KB ITTE TR e
55 1985 & 2016 4F 159-179

Global existence and optimal decay rates of
solutions to the classical Timoshenko system
in the framework of Besov spaces

Naofumi Mori
Graduate School of Mathematics, Kyushu University

Joint work with

Jiang Xu

Department of Mathematics, Nanjing University of Aeronautics and Astronautics

Shuichi Kawashima

Faculty of Mathematics, Kyushu University

1 Introduction

In this work, we consider the Timoshenko system (see [28, 29]), which is a set of two
coupled wave equations, by introducing the nonlinear term and damping term:

{ o — (2 — V) =0,
Vi — 0(Vz)e — (pz — %) + v = 0.

The system (1.1) describes the transverse vibrations of a beam with shear deformations.
Here, t > 0 is the time variable, z € R is the spacial variable which denotes the point on
the center line of the beam, ¢(t, z) denotes the transversal displacement of the beam from
an equilibrium state, and (¢, z) denotes the rotation angle of the filament of the beam.
The smooth function o(n) satisfies ¢’(n) > 0 for any n € R, and v is a positive constant.
We focus on the Cauchy problem of (1.1). The initial data are supplemented as

(‘Pa <Pt,¢ﬂ/)t)($,0) = (¢07901,¢0,1P1)($)- (12)

Based on the change of variable introduced by Ide, Haramoto, and the third author [11]:

(1.1)

V= @z — d)a U = Py, z= a¢mv y= wtv (13)

159



160

with @ > 0 being the sound speed defined by a®> = ¢/(0), it is convenient to rewrite
(1.1)-(1.2) as a Cauchy problem for the first-order hyperbolic system

(v, —u,+y=0

us — vy =0,

%~ ays =0, (1.4)
¥ —0(z/a)e ~v+yy =0,

\ (v,u, z,y)(m, 0) = (vO)UO,Z%yO)(x),

or
U, + A(U)U, + LU =0,
{ ++ A(U) (15)

U(z,0) = Up(z)

with U = (v,u,2,9)" and Up(z) = (vo,uo, 20,%0)(z), where vo = @or — %o, uo = ¢,
20 = ao g, Yo = 1 and

01 0 0 0 00 1
10 0 0 0 000
AY=-100 o o> L=l 0 000
00 & g ~100 v

Note that A(U) is a real symmetrizable matrix due to o’(z/a) > 0, and the dissipative
matrix L is nonnegative definite but not symmetric. Such degenerate dissipation forces
(1.5) to go beyond the class of generally dissipative hyperbolic systems, so the recent
global-in-time existence (see [31]) for hyperbolic systems with symmetric dissipation can
not be applied directly, which is the motivation on studying the Timoshenko system (1.1).

2 Known results & Aim

Let us review several known results on (1.1). In a bounded domain, it is known that
(1.1) is exponentially stable if the damping term ¢, is also present on the left-hand side
of the first equation of (1.3) (see, e.g., [21]). Soufyane [27] showed that (1.1) could not
be exponentially stable by considering only the damping term of the form 1, unless for
the case of a = 1 (equal wave speeds). A similar result was obtained by Rivera and
Racke [23] with an alternative proof. In addition, Rivera and Racke [22] also investigated
the Timoshenko system with the heat conduction, which is described by the classical
Fourier law. In the whole space, the third author and his collaborators [11] considered
the corresponding linearized form of (1.4):

(v —u; +y =0,

U — vy =0,
$ z—ay, =0, (2.6)
Y —az—v+yy =0,

\ (’U,’LL, Z,y)(x’ 0) = (Uo,UO,Zo,yo)(l'),




and showed that the dissipative structure could be characterized by

ReA(i) < —em(§)  for a=1,
{ ReA(i€) < —cmpa(§)  for a #1, (2.7)

where A(i€) denotes the eigenvalues of the system (2.6) in the Fourier space, n;(§) = 1—_%5,

m(€) = (—1—_'_%)3, and ¢ > 0 is some constant. Consequently, the following decay properties
were established for U = (v, u, z,y)" of (2.6) (see [11] for details):

105U (#) 122 S (1 +8)"47 2| Vol px + € |05 Vol 12 (2.8)
for a =1, and
18U ()2 S (1L +8) 7473 |Uplls + (1 + &)™ 5|85 Up | 12 (2.9)

for a # 1. Recently, under the additional assumption fR Uodx = 0, Racke and Said-
Houari [24] strengthened (2.8)-(2.9) such that linearized solutions decay faster with a rate
of t~7/2, by introducing the integral space L (R).

Remark 2.1. Clearly, the high frequency part of (2.8) yields an exponential decay, whereas
the corresponding part of (2.9) is of the regularity-loss type, since (1 +t)~%? is created
by assuming the additional £-th order reqularity on the initial data. Consequently, extra
higher regularity than that for global-in-time existence of classical solutions is imposed to
obtain the optimal decay rates.

In [12], Ide and the third author performed the time-weighted approach to establish
the global existence and asymptotic decay of solutions to the nonlinear problem (1.5).
To overcome the difficulty caused by the regularity-loss property, the spatially regularity
s > 6 was needed. Denote by s, the critical regularity for global existence of classical
solutions. Actually, the local-in-time existence theory of Kato and Majda [13, 16] implies
that s, = 2 for the Timoshenko system (1.5), actually, the extra regularity is used to
take care of optimal decay estimates. Consequently, some natural questions follow. Is
s = 6 the minimal decay regularity for (1.5) with the regularity-loss? If not, which
index characterises the minimal decay regularity? This motivates the following general
definition.

Definition 2.1. If the optimal decay rate of L*(R")-L*(R") type is achieved under the
lowest regularity assumption, then the lowest index is called the minimal decay regularity
indez for dissipative systems of regularity-loss, which is labelled as sp.

In this paper, we show the global existence and large-time behavior for (1.5) in spatially
critical Besov spaces. To the best of our knowledge, there are few results available in
this direction for the Timoshenko system, although the critical space has already been
succeeded in the study of fluid dynamical equations, see [2, 7, 10, 19] for Navier-Stokes
equations, [8, 35, 36, 37] for Euler equations and related models. In [31, 32], under
the assumptions of dissipative entropy and Shizuta-Kawashima condition, the second
and third authors have already investigated generally dissipative systems, however, the
Timoshenko system admits the non-symmetric dissipation and goes beyond the class.
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Hence, as a first step, we first constructed global solutions pertaining to data in the Besov
space BS/E(R) in Section 4 by virtue of an elementary fact in Proposition 3.3 (also see
[31]) that indicates the relation between homogeneous and 1nhomogeneous Chemin-Lerner

spaces. Next, the optimal decay rate of solutions is shown in the space 32 2(R) OB_I/ *(R)
in Section 5. We shall overcome the difficulty of the weak dissipation due to the regularlty-
loss property and show s, = 3/2 for global-in-time existence and sp = 3/2 for the optimal
decay estimate, which lead to reduce significantly the regularity requirements on the initial
data in comparison with [12].

This paper is a summary of our two papers [18] and [34]. The interested reader, please
refer to [18] and [34] for details.

Notations. Throughout the paper, f < g denotes f < Cg, where C' > 0 is a generic
constant. f =~ g means f < g and g < f. Denote by C([0, T, X) (resp., C*([0, T}, X)) the
space of continuous (resp., continuously differentiable) functions on [0, T] with values in
a Banach space X. Also, ||(f, g, h)|lx means | f||x + |lgllx + ||k||x, where f,g,h € X.

3 Tools

In this section, we present analysis properties in Besov spaces and Chemin-Lerner spaces
in R*(n > 1), which will be used in the sequence section. For the Littlewood-Paley
decomposition and definitions for Besov spaces and Chemin-Lerner spaces in R™(n > 1),
see [5]. Firstly, we give an improved Bernstein inequality (see, e.g., [30]), which allows
the case of fractional derivatives.

Lemma 3.1. Let 0 < Ry < Ry and1 <a <b< o0.
(i) If SuppF{ C {€ € R™: |€] < Ry}, then

1A% fllze S A ED|| fllpe, for any o > 0;

(ii) If SuppFf C {€ € R™: RyA < |¢| < Ry}, then

IA®fllLa = X*||fllLe, for any o €R.

Besov spaces obey various inclusion relations. Precisely,
Lemma 3.2. Let s € R and 1 < p,r < o0, then

(1) If s > 0, then B,, =I[’NB:,;

p,T?

(2) If 5§ < s, then By, — B;,r. This inclusion relation is false for the homogeneous
Besov spaces;

(3) If 1 <r <7< oo, then B, — BS; and B, — B ;

1_1
(4) If 1 <p < p < o0, thenBs °—>B- =) and By, — By, " 7

(5) BYP — Co, BYF < Co(1 < p < o0);
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where Cy 1is the space of continuous bounded functions which decay at infinity.

Lemma 3.3. Suppose that o > 0 and 1 < p < 2. It holds that

1 lsme. S 1o
with 1/p — 1/r = p/n. In particular, this holds with o =n/2,r =2 andp=1.

The global existence depends on a key fact, which indicates the connection between
homogeneous Chemin-Lerner spaces and inhomogeneous Chemin-Lerner spaces, see [31]
for the proof. Precisely,

Proposition 3.1. Let s€ R and 1 < 0,p,r < .

(1) It holds that

Ly(L") N Ly(By,) € L7(B;,);
(2) Furthermore, as s > 0 and 6 > r, it holds that

L4(17) N T4(B;,) = T8(B,)

for any T > 0.

Let us state the Moser-type product estimates, which plays an important role in the
estimate of bilinear terms.

Proposition 3.2. Let s >0 and 1 < p,r < o0. Then B;’;’T N L™ is an algebra and

I£glls, < Wfllze=llgllsg, + lgllz=llfll 55,
D, P, Py

Let s1,52 < n/p such that sy + so > nmax{0, % — 1}. Then one has
1 gll gorroa=rre S WSl N9l -

In the sequel we also need a estimate for commutator.

Proposition 3.3. Let 1 < p<o00,1 <0< o0 and s € ("% -1, %] Then there exists a
generic constant C > 0 depending only on s,n such that

I1£, Adglzs < Ce2 V| 7]_galgls,

”[f, A(1]9’“Lg’p(Lz>) < ch2_q(8+l)“f”z%1 (BE;”)HQHZ"T?(B;’I)’
with 1/0 = 1/61 +1/6,, where the commutator |-, -] is defined by f,g] = fg—gf and {cq}
denotes a sequence such that ||(c,)|lp < 1.

Finally, we state a continuity result for compositions (see, e.g., [10]) to end this section.
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Proposition 3.4. Let s > 0, 1 < p,r.0 < oo, F € WEH®(LR) with F(0) = 0,

loc

T € (0,00] and f € E‘;(B;,,) N LP(L*®). Then there exists a function C depending only
on s,p,r,n, and F such that

IF(f) = F'(O)fllg, < CUllz=)lFIG,
1E(f) = ()fIILeT @) < Clll s L°°))”f||La(B.s

In the analysis of decay estimates, we also need the general form of Moser-type product
estimates, which was shown by Yong in [37].

Proposition 3.5. Let s > 0 and 1 < p,r, p1, P2, p3,Ps < 00. Assume that f € L1 N B;4 ,
and g € L N B" with

" 1 1 1 1 1
R R R S
D P P2 D3 P4

Then it holds that

1fallsg, S I Flioullglsg, . + llgllzasll s,

In [31], the first and third authors established a key fact, which indicates the connection
between homogeneous Chemin-Lerner spaces and inhomogeneous Chemin-Lerner spaces.

Proposition 3.6. Let se R and 1 < 0,p,r < .
(1) It holds that

L4(I7) N L3(B;,) € L3(B;,);
(2) Furthermore, as s > 0 and 6 > r, it holds that
L3 (L) N L3(B;,) = L4(B;,)
for any T > 0.

The property of continuity for product in L ( ,) is similar to in the stationary case
(Proposition 3.1), whereas the time exponent 6 behaves according to the Holder inequality.

Proposition 3.7. The following inequality holds:
£z s,y S (1l gos rllglizez gy + 58 g1 200 )

whenever s > 0,1 <p<o00,1<8,64,05,03,04 < 0o and

As a direct corollary, one has
||fg||L9 §.(Bs,) ~ ||f”L01(B-’ )”9”1:92(38 2

whenever s > n/p, § = 5 + 5.



Finally, we state a continuity result for compositions (see [1]) to end this section.

Proposition 3.8. Let s > 0, 1 < p,r,p < o0, F € I/I/'lfcﬂw(l;R) with F(0) =
T € (0,00] and v € Lf(Bg,) N LE(L®). Then

IF)lIzpsg,) < A+ lellga=)" ol sy

In the recent decade, harmonic analysis tools, especially for techniques based on
Littlewood-Paley decomposition and paradifferential calculus have proved to be very ef-
ficient in the study of partial differential equations. It is well-known that the frequency-
localization operator Aq f (or A,f ) has a smoothing effect on the function f, even though
f is quite rough. Moreover, the L? norm of Aq f can be preserved provided f € LP(R").
To the best of our knowledge, so far there are few efforts about the decay property related
to the operator Aq f. Here, the difficulty of regularity-loss mechanism forces us to develop
the frequency-localization time-decay inequality. Precisely,

Proposition 3.9 ([33]). Set n(€) = —dﬂw Iff € BEF(RMNB;5,(R?) foro €R,s €R
and 1 < r < oo such that o + s > 0, then it holds that

qua||Aqfe-"(f>tnL2

—£inl_1
S @+ ”f“B‘" +(1+t) G| | gge, (3.10)

-~

Low— frequency Estimate High— frequenc'y Estimate

forE>n(%——é—)1wz'th1§p§2.

4 Global-in-time existence
In this section, we give the global in time existence result for (1.5).

Theorem 4.1. Let a =1 or a # 1. Suppose that Uy € BS/ 2(R). There exists a positive
constant dy such that if
I‘UollB;'(l?(R) < do,

then the Cauchy problem (1.5) has a unique global classical solution U € C'(R* x R)
satisfying
U e C(ByZ(R)) NCY (B, (R))

Moreover, the following energy inequality holds that

“U”Zoo(Bg,/lz(R)) + (”y”i%(gg’/f) + ”(Uv zz)”f%,(;g,_}ﬁ*’) + “uw”i%(B;'i/Z))

< Col[Uoll g2

gy (4.11)

where Cy > 0 is a constant.

1Let us remark that £ > 0 in the case of p = 2.
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Remark 4.1. Theorem 4.1 exhibits the optimal critical reqularity of global well-posedness
for (1.5). Observe that there is 1-regqularity-loss phenomenon for the dissipation rates due
to the nonlinear influence in the case of not only a # 1 but also a = 1, which is totally
different in comparison with the linearized system (2.6) with a = 1.

Recently, the second and third authors [31] have already established a local existence
theory for generally symmetric hyperbolic systems in spatially critical Besov spaces, which
is viewed as the generalization of the basic theory of Kato and Majda [13, 16]. Fortu-
nately, the new result can be applied to the current problem (1.5) directly, since the
non-symmetric dissipation L has no influence on the local-in-time existence. Precisely,

Proposition 4.1. Assume that U, € Bg’/f, then there exists a time Ty > 0 (depending
only on the initial data) such that

(i) (Ezistence): system (1.5) has a unique solution U(t,z) € C'([0,To] X R) satisfying
U € Cr,(ByY) NCL (BYY);

(ii) (Blow-up criterion): if the mazimal time T*(> To) of existence of such a solution
is finite, then
lim sup 1O, )l ggrz = o0

if and only if
T*
/ IVU(t, -)|| Leedt = 0.
0

Furthermore, in order to show that classical solutions in Proposition 4.1 are globally
defined, the next task is to construct a priori estimates according to the dissipative mech-
anism produced by the Tomoshenko system. To this end, we define by F(T') the energy
functional and by D(T') the corresponding dissipation functional:

E(T) = Ul g e
and
DT) = lylizy gars + 10 26) 73 gy + el g3 gz

for any time T > 0.
The first lemma is related to the nonlinear a priori estimate for the dissipation for y.

Lemma 4.1. (The dissipation for y) If U € 5T(Bg,/12) N 5:1,(33/12) is a solution of (1.5)
for any T > 0, then

E(T) + lllz3 5272 S Woll gz + VEID(T). (4.12)

Proof. Firstly, we perform the usual energy method. Multiplying the first equation in
(1.4) by v, the second one by u, the third one by [0(z/a) — 0(0)]/a and the last one by v,
respectively, and then adding the resulting equalities, we get

%%(v:’ + 32 +u+ S(2)) - (vu + [o(2/a) - ‘7(0)]11)m +vy° =0, (4.13)



where "
S(z) =2 /0 [otn) — 0(0)] dn.

Note that S(z) is equivalent to 22, due to the fact o/(n) > 0 and the smallness assumption.
Then we perform the integral to (4.13) with respect to  and obtain the basic energy
equality

1d

—Q_Zi_tEO(U) +9lyll2. =0, (4.14)

where the energy functional Fy(U) is defined by

Eo(U) = (v, u,)|% + / S(2)dz ~ |U|22.

By integrating in ¢t € [0,7] and taking the square-root of the resulting inequality, we
arrive at

Ul Lgez2) + v 2911yl 222y < Vol 22 (4.15)

for any T' > 0.
Next, we perform the frequency-localization estimate and get the dissipation rate from
y in homogeneous Chemin-Lerner spaces. Applying the operator A,(q € Z) to (1.5) gives

Aqvt - Aquw + Ay =0,
Aqut — Aqvx = O,
qut — aAqygc =0,

Aqyt - 0'(z/a)Aq(z/a)$ - Aqv + 'YAqy = [Aqv o'(z/a)|(z/a)s,

(4.16)

where the commutator is defined by [f, g] := fg — gf. Multiplying (4.16) with Ap, A,
o'(z/a)Ayz/a? and Ay, respectively, and then adding the resulting equalities, we get

%% (1800 + |Agy® + |Agul + o' (2/0)|Ay(2/) ) (4.17)

~{Budp)s + (o/(z/)Ag(z/)Agy)_} +7IAyl?

= éal(z/@)tlAq(»’«’/a)|2 — 0'(2/a):8,(2/0)Agy + [Ag, 0'(2/a)|(2/a)zAgy.

Furthermore, by employing the integral with respect to x, with the aid of Cauchy-Schwarz
inequality, we have

1d . .
§EE0[AqU] +1Agl22 (4.18)

< o' (z/a)ille=1Ag2llZz + N0 (2/a)ell o l| Agzl 2| Agyll s
+[Aq, 0'(2/a)] 2 2| Agyll 2,

where

Eo[AU] = [[(Agv, Agy, Agu)IZ2 +/]Rff’(Z/a)IAq(Z/a)I2 dz = [|AU| 2.
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From (1.4) and a priori assumption (5.23) below, we have

o (z/@)ellz= | Ag2lIZ2 S ll2ell =1 Ag2lIZ2 S Nyall 1A g2l 2. (4.19)
Similarly,

lo"(z/a)zll L= | Agzll 21 Agyll 2 S llzell o [l Azl 22| Agyll 2. (4.20)

Together with (4.19)-(4.20), by integrating in ¢t € [0,7], with the help of Young’s
inequality, we are led to

\/ EolAU] + v 27l|Aqy|lL%(L2)
S VEolAal + /Il 2) ez (1Bl an + 1802300
+/111g, 0"(z/0) el 3 oy | Al ey (4.21)

It follows from the commutator estimate in Proposition 3.3 that

. _3g
“[Aq,al(z/a)]z:c”LzT(L?) S Cg27 2 ”Z“f%o(gg’/f)“Z:c“pT(Bé’/f)) (4-22)

where {c,} denotes a sequence such that ||c|lx < 1. Therefore, we obtain

3g 2 3q, :
22 ||AgU || Lse(z2y + V2722 | Agyll 2. (22)
S NAollzr + ca e 22) ogeqaymy (133 + el za aam)

ey Ielizz sy (“y”iwé/f) * ”zx”Z?T(Béff))' (4.23)

Here, we would like to point out each {c,} has a possibly different form in (4.23) or in
sequent inequalities, however, the bound ||¢;||2 < 1 is well satisfied. Hence, summing up
on q € Z, we arrive at

”U”Z%’(Bg,/lz) Ty 27”1/”2,‘%(32'/12)

S W0l ggp + M0 Dlizeesgm (Wl ey + Ilzzan ). (429

Finally, combining (4.15) and (4.24), we conclude that from Proposition 3.1
E(T) + Iyl 587 S 100l + VETIDT). (429
Therefore, the proof of Lemma 4.1 is complete. O

Lemma 4.2. (The dissipation for v) If U € ET(B;/f) N 5}(3;/12) is a solution of (1.5)
for any T > 0, then we have

ollzg sy S BCT) + [Uollggre + I8l g3 g3z, + v E@)DT) (4.26)
for a =1, while in the case of a # 1, we have
Wlzg sy S BT+ 1Volgam + elualizg sz

+(1+ )yl s, + EDID(T) (@.21)

for e > 0, where C, is a position constant dependent on €.



Note that the calculation for the dissipation of v in the case of a # 1 is a little different
from a = 1. We would like to give the proof for a # 1 as follows.

Proof. We rewrite the system (1.4) as follows:

v —Ug+y =0,

ug — vy =0,

L (4.28)
zt'—aym:O,

Y — a2z — UV +vY = 9(2)z,
where the smooth function g(z) is defined by
9(2) = o(2/a) — 3(0) = '(0)z/a = O(=?)

satisfying ¢(0) = 0 and ¢'(0) = 0.
Firstly, applying the inhomogeneous frequency-localization operator A,(g > —1) to
(4.28) gives
Aq'ut - Aqvx = O,
Agzy — alAgyy =0,
Agys — 0D gz — Agv + YAy = Agg(2)s.

(4.29)

Next, multiplying the first equation in (4.29) by —A,y, the second one by —al,z, the
third one by —aA,u and the fourth one by —Agv, respectively, then adding the resulting
equalities, we have

—(AAY + aAul2); + (aA WAz + AP AuAgy), + |Agv)?
= |Aqy|2 + (a” - DAYAuUs + YAYA — Agg(2)sAqv. (4.30)

Integrating the equality (4.30) in z € R, with the aid of Cauchy-Schwarz inequality,
we obtain

d 1
SEIAU]+ 5180002
S 1al3e + 1o~ UAgylze | Aguallz

+1Aqg(2)el 2| Agull 2, (4.31)

where

FyAU) = — / (Db + Agud,2)dz.
R
By performing the integral with respect to t € [0,T], we are led to

”Aq““%g(m)
S AUz wsy + 180sl72 + 1Ayl Z2 )

Al 2. (22 1A guall 2 22y + 1809(2)al 2312, (4.32)
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where we have noticed the case of a # 1. Furthermore, Young’s inequality enables us to
get

28| Agvl| .2
S calUllzeqsyny + llUoll e +cqllual zy 5o
e+ Co)lllza sz + calla(e)ellzs oo (4.33)
for € > 0, where C, is a position constant dependent on & and each {c,} has a possibly

different form in (4.33), however, the bound ||¢,||2 < 1 is well satisfied.
Recalling the fact ¢’(0) = 0, it follows from Propositions 3.7-3.8 that

l9()allzz g2y = ll9'()zllzz 512,
< 192) — 6O oo el o
< Nelgeyn Ilzs oy (434)
Hence, together with (4.33)-(4.34), by summing up on q > —1, we deduce that
Iellzs iz
S WUl (syz) + 1Uoll gy + elluzllzy (57172
1+ Cololz g + 1o lp 2 s sy (4.35)
which leads to the inequality (4.27) immediately. O

Lemma 4.3. (The dissipation for z,) If U € 5T(B§’/12) 05}(35,/12) is a solution of (1.5)
for any T > 0, then

ez any S BT+ 100l + Myl s

+||v||zzT(B;(12) + +/E(T)D(T). (4.36)

Proof. Multiplying the third equation in (4.28) by y, and the fourth one by —z,, respec-
tively, and then integrating the resulting equalities over R, we arrive at

d
Zi—tEZ(U) + ||2]l32
< Mysl?e + (Ivllze + lyllz2) 2zl 2 + [|2]| 2o | 22|22, (4.37)

where

Ex(U) = —/zzydm.
R
Therefore, we arrive at

lzzllz2 2y S E(T)+ “Uo||Bg/12 + Yz (mor2

+”’U||Z%(Bz1’/12) + v/ E(T)D(T) (4.38)



On the other hand, from (4.29), we have

{ qut — aAqygc =0,

. . . . . (4.39)
Agyr — aDgzy — Agu + yAgy = Agg(2),.

Then, by multiplying the first equation in (4.39) by Aqy:c and the second one by —quz,
respectively, and then employing the energy estimates on each block, we are led to
Q%Hqux”L? (L?)
S clllUNggeserz) + 1ol pyrz)) + callyellzz 172

teqelzallgg e + caCellvligg sz + 19llz3 )
1
Fellzg a9l o (4.40)
Consequently,

HZEI|L2 (31/2

IV sy 10005+ ol

oz sy + g sy + o Nelzpaaye Izl sy (4.41)

where we have chosen 0 < € < 1/2.
Finally, by combining (4.38) and (4.41), we arrive at (4.36). d

Lemma 4.4. (The dissipation for u,) If U € Cr(B 3/2) NCL(B 12) is a solution of (1.5)
for any T > 0, then

el 525 S BCT) + [Voll s + ol oy + Mol sy (4.42)
Proof. Applying the inhomogeneous operator Ay(g > —1) to the first equation and second

one of (4.29) gives

{ Agvy — Agug + Agy = 0, (4.43)

Aqut - Aq'Uz =0.

Multiplying the first equation in (4.43) by —A,u, and the second one by A,v,, we can
obtain

d

71 88U+ [ Aquallza < [[Aqus7 + [1Aqusl 2| Ayl 2, (4.44)

where

E3[AU] / AguAgugde.
Then we integrate (4.44) with respect to ¢ € [0, 7] to get

18gualZany < (IBS[AU]I+ EsAgUi])
+”Aqvav“%§(L2) + ”Aquwan(H)”Aqy“Lf(L?)- (4.45)
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By using Young’s inequality and embedding properties in Lemma 3.2, we are led to

272\ Agualla.z2)
S B(T) + cgl|Uollgarz + callvlizz 512

+CQ\/”'U':8”Z%(B2-':/2) ”y“Z%(Bg'/f)’ (4-46)

which leads to (4.42) immediately. ' O

Having Lemmas 4.1-4.4, we obtain the following a priori estimate for solutions. For
brevity, we feel free to skip the details.

Proposition 4.2. Leta =1 ora # 1. Suppose U € CT(B3/2) OCT(B1/2) is a solution of
(1.5) for T > 0. There exists 6, > 0 such that if

E(T) < 6, (4.47)
then
B(T) + D(T) £ Vsl 32 + (VED) + B(T)) D(T). (4.48)
Furthermore, it holds that
B(T) + D(T) 5 Vol (4.49)

By using the standard boot-strap argument, Theorem 4.1 follows from the local exis-
tence result (Proposition 4.1) and a priori estimate (Proposition 4.2). Here, we give the
outline for completeness.

The proof of Theorem 4.1. If the initial data satisfy ||Upl| B/ < % by Proposition

4.1, then we determine a time T} > 0(T; < Tp) such that the local solutlons of (1.5)

exists in Cp, (B3/ %) and ||U]|5 Too (B3/2) < 01. Therefore from Proposition 4.2 the solutions
T, (B2t

satisfy the a priori estimate “U”Zg:;(Bg,/f) < Cl||U°||B§(12 < & provided [UollBg, < 2_6(,1'2'

Thus by Proposition 4.1 the system (1.5) for ¢ > T} with the initial data U(T}) has again

a unique solution U satisfying ||U||; 1%, oro (BY/2) < &y, further ||U]| I, (BY2) < 8;. Then by

Proposition 4.2 we have |[U|lze (3/2) < C1l|Uoll g3z < 4 Subsequently, we continuous
I3, (BY) B 2

the same process for 0 <t < nTj,n = 3,4, ... and finally get a global solution U € C (Bg 1)
satisfying

”U”fco(Bg,/f) + (”y”f,%(]gg’/lz) + ||(’U, zz)“z%(B;,/f) + “uz“f%,(g,;i/?))

41

< Gil|Ullgsrz < 5 (4.50)



5 Optimal decay rates

In this section, with the aid of the new frequency-localization time-decay inequality in
Proposition 4.1, we obtain the the optimal decay estimates by using the time-weighted
energy approach in terms of high-frequency andlow-frequency decomposition.

Theorem 5.1. Leta =1 ora # 1 and U(t,z) = (v,u, 2,y)(t,z) be the global classical

solution of Theorem 4.1. Assume that the initial data satisfy U, € Bg’/f(R) N B cl,éz(R).

Set Iy .= ||Uol| B2 @np= 2y I Lo 18 sufficiently small, then the classical solution U(t, z)
2,1 2,00

of (1.5) admits the optimal decay estimate
1Ullz= S To(1 +1)7%. (5.1)

Note that the embedding L'(R) — Bz_’ ;{2(]1{) in Lemma 3.3, as an immediate byprod-
uct of Theorem 5.1, the usual optimal decay estimate of L!(R)-L?(R) type is available.

Corollary 5.1. Leta =1 ora # 1 and U(t,z) = (v,u,2,9)(¢,z) be the global classical
solutions of Theorem 4.1. If further the initial data Uy € L*(R) and Iy := ||Up|| B2AR)NLIR)

is sufficiently small, then

Al

1U]lz2 S To(1 + )75 (5.2)

Remark 5.1. Let us mention that Theorem 5.1 and Corollary 5.1 exhibit the optimal
decay rate in the Besov space with s, = 3/2, that is, sp = 3/2, which implies that the
minimal decay regularity coincides with the the critical regularity for global solutions,
and the extra higher reqularity is not necessary. In addition, it is worth noting that the
present work opens a door for the study of dissipative systems of reqularity-loss type, which
encourages us to develop frequency-localization time-decay inequalities for other dissipative
rates and investigate systems with the regularity-loss mechanism.

Due to the better dissipative structure in the case of a = 1 (see [18]), we performed
the Littlewood-Paley pointwise estimates for the linearized problem (2.6) and develop
decay properties in the framework of Besov spaces. Furthermore, with the help of the
frequency-localization Duhamel principle, the optimal decay estimates of (1.5) are shown
by localized time-weighted energy approaches. For the case of a # 1, if the standard
Duhamel principle is used, we need to deal with the weak mechanism of regularity-loss
in the price of extra higher regularity, so it is impossible to achieve sp = 3/2. Hence,
we involve new observations. Actually, we perform “the square formula of the Duhamel
principle” based on the Littlewood-Paley pointwise estimate in Fourier space for the linear
system with right-hand side, see (5.5)-(5.6). Furthermore, we proceed the optimal decay
estimate for (1.5) in terms of high-frequency and low-frequency decompositions, with the
aid of the frequency-localization time-decay inequality first developed in [33].

To do this, we define the following energy functionals:

N@®) = sup (1+7)5 Uz, DE) = lza(Dl z a0z

0<7r<t

The optimal decay estimate lies in a nonlinear time-weighted energy inequality, which is
include in the following
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Lemma 5.1. Let U = (v,u,z,y)" be the global classical solutions in Theorem 4.1. Addi-
tionally, if Uy € B2°o , then it holds that

N(t) < ||U0||Bg/12032_¥2 + N(@®)D(t) + N(t)2. (5.3)
Proof. As in [17], perform the energy method in Fourier spaces to get
d .- A .
7 U1+ em(OIUF S €19F, (5.4)

with 71 (§) = (l—fz—z)—z, where E[U] ~ |U|?. As a matter of fact, following from the derivation
of (5.4), we can obtain the corresponding Littlewood-Paley pointwise energy inequality
d /\

SEIAU) + e AU S €A, (55)

— ——

where E [AqU | = |AqU [2. Gronwall’s inequality implies that
—— — t —
AP S e AUl + [ eomtrgA gpar (5.6)
0

It follows from Fubini and Plancherel theorems that

W7 = > lIAUIZ

q€Z
5 leAqer_%cf’ﬂl(ﬁ)t”%z
q€Z
/Z“lﬂA ge~ Cam(&)(t—r)Hisz
g€z
2 L+Dh (5.7)

For I, by takingp=r =2,06 =0,s = 1/2 and ¢ = 1 in Proposition 4.1, we arrive at

f = (D))

q<0 q>0
S IIUo||2-1/2(1+t T+ 2 A3 (1+1) 7
g>0
_1 -
S Uolla(1+ 675 + Ul (14
_1
< |1U0||g£zan§,{12(1+t) 2, (5.8)

Next, we begin to bound the nonlinear term on the right-hand side of (5.7), which is
written as the sum of low-frequency and high-frequency

/ (Z+Z)( ) 2 Lo+ L. (5.9)

g<0 q20



For Iz, by taking r = 2,0 = 1 and s = 1/2 in Proposition 4.1, we have
¢ 3
i < / (1t — 1) H g sl
0 2,00
1
< / 1+t — 1) Hg(2)|2adr
0
1
< / (14t — )2 [o(r) [Ladr
0
t
5N4(t)/ (1+t—1)3(1+8)"dr
0
SNAHY(A +6)7 (5.10)

where we used the embedding L!(R) — BQ_, if(R) in Lemma 3.3 and the fact g(z) = O(z?).
For the high-frequency part Iz, more elaborate estimates are needed. For the purpose,

we write
/2 t
I2H=(/ +/ )(“‘)éI2H1+12H2-
0 t/2

For Irp1, taking p=r=2,0 =1 and £ = 1/2 in Proposition 4.1 gives

t/2 '
Ly = / Z 23q||Aqg(z)”%2(1 +i- T)‘%d'r

0 g=0
t/2 N ,
< [ e= g ydr (5.11)
0 )

On the other hand, recalling g(z) = O(2?), Proposition 3.1 and Lemmas 3.1-3.2 enable us
to get

925572 S Mg ggre S alloellzel g (5.12)

Combine (5.11) and (5.12) to arrive at
t/2 .
b S [0t = ) 0 el ()l

1 t/2
s swp {0+t D} [l
0<r<t/2 0 2,1
_1
S @000

S (1+0) 0ol (5.13)

For the last step of (5.13), we would like to explain a little. It follows from Proposition
3.3 that

D) $ lzellgasyn S Ioallzpspny S WWoll sz, (5.14)
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where we used the energy inequality (4.11) in Theorem 4.1. By choosingr =2,p=0 =1
and ¢ = 1/2 in Proposition 4.1, I55 is proceeded as

bz = / 3" 24 A g ()2 dr

q>0
< / I9(2) s (5.15)

Thanks to g(z) = O(22), it follows from Proposition 3.2 that
ol g2 < o) S lzliallzal (5.16)

Together with (5.15)-(5.16), we are led to

t
by S N2(H) / (14 7) H 2 (7) [y
t/2

S MY sup (1+7)7} / 2271y adr
t/25-r<t
< (1 +8)7TIN2()DR(2). (5.17)
Combine (5.13) and (5.17) to get
Ly S (1+1) 3 |Usll}es + (1 +1) A2 (0)D(2). (5.18)

Therefore, it follows from (5.10) and (5.18) that
(1+8) N4 ) + (1+ t)"%||U0||gg,,12
+(1+ ) IN2(E)D(2). (5.19)
Finally, noticing (5.7)-(5.8) and (5.19), we conclude that
IUIE: S (14873100l oaa e + (14 )N (0D(0)

+(1+ )7 INV4(@) (5.20)
which leads to (5.3) directly. O
Proof of Theorem 5.1. Note that (5.14), we arrive at
D(t) < 1ol pgiz < NUoll g3/20,57172- (5.21)
Thus, if the norm ||Up|| BY2nBY2 is sufficiently small, then we have
N(@) S 0ol g3rapzs + N (©)? (5.22)

which implies that N (t) < ||Usl| BBy Y% provided that ||Up|| BB/ is sufficiently
small. Consequently, the desired decay estimate in Theorem 5.1 follows

1llz2 < Vol pg/znp;1/2(1 + £)7s. (5.23)

Hence, the proof of Theorem 5.1 is complete eventually. O
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