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THE ITERATED REMAINDERS OF THE RATIONALS
AKIO KATO

ABSTRACT. Repeat taking remainders of Stone-Cech compactifications
of the rationals

Q¥ =Q =4Q\Q Q¥ =8Q™\Q”, @¥ =pQ"\Q®, ¥ --- .
We point out that they have similar structures, but, are topologically
different. In particular we prove here that QM % Q. This result

will be generalized to show that Q™ % Q*? for any n > 1 in the
forthcoming paper [4].

1. INTRODUCTION

Consider the space of rationals Q, and repeat taking its remainders of
Stone-Clech compactifications Q1) = (QM™)* = BQM\Q™ (n > 0)
where Q@ = Q, i.e.,

QM =Q*, Q@ =Q*, QB = Q™.

Van Douwen [2] asked whether or not Q) ~ Q(**?) for n > 1, remarking
that Q™ for even m is never homeomorphic to Q® for odd n, because the
former is o-compact but the latter is not.

In this paper we point out that both Q™ and Q2 have a similar struc-
ture of “fiber bundle” for every n > 1, but they are topologically different.
In particular we here show that Q) % Q®), which we can generalize in the
forthcoming paper [4] to show that Q™ 5 Q2 for any n > 1, answering
van Douwen’s question.

The precise connections of the remainders can be seen by the following

construction. Viewing SQ as a compactification of Q1) let
o) : QY = QW UQ® —» QuQW = 5Q

be the Stone extension of the identity map id: Q) — Q). Denote by
¢0: Q? - Q®

the restriction of ®y. Next let

&, : QD =QP uQ® — QW U QY = W

be the Stone extension of the identity map id : Q¥ — Q@ and let

¢1: Q¥ - QW
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denote the restriction of ®;. In this way, for every n > 0 we can generally
get the Stone extension

P, : ﬂQ(n+l) — Q(TH-I) UQ(n+2) N Q(n) U Q('n+1) — ;BQ(n)
of the identity map id : Q**+1) — Q(*+1), and its restriction map

¢n: QD — Q.

Since every ®,, (n € w) is perfect, so is every ¢,,. Hence every Q™ (n € w)
is Lindedf since both Q@ = Q, QM) are Lindesf. We can also see that Q™
is o-compact for even n, but Q( is not for odd n, because Q(® is o-compact
but Q) is not since Q1) is a perfect pre-image of the irrationals P as we
see below.

(=)
(=)
Q.
&«
o
&

Fic. 1

A collection B of nonempty open sets of X is called a w-base for X if
every nonempty open set in X includes some member of B. The minimal
cardinality of such a 7-base is called the 7-weight of X. Note that any dense
subspace of X has the same w-weight as X, and any space of countable
m-weight is separable. Consequently, any dense subset of a space of count-
able m-weight is also of countable 7-weight, and hence separable. So, all of
BQ™, Q™ (n € w) are of countable w-weight, and hence separable.

Recall that an onto map g : X — Y is called irreducible if every non-
empty open subset U of X includes some fiber g~1(y), and it is well known
and easy to see that
(1) every extension of a homeomorphism is irreducible, and
(2) the restriction of a closed irreducible map to any dense subset is irre-
ducible.



Therefore we can see that all of the maps ®,,d, (n € w) are perfect irre-
ducible. Consider the partition of the closed interval [0,1] = Q U P where

Q=[0,1]nQ~Q and P =[0,1\Q ~P,

and let f : BQ — [0, 1] be the Stone extension of the homeomorphism Q ~ Q.
Then the restriction fo = f | QW : QW — P ~ P is perfect irreducible.
Thus we get the following sequence of perfect irreducible maps:

Q+Q® Q¥ ... P+ QM+ Q® Q¥ ...

All spaces are assumed to be completely regular and Hausdorff, and maps
are always continuous, unless otherwise stated. “Partition” is synonymous
with “disjoint union.” For a subset A of some compact space K we use
the notation A* to denote the remainder clx A\A when K is clear from the
context. Our terminologies are based upon (3].

2. SIMILAR STRUCTURES

We first show that both Q) and Q(**+2) have a similar structure for every
n > 1. In general, for any space Y let us denote by H(Y") the collection of all
homeomorphisms h : Y =Y. Let X be a nowhere compact, dense-in-itself
space, where nowhere compact (or nowhere locally compact) means that X
contains no compact neighborhood, or equivalently, that X is a dense subset
of some/any compact space K such that the remainder K\X is also dense
in K. Let ¢ X be some compactification of X and let #, € H(X) denote
the collection of all A € H(X) such that
(x)  h is extendable to c(h) € H(c X).
(Of course, Hy = H(c X) if c X = BX.) Let X = ¢ X\ X be the remainder,
and for every h € M, define k¥ € H(X™M) to be the restriction of c(h) to
X, Next consider the Stone-Cech compactification SX 1) of X and the
Stone extension Sh() € H(BXW) of D). Let X@ = BXM\X1) be the
remainder, and define h® € H(X®) to be the restriction of (1) to the
remainder X(?; hence ‘

h:X~X, WO x0xx0 p@ . xO ~ x3,

Note that X is dense in AX, and X® is dense in BX(), since we assume
that X is nowhere compact. Viewing that 8X is a compactification of X O}
we can consider the Stone extension @ : X (1) » BX of the identity map
idy : XO = XD Let ¢ : X@ — X be the restriction of ®. Then both @
and ¢ are perfect irreducible maps. We can show that the correspondence
H(X) D Hx 3 h— D € H(X®@) is compatible with the perfect irreducible
map ¢, i.e.,

Lemma 2.1. ho¢=¢oh®: X3 5 X,

13
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X0\ Ogo| = | Opo| X

FiG. 2

Proof To show this equality, it suffices to prove the equality
c(h)o® =®ophW: XM 5 ¢ X,
which follows from the obvious equality
Y oidyy = idxq) © RO x5 x @
on the dense subset X(1) of AX(1), O
Corollary 2.2. If h(z) =y for z,y € X, then KD (¢~ 1(z)) = ¢~ (y).

Proof. The inclusion h?(¢~1(z)) C ¢~1(y) follows from 2.1. Since A is a
homeomorphism, we can replace h by h™! to get the reverse inclusion. O

Taking X = Q, ¢ X = Q, H, = H(Q), we can deduce from 2.1 that
(2-1) hogo=g¢ooh®:Q® - Q forevery he H(Q).

Let [0,1] = QUP, Q@ = Q, P ~ P be as at the end of §1, and take
X =P, cX =10,1]; then XN = Q, X®@ = QM) and the corresponding
map ¢ in Fig. 2 is identical to the map fo : Q©¥) — P at the end of §1. Note
that H, C H(P) is the collection of all homeomorphisms of P extendable
to homeomorphisms of [0,1]. Then we can deduce from 2.1 that

(2—2) hofo=fooh®:QW — P for every h e H,.

Note that for every pair of irrationals p; < ps in P = [0,1]\Q we can find an
h € H, such that h(p1) = po; for example, we can take as c(h) in (%) a strictly
increasing function c(k) : [0,1] — [0,1] such that c¢(h)(Q) = Q, c(h)(0) =
0, c(h)(p1) = p2, c(h)(1) = 1. For m > 1 define go,, and fa,,_1 by

92m=¢00¢20~~0¢2m_~2;(@(2'm) - Q,
.f2m—-1 :f00¢10¢30'--0¢2m_~3:Q(zm-l) ___)P‘
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Then, using 2.1 we can extend the above (2-1), (2-2) to the followings,
respectively, for m > 1.

(2-3) h o gom = gom © p(m) . Q(2m) — Q for every h € H(Q),

(2—4) ho fop—1 = fom-10 pm-1) Q(zm"l) — P for every h € H,,

where 1™ € H(Q™). Combining these results with 2.2 we can summarize
‘that

Theorem 2.3. Let m > 1. Then every Q™) admits a perfect irreducible
projection gom onto Q, and every Q@@m-1) admits a perfect irreducible pro-
jection fom—1 onto P ~ P, with the additional property that they are “fiber-
wise” homogeneous in the following sense:

(1) For any q1 < g2 € Q there exists a homeomorphism of Q™) induced
by a homeomorphism of Q, carrying the fiber gom (@) to 9o (@2)-

(2) For any p1 < p2 € P there erists a homeomorphism of Q@m-1) induced
by a homeomorphism of P, carrying the fiber f{ni_l (p1) to f{,,{_l(pg).
Moreover, under CH (=the Continuum Hypothesis) every fiber g{,,ll(q) of q €
Q as well as every fiber f51_|(p) of p € P is homeomorphic to w* = fw\w.

This last assertion follows from the well-known

Fact 2.4. (see 1.2.6 in [8] or 3.37 in [9]) (CH) Let Y be a 0-dimensional,
locally compact, o-compact, non-compact space of weight at most c. Then
Y* = BY\Y and w* are homeomorphic.

Indeed, put Z = g;(g) and Y = SQ*™ D\ Z. Then Z is a zero-set of the
0-dimensional Q™Y included in the remainder Q2m) = ,BQ(zm'l)\Q@m“l),
so that Y* = BY\Y = Z. Since Y is a cozero-set and separable, Y satis-

fies the condition in 2.4. Hence Z =~ w*. Similarly we can prove that

i-nlz—l(P) W

3. REMOTE POINTS AND EXTREMALLY DISCONNECTED POINTS

To analyze further the structure of Q™)’s, we need the notion of remote
points and extremally disconnected points. A point p € SX\X is called a
remote point of X if p ¢ clgx F for every nowhere dense closed subset F of
X. Van Douwen [2], Chae, Smith [1], showed

Fact 3.1. Every non-pseudocompact space of countable m-weight has 2°
many remote points.

An easy consequence of this fact is

Fact 3.2. Let X be a non-compact, Lindeldf space of countable w-weight.
Then remote points of X form a Gs-dense subset of X* = BX\X.
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Proof. Choose any point p € X* and a zero-set Z of 8X containing p. Since
X is Lindelof, we can suppose that Z misses X. Put Y = 8X\Z; then
BY = BX, and Y is of countable m-weight since X is. Hence 3.1 implies
that Y* = Z contains remote points of Y, which are also remote points of
X. (]

A space T is said to be extremally disconnected at a point p € T (see [2])
if p ¢ clp Uy N clp Us for every pair of disjoint open sets Uy, U, in T'. Let
us call such a point p as an eztremally disconnected point of T, or simply,
an e.d. point of T, and denote the set of all such e.d. points by Ed(T). A
space T is extremally disconnected if every point of T is an e.d. point, i.e.,
Ed(T) =T. If S is dense in T, we always have clpU = clp(U N S) for every
open set U of T’; hence a point p € S is an e.d. point of S if and only if it is
an e.d. point of T, i.e.,, Ed(S) = SNEd(T).

Fact 3.3. ([2]) (1) Any remote point of X is an e.d. point of 5 X.
(2) Suppose X is first countable and hereditarily separable, and p € S X\ X.
Then p is a remote point of X if and only if p is an e.d. point of BX.

Let us call a point p € T a common boundary point of T if p is not an
e.d. point of T, i.e., if p € clpU; N clyp Us for some pair of disjoint open
sets Uy, U in T. Similarly, we call a subset A C T a common boundary set
in T if A C clp Uy N clp U, for some pair of disjoint open sets Uy, Us in
T. We abbreviate “common boundary” to “co-boundary.” (Such p, A are
called “2-point,” “2-set,” respectively, in [2].) Note that any co-boundary
set in T' is nowhere dense in T, but the converse need not be true. Let
Cob(T) = T\Ed(T) denote the set of all co-boundary points of 7. Note
also that if A is a co-boundary set, then every point of A is obviously a
co-boundary point, but the converse need not be true except the case A is
a countable discrete subset: ‘

Lemma 3.4. Suppose A is a countable discrete subset consisting of co-
boundary points of T. Then A, and hence also clrA, is a co-boundary set
in T. Therefore, if T is compact, Cob(T) is always countably compact in
the strong sense that every countable discrete subset has compact closure in
Cob(T).

Proof. Let A = {a, }new € Cob(T) be discrete in T', and choose disjoint open
sets {Wy}new in T such that a, € W,. In each W,, choose disjoint open
sets Up, Vp with a, € clpU, NclrV,. Put U =, Un and V =, ¢, Va.
Then these disjoint open sets U,V satisfy A C clrU N clrV, and hence
clrA C clrU NclrV. O

For an open set U C X its maximal open extension Ex(U) C BX is
defined by
EX(U) = ﬁX\clﬁx(X\U).
Suppose W is an open set in X ; then
clgxW = clgx(W NX) = clgxEx(W N X).



Therefore we see

Fact 3.5. Suppose p € BX\X. Then p is a co-boundary point of BX
if and only if p € clgxEx(U) NclgxEx(V) for some disjoint open sets U,V
in X. '

We denote the boundary of a subset W in Y by Bdy W so that BdyW =
cly W\W if W is open in Y. Van Douwen [2] proved the equality

(*) BdﬁxEX(U) = Clﬂdex(U)

for every open set U of X. (Note that 3.3 (1) follows from this equality since
Bdx(U) is a nowhere dense subset of X.) Using this () and 3.5 we get an
“nner” characterization of co-boundary points, hence of e.d. points also, of
BX for a normal space X :

Lemma 3.6. Assume X is normal, and p € SX\X. Then p is a co-
boundary point of BX if and only if p € clgx F for some co-boundary set F'
in X. In other words, p is an e.d. point of BX if and only if

p ¢ clgxF for every co-boundary set F in X.
Proof. By 3.5 it suffices to show the equality
\ ClﬂxEX(U) n clﬂxEX(V) = ClﬂX (Cle N chV)

for disjoint open sets U,V in X, since clxU NclxV is a co-boundary set in
X. Using (*) we get

ClﬂxEx(U) N ClﬁxEx(V) e Bdngx(U) N Bdngx(V)

= (ClﬂdexU) N (ClﬂdeXv).

Since X is normal, this set is equal to clgx(BdxU N BdxV'), where
BdxU NBdxV =clxU nNclxV. O
Lemma 3.7. Suppose A is a closed subset of a normal space X. Then
A C Ed(X) implies clgx A C Ed(BX).

Proof. Let A be a closed subset of a normal space X, and that A C Ed(X).
Let F be any co-boundary closed set in X. By 3.6 it suffices to show that
clgxF NeclgxA = 0. Since F C Cob(X) and A C Ed(X), we know that
F, A are disjoint closed subsets of X. Hence the normality of X implies that
ClﬂxFﬂClngr-@. W]

The next lemma shows how co-boundary points or e.d. points behave
w.r.t. closed irreducible ma)ps. Let g be a map from X onto Y. For a subset
U C X define g°(U) CY, a small image of U, by

y € ¢°(U) if and only if g7'(y) C U,
ie., g°(U) = Y\g(X\U) C g(U); so, g is irreducible if g°(U) # @ for every
non-empty open set U. Note an obvious useful formula

FUNV)=g°"(U)ng°(V)

17
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for any sets U,V C X, which especially implies that ¢°(U) N g°(V) = 0
whenever U NV = §. Suppose ¢ is closed irreducible. Then it is well known
that ¢°(U) is non-empty and open whenever U is, and

cly g°(U) = cly g(U) = g(clxU)
for every open subset U C X.

Lemma 3.8. Let g : X — Y be any closed irreducible map. Then g maps
co-boundary points to co-boundary points, i.e. g(Cob(X )) € Cob(Y). Fur-
thermore, for every r € X

g(x) € Cob(Y) if and only if z € Cob(X) or |g71(9(z))| > 1, i.e.,
g(z) e EA(Y) ifand only if z<cEd(X) and g '(g(z)) = {z}.
Consequently, ¢g~'(Ed(Y)) C Ed(X), and the restriction of g to
| g7 (Ed(Y)) — Ed(Y)
is a homeomorphism.
Proof. Let Uy, Uy be any disjoint open sets in X. Then
g(clxUr NeclxUs) C g(clxUy) Ng(elxUs) = clyg°(Uy) Nelyg®(Us),

and ¢°(U;), ¢°(Usz) are disjoint open. Hence g maps co-boundary points to
co-boundary points. Similarly, we can show that
lg~1(g(x))| > 1 implies g(z) € Cob(Y).

Indeed, if we take two points z; # z2 in g~ 1(g(z)), we can choose disjoint
open sets Uy, Us in X such that z; € Uy and z; € Uy (using the Hausdorff-
ness of X), getting g(z) € g(clxU1) N g(clxUz) = clyg°(U1) N cly g°(Us).
So, to complete our proof, assume g(z) € Cob(Y) and |g~(g(z))| = 1; then
we need to show z € Cob(X). The condition g(x) € Cob(Y’) implies that
g(x) € clyVi Ncly V; for some disjoint open sets V1,V2 in Y. Since g is a
closed map, g(x) € clyV; implies g71(g9(z)) Neclxg~ (Vi) # 0 for i = 1,2.
Hence the condition g~!(g(z)) = {z} implies z € clxg~!(V1) Nclxg™}(Va),
showing = € Cob(X). _ O

4. ToPOLOGICAL DIFFERENCE oF Q) anp Q®)
Now let us apply the general theory in §3 to our spaces
Q™ = QM UQ™Y (n > 0).

Recall that every Q™ is of countable m-weight and Lindel6f, hence normal.
Put C,, = Cob(Q™) and E,, = Ed(Q™); then this gives a partition of Q("™

Q"™ = C, UE,.

It is obvious that Ey = 0, ie., Q0 = Cy. Lemma 3.4 implies that each
Cn (n > 1) is dense in Q™ and Fact 3.2 with 3.3 (1) implies that each



E, (n > 1) is dense in Q(“). Note in particular that E; coincides with the
set of all remote points of Q, by 3.3 (2).

o o ®
FQO £ pa® gD < QW
QW) Q® Q® Q®

b1

b0
Q© Q@ Q@ Q®

Fi1G. 3

Property 4.1. Let A be any countable discrete subset of Eo which is closed
in Q. Then |

(1) clAC E,UC: in QW while (2) clA C E;UE; in fQW.

Proof. (2) follows from 3.7. To prove (1), let A be as above. Then, since
éo : Q(z) — QO is perfect, ¢po(A) is also a countable discrete closed subset
of Q© = C,. Since Cp U C; = Cob(BQ®) is countably compact in the
strong sense as stated in 3.4, we have cl¢o(A) € CoUC in BQO) . Puylling
back by the map ®g, we get cl A C Q@ U ¢ in AQW. This is the same as
the assertion (1) since A C Ej. O

Now we can prove the following strong assertion which in particular im-
plies that Q1) % Q®),
Theorem 4.2. QM) admits no perfect irreducible map onto Q®.

Proof. Suppose there existed a perfect irreducible map 9 : QW - Q®,
Then, since SQ® can be seen as a compactification of Q®), 9 extends to a
perfect irreducible map

¥ QW = QW uQ® — B80@ = QB y QY.
Lemma 3.8 implies then that
E;UE, D ¥"YE;UE;) ~ E»U Es.

Choose any countable discrete subset B C Ey € Q® C BQ@ which is
closed in Q®@. (We can do this because E3 is dense in Q3. and Q2 is

19
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Lindeléf.) Put A = ¥ ~1(B), then this A is also a countable discrete subset
of Ep which is closed in Q. Property 4.1 (2) shows clBC E;UE3 in
BQ? and so, pulling back by ¥, we get

dAC U YEyUEs) C EyUE,
in BQ(. But this contradicts 4.1 (1). O

We will be able to show in [4] that for any n > 1, Q™ admits no perfect
irreducible map onto Q(®*2) by analyzing further the behavior of limit points
of countable discrete subsets in Q™). Some of the basic techniques in this
paper can be found also in [5, 6, 7].
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