,."7), and V2 € C(I; B, 7).

— ~s-1,242 | —
Remark 1.3. One would expect 1 to have the natural regularity C(I; B;’l Tt ) since v
~g—1,2

is a solution to the second order elliptic equation with the outer forcea € C(I; B,; *).
This is not attainable due to the failure of elliptic estimate (see Proposition 3.1) with
the high regularity. However, when reverting back to Eulerian coordinate, one may
prove by the lifting property of (—A)~! that V29 (in Eulerian coordinate) does belong

to C(I; B/;;l’;).
1.4. Banach’s fixed point argument. In the rest of this section, we drop the bars

~s—1,2
on the functions in the Lagrangian coordinate. We assume ag = (pp — 1) € B;,l P

jad )ﬂhl . .
and uy € B;’l” and solve the system (1.4) in the function space Ep(T). Let us first
linearize the system (1.4) into a quasi-linear parabolic system with variable coefficients.
We denote Lyu := G — py div (2uD(u) + Adivu Id) and write

Loou = pgt (div (I () + Io(u, ) + Io(u, u) + Is(w)) + Ia(u, ¢)),
— div (adj(DX)!AVY) = po — J,
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where
Ii(v,w) == (adj(DX,) — Id) (u(DwA, +' A,Vw) + A(*A, : Vw)Id),
L(v,w) := p(Dw(A, — Id) +* (4, — Id)Vw) + A(*(4, — 1d) : Vw)Id,
(1.9) L(v) := —adj(DX,) P(J; ' po),

Li(v, ) == *adj(DX,) V¥
with 9 determined by — div (adj(DX,)*A,V¥) = po — Jy.

As we will prove later, the Poisson equation can be solved independently; for a given
v € Ey(T), the solution 1 to the elliptic equation is uniquely determined. Hence, in
order to solve (1.4), it suffices to show that the map

(1.10) d:v—u
with u the solution to the following linear system
Ly = o (div (1 (0,0) + Bo(v,0) + B(v,0) + B(0)) + La(0,9)),
— div (adj(DX,)* A, V) = po — Jy
has a fixed point in E,(T") for small enough T.
2. PRELIMINARIES
2.1. Estimate for product, composition and commutator. For the proofs of the

following propositions, see [1], [8] and [9].

Lemma 2.1. Let v > 0 and — min(
holds:

3) <s< % —v. The following product law

Cllull, —"“v”B°+"

AR

I/\

vl 5,

Lemma 2.2. Let I an open interval of R contazm'ng 0 and let F: I — R be a smooth
function vanishing at 0. Then for any s > 0, 1 < p < oo and interval J compactly
supported in I there exists a constant C such that

1F(@)l5s, < Clall
for any a € B;,l with values in J.
2.2. Lagrangean coordinates and estimates of flow.
Proposition 2.3 ([8],[9]). Let X be a globally bi- szschztzndzﬁeomomrinsm of R® and
(s:,q) with 1 <p<ooand—; <s< ; (or]ust—y <s < p ifq =1 and
——=<s< ; ifg=00). Then a — aoX is a self-map over B;’;,q in the following cases:

(1) s €(0,1), _
(2) s € (—1,0] and Jx-1 is in the multiplier space M(B; ),
(3) s>1 and (DX —1d) € B,



n

Lemma 2.4 ([4]). Let 1 < p < 00, —min( )<s< % and v € Ep(T). Assume that

n
'y
T
/ IDul| . dt <&
0 B},

holds for a small enough constant ¢. Then for allt € [0,T), we have

(21) [1d - adi(DX,(®) 13y, < CllDvlgsr .
(22) I1d = Au(®)l 5, < ClDOl i .
+1 .
(23) 1= JEOllg5, < ClIDVI s
Proof. The proofs are exactly the same as those in [8] and [9]. O

We also have the following difference estimate.

Lemma 2.5 ([4]). Let 1 < p < oo, —min E,ﬁ, <s<

Uy € E,(T) satisfy condition (3.2) and denote év := Uy — Uy. Then for allt € [0,T], we
have

Assume that T; and

=S

(2.4) 142(t) = As(®)ll 53, < CIDBV g1z,
(25) ladi(DXa(t)) — adi(DX2 (D)l 5e, < DGV 11,5,
(2.6) 1(6) = JE Ol sy, < CIDO] sy

3. A PRIORI ESTIMATES FOR LINEARIZED SYSTEMS

3.1. A priori estimate for Poisson equation. We first derive the a priori estimate
for the potential term. Let 1 be a solution for

(3.1) —div (adj(DX)tAVY) = po — J.
Proposition 3.1 ([4]). Let ap € Bf;’l and v € E,(T). Assume
T
(3.2) |Dv| .2 dt <€
0 By

for a small enough ¢. Then (3.1) admits a unique solution v that satisfies the estimate

(3.3) 198l iy < € (lloolliy, + 1Dl a5,
where s satisfies the condition

1
(3.4) —nmin (1, —,> <s<—-—1.
pp p
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Proof. The existence of the solution 9 to (3.1) can be assured by fixed point argu-
ment under the assumptions above. To prove the estimate (3.3), note the equivalent

expression
AP = po — Jp — div ((adj(DXv) ~1d)(*A, — 1d)Vy

+(adj(DX,) — 1d)Vyld) + (A, — Id)w).

We write —Avy = ap + 1 — J, + div I5(v, ¢) with
L(v,%) := (adj(DX,) — 1d)(*A, — Id)Ve + (adj(DX,) — Id)Vy) + (*4, — 1d) V4.
Thus,
||V2¢“Loo(1;3;,11) < ”a0”L0°(I;B;,1) +1 - Jv”LO"(I;B;’I) + || £5(v, ¢)||L°°(I;B;j;1)'

For 1 — J,, we have by Lemma 2.4,

11— ol ooz ) < 1DVl 221,85 )5
where we need

(3.5) —n min( )<s<

S

11
P’y
By Lemma 2.1

|| Ip(u,%) ”L°°(I;B;’+11)
< Cli(adj(DXy) — 1d)("Ay — Id) V| poo g o11)
+ |(adj(DX) = 1) V)| ooty + Ao = IV oo 1)

< Clladj(DX.) - 1d] 44 =Xl 5 199l miregny

. n . n
Loo(I;B;jl) Le(I;B},

+ Iadi(DX0) ~ Tl 2 [9¥ gy + 1A =1l

witii3, BEI)IIVwHLoou;B;y)

< Dv|?*
< C(]l vllle + || Dv||

Where we need
11 n
(36) —nmin _’_)_1<SS-—-_1.
> .

By (3.5) and (3.6) we have the restriction (3.4). Hence, if ¢ is taken suitably small,
then we have

Wl zqrsesy < Cllaollag , + 1Dvlgar,ss



3.2. The a priori estimate for the Lamé system. We first look at the following
Lamé system with nonconstant coefficients:

(3.7) Ou — 2adiv (uD(u)) — bV(Adivu) = f.

Both u and f are valued in R®. We assume throughout that the following uniform
ellipticity condition is satisfied:

(3.8) @ := min ( inf  (ap)(t,z) inf  (2ap + bA)(¢, 3:)) >0

(t,2)€[0,T] xR™ " (t,2)€[0,T|xR"

For (3.7) with rough coefficients that are only in L*®(I; Bz;‘f L 1)7 we have the following
proposition due to Danchin [9)].

Proposition 3.2 ([9]). Leta, b, A and p be bounded and uniformly continuous functions

satisfying (3.8). Assume that aVyu, bV, uVa and AVb are in L=(1 ;Bp;;; 1) for some
1 < p < 0o. There exist two constants 1 and K such that if for some m € Z we have

(3.9) min ((t )Einf Sm(ap)(t, z), inf  Sp(20u+ b)\)(t,x)> > a

[0,T]xR" (t,2)€[0,T]xR" PX

(3.10) I(Id — Sm)(aV i, VA, uVa, AVD)| 1y <

LW(I;BEI_
then the solutions to (3.7) satisfy for allt € [0,T),

||u||Lm(0,t;B;’1) + allu”Ll(O,t;B;ﬁz)
C t
< Ollollag, + o) o (& [ (190070097 50, 5901 o)
»,1

whenever
nn n
(3.11 —min(—, =) <s< ——1.
) (p 1/) "

The range of s in (3.11) of Proposition 3.2 does not include the case 2 —1 <s < 2.
However, to close the estimate on the potential term, we are required to bound the
o 72_1 jad vﬂ . .
velocity field uin L(I; By 2~ )NL2(I; By '*). To this end, we shall need the following
estimate, the idea of which is to give up the full parabolic regularity so that the range
of the regularity s may be taken higher.

For a starter, we shall look at the following heat equation with nonconstant coeffi-
cients:

(3.12) Owu — adiv (bVu) = f.
Proposition 3.3 ([4]). Let a and b be bounded functions satisfying ab > o > 0. Assume

that aVb and bVa are in L“(I;Bﬁl—l) and f in L} (T, B;’l) for some 1 < p < co. There
exist two constants n and k such that if for some m € Z we have
B

. 8
(t,x)el[gl,%mn Sm(ab)(t,z) 2 3,
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I(1d = S) @V, bV, -0 <5,

then the solutions to (3.12) satisfy for allt € [0,T1]) (T1 < T ),
”u”Lw(O,t;B;’l) + ﬁ”u”LZ(o,t;B;jl) <C(p,a,bm, Tl)(||u0”1§,;,1 + “f”Ll(O,t;B;,I))
whenever

nn n
3.13 —min(—,—)+1<s< —.
(3.13) (p ﬂ) »

For the proof of the above, we refer to [4]. The natural extension of this to the
Lamé system is given by the following. To prove it, one must simply decompose the
Lamé system into two heat equations in the manner of Proposition 3.2 in [9], and apply
Proposition 3.3. We omit the proof of Proposition 3.4.

Proposition 3.4 ([4]). Let a, b, A and u satisfy the same hypothesis as Proposition
3.2. Then the solutions to (3.7) satisfy for allt € [0,T1] ( Ty < T ), Then the solutions
to (3.7) satisfy for all t € [0,T],

||U”L°°(o,t;B;,1) + 5|l“”1;2(o,t;z§;j;1) < C(p,a,b, p, ’\m,Tl)(HUO“B;Il + ”f”Ll(O,t;B;’l))a
whenever s satisfies (3.13).

In practice, we will use the following proposition which bounds the low and high
frequencies of the velocity field u with different regularity indices, in which there is a
margin of higher admissibility of s for the high frequency.

Proposition 3.5 ([4]). Let a, b, A and p satisfy the same hypothesis as Proposition

8.2. Let ug belongs to Byy*. Then the solutions to (3.7) satisfy for all t € [0,T1] (
T\<T),

||u”L°°(0,t;§;,11'32) + 6|Iu”L2(0,t;§;’11+1,32+1) + a“uH”Ll(O,t;E;’z;‘z)
S C(p’ a, b’ M,y ’\a m, Tl)(”uonﬁ;,}l"? + ||f|IL1(0,t;§;}fa2))
whenever s; satisfies (3.13) and sy satisfies (3.11).

Proof. When s; < s, it is obvious. When s; > s;, We decompose u and f into
f=/fA+frand u = uy + up with uy, fi € B;"I and ug, fo € ';,21- Then it is just a
matter of applying Proposition 3.2 and Proposition 3.4 to each linear equation for u;
and u,, and adding the resulting inequalities. (]

4. OQUTLINE OF THE PROOF OF THEOREM 1.1

We only give here the outline of the proof. For the details, see [4]. Let I denote the
time interval [0, T'] as before. Let us note that for v € E,(T), we have

<
1DVl 58 ) < NP0z, n )+ 1D, pn

< C(M)vllgyery < oo,

1
<T: ”DUL“L2(I;B;1) + “D'UH“Ll(I.B% )
’ “pl



and
“U“Ll(I;B;,I) < ”UL“Ll(I;B;J) + “vH“Ll(I;Bg’l)

1
< Tllorllpoeqss ) + T lonl < CMellzym < oo,

¥
L2(I;BP))

with some C(T') depending on T. These enable us to use the flow estimates (Lemma
2.4 and 2.5) in the same manner as [9]. We assume from now on that

1D

is satisfied for a small enough constant ¢.
We denote the linear part of the solution u by U, i.e.,

LlU = O, Ult:O = Ug.
Recall that L, is given by Lyyu := Gyu— pg 'div (2(po) D () + A(po)div uld) with po = 1.
Let % := u — U then (4, ) has to satisfy
Lyt = pi* (div (s (v, 9) + Bo(v,0) + Is(v) + (v, $)) + (L1 = L),
— div (adj(DX,)' A, V) = po — Ju,
with v € E,(T). We claim that the Banach fixed point theorem applies to the map @
defined in (1.10) in some closed ball Bg,7)(U, R) with suitably small T and R.

If the right-hand side of the first equation is in L*(Z; Bgl_ 1) and if there exists some
m € Z so that the conditions of Proposition 3.2 are satisfied then @ € E,(T). Let o be
defined by « := inf

Y zer™ po(z)
1

Vpo
Jnf Sm (Po)>2 and [|(1d S’”)( ||L°°(IB'° )

o
LY LB}

(4.1)

Now, the existence of m so that

< no

is ensured by the fact that all the coefficients minus some constant belong to the space

Bp;; , which is defined in terms of a convergent series and embeds continuously in the set
of bounded continuous functions (that tend to 0 at infinity).

First step: Stability of the ball Bg,)(U, R) for suitably small T and R . Applying
Proposition 3.5 with sy = s and s, = g — 1 gives us

~ Cpo,m
HUHE,,(T) < Ce®ro T(”(Ll - Lpo)U”p([;B'a’?_l)

1
+lloo "l MEBE Idiv (11(v, v) + Io(v,v) + Ia(v ))+I4(v,9)|iL1(I;§;:§—1))
42) < Cecpo,mT(”(L1 —~ L,,O)U||L1(I_Bg1.1)

+ ||p01|\ 53 (||d1v (I(v,v) + Ix(v,v) + I3(v))]|

L0 555 ) )

. %—1
L\(L;BP )
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where we used the convenient property that L!(I; E;f _1) = LM(I, B{;,l) + LY(I; Bp;ﬁ- 1).
Here, the space M(B;yl) is the multiplier space defined as the space of all tempered

distributions such that ||| yyg: )= sup |hf]|zs . With our assumption on p, we
», I |B‘ =1 »,
»l

~g, 21 ~g5—1,2
may confirm that py' belongs to M(B;’l" ) when pg—1 € B;’l ? by the product and
composition estimates:

IIpolh||~a 2 <3

Dhll5o3-1 < (llaoll 2 +1)||h|[§;:1g—1

p 1 1

1f1<p<lJrn sandsasm(17)

Estimate ofL] — L, and I; (j=1, 2, 3.) By [9], we know that

I(Ly - ,,O)U||L1(IB,,1_1)SCIIao|l 3 |[|1D ”Ll(I;BEl)

b

b

<
LI(I;B‘?’:I) - C“Dv“Ll(I;BE‘]) ”Dw”Ll(I;B‘?l)

(v, )l
for 7 =1,2 and
[ 15(0) |

Estimate of Iy For I (v,v) =t A, : Vi, we have
Ha(v, )l a2,y < CT (| Dol

psd) < OTUeoll 3 + 10DVl g +1).

Lsdy + DIVYll Loor;1 -

Now we use Proposition 3.1 with s = s — 1 to bound V4 in L*°(I; Bz,l)' We have
”ViP“Lw(];B;,I) < 0”‘10”3;,—11."’ ”anl(I;B;,l)'
Therefore,
1)l s iy < CT(IDY

L1(I;B§1) + 1)(”00“3;;;1 + ||U||L1(1;B;,1))-

Plugging the above estimates in (4.2), we obtain

[@e,cr) < CeromT(laoll 3 + 1) (T(1 + ol 3-1) +llaoll 3 1DV, 3
P p,1

2 .
+laol 3 10 nLlUBg) Tnvnm;B;,l)).

Since v € Bg,r)(U, R), decomposing v into 7 + U gives us

[l 2,y < CeomT(Jlaoll, 53, +1)2(T(1+Haoll +||ao|| el

P

+ naonB;;gnDUnLl(,_Bn R AT +R)).

3
LW(I;BP))

P
p,1

We first choose R so that for a small enough constant 7,

(4.3) (llaoll .t 1’R<n
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and take T so that
Cpo,mT < log27 T(l + ”(J‘OHB%—l) < R27

(4.4) (U R <R " DU < p2
(“ ||L1(I;B;,1) + ) —=th ”a’O“B% ” “Ll(I;Bfl) -

Pl

I

then we conclude that ® is a self-map on v € Bg, (U, R).

Second step: contraction estimates. We next establish that, with suitably small R
and T, ® is contractive. We consider two vector-fields vi,v2 € Bg,(r)(ur, R1) and set
dv = vy — v1. We also set 9; to be a solution corresponding to the Poisson equation
with given data v;

(4.5) —div (adj(DXy,) Ao, Vi) = po — Ju

J

for j = 1,2, and denote 69 := 15 — 9;. In order to prove that & is contractive,
it is a matter of applying Proposition 3.5 and the potential estimate in the spirit of
Proposition 3.1 to

(Lo (2(v2) — D(v1))
= 5" (div (T (3, 2) = Ta(o1,00)) + (Ia(v3, v2) = Ta(vn, 1))
+ (Is(va) = Is(w0)) + (Ta(vz, ¥2) — (w1, 91))),
| —div (adj(DX,,)* A, V) = po — o, (5 =1,2),
where I;’s are defined in (1.9).
Propositon 3.2 and the definition of the multiplier space M(Es'r ) give that

|®(v2) — ®(v1)| By(7)
< CerT (| g5 div {(Fs (v, ) = L1 (v1,01)) + (Ta(22, v3) = Ta(vn, 1))

+ (I3(v2) — Is(v1)) + (La(v2, ¥2) — I4(v1’¢1))}HL1(I;BS’?_1))

»,
oSN (LICADES ACEN

+ || 12(vz, v2) — Ia(v1, v1)|]

(4.6) X

< Cecpo,mT”palu L1(I-B% )
) p’l

Ll(I;Bfl)
+ | Za(v2, 02) — I(vy, 01)||L1(,;B;’1)).

Thanks to Lemma 2.1 and 2.5, we may estimate all the terms appearing on the right-
hand side to obtain

[ ®(v2) — (I)('UI)HEP(T)
< Ce%r (1 + |laol| 3 ) (Coull(Dvr, Dva)|

»,1

+T(1+laol 3 )IIDév]
»1

+ [1on) = o), 3
i) p,l

a |Dov|
L! (I?B:,1) L1(1§szjl)

n
LM (I;BP,)

+ T((HGOHB%I—l + T||UQ||L°°(I;B;;,1)) ||D5U||L1(I;B§1) + ||5UHL1(1;B;,1)))-

Py
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Given that v, v, € Bg, (U, R) and our hypothesis over T and R (with smaller 7 in
(4.3) if needed) thus ensure that,

1
[@(v2) — @(vi)llg,ery < 5 ll6v]Ep(a)-

One can thus conclude that ® admits a unique fixed point in Bg, (U, R).
Third step: Regularity of the density and the potential. Granted with the above velocity
field u in E,(T), we set p := J;'po, then proving that a := p—1isin C(I B”l) is easy

by construction, thanks to product estimate. Moreover, Because B; , is continuously
embedded in L*, condition inf, po > 0 is fulfilled on [0, T] (takmg sma,ller T if needed).

To prove the regularity of v, it suffices to recal that ag € B . Then by 51mply
applying Proposition 3.1, with v replaced by u, we have that Vi) belongs to C(I, B; 1).

Last step: Uniqueness and continuity of the flow map. In order to prove the continuity
of the flow map, we consider two couples (po1, uo1) and (poz, ug2) of data fulfilling the as-
sumptions of Theorem 1.1 and we denote by (p1,u1) and (p2, u2) two solutions in E,(T)
corresponding to those data. Making difference of the two equations corresponding to
(p1,u1) and (p,ug), it suffices to perform almost identical calculation to the second
step.

4.1. Proof of Theorem 1.2. To prove Theorem 1.2, it suffices to use the following
proposition.
s 1,2

Proposition 4.1 ([4]). Assume that the triplet (p,u,v) with p—1 € C(I;B,, *?),
u € Ep(T) and V¥ € C(I; B p,l ) (with 1 < p < 2n) is a solution for (1.1) such that

T
(47) | vz <z
0 Bp.l

for a small enough constant ¢. Let X be the flow of u defined in (1.3). Then the triplet
(B,4,%) := (po X,uo0 X,1 o X) belongs to the same functional space as (p,u,v), and
satisfies (1.4).

Conversely, if p — 1 € C(I; B; ) E,(T) and V% € C(I B;"ll (5,7, )
satisfies (1.4) and, for a small enough constant c,

T
(48) Va2 <@
0 B}

then the map X defined in (1.5_)_ is a C* diffeomorphism over R™ and the triplet
(p,u,9) == (fo X', wo X~ 1,9 o X7) satisfies (1.1) and has the same regularity as
(9,%,v). Moreover, one can prove by the potential estimate that V) actually belongs

to C(I; By 7).
We consider data (pp,up) with po bounded away from 0, (pp — 1) € Bs "% and
Uy € g;f _1. Then Theorem 1.1 provides a local solution p,%, ¥ to system (1.4) with



p—1¢€C(;B,,""), u e E,(T) and V%) € C(I; B7"). If T is small enough then
(4.7) is satisfied so Proposition 4.1 ensures that (p,u,%) := (o X1, uo X 1, po X1
is a solution of (1.1) in the desired functional space. In order to prove uniqueness,
we consider two solutions (p1,u1,%1) and (ps, ug,12) corresponding to the same data
(po, o), and perform the Lagrangian change of variable, pertaining to the flow of u
and us respectively. The obtained vector-fields %; and %, are in E,(T') and both satisfy
(1.1) with the same py and ug. Hence they coincide, as a consequence of the uniqueness
part of Theorem 1.1.
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