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The two-dimensional Green-Naghdi (GN) shallow-water model for surface gravity waves is extended to
incorporate the arbitrary higher-order dispersive effects. The linear dispersion relation for the extended
GN system is then explored in detail. As illustrative examples of approximate model equations, we derive
a higher-order model which is accurate to the fourth power of the dispersion parameter in the case of
a flat bottom topography. Subsequently, the extended GN system presented here is shown to have the
same Hamiltonian structure as that of the original GN system. Last, we demonstrate that Zakharov’s
Hamiltonian formulation of surface gravity waves is equivalent to that of the extended GN system by
rewriting the former system in terms of the momentum density instead of the velocity potential at the
free surface.

1. Introduction
Recently, we extended the Green-Naghdi (GN) shallow-water model equations to incorporate the

arbitrary higher-order dispersive effects while preserving the full nonlinearity (Matsuno (2015)). Here,
we extend it to the $tw(\succ$dimensional $(2D)$ system by making use of a novel asymptotic analysis, and
show that it has the same Hamiltonian structure as that of the origina12D GN system. We consider the
three dimen ional irrotational flow of an incompressible and inviscid fluid of variable depth. The effect of
surface tension is neglected since it has no appreciable influence on the current water wave phenomena.
It can be, however, incorporated in our formulation without difficulty. The governing equation of the
water wave problem is given in terms of the dimensionless variables by

$\delta^{2}\nabla^{2}\phi+\phi_{zz}=0, -1+\beta b<z<\epsilon\eta$ , (1.1)

$\eta_{t}+\epsilon\nabla\phi\cdot\nabla\eta=\frac{1}{\delta^{2}}\phi_{Z}, z=\epsilon\eta$ , (1.2)

$\phi_{t}+\frac{\epsilon}{2\delta^{2}}\{\delta^{2}(\nabla\phi)^{2}+\phi_{z}^{2}\}+\eta=0, z=\epsilon\eta$ , (1.3)

$\beta\delta^{2}\nabla b\cdot\nabla\phi=\phi_{z}, z=-1+\beta b$ , (1.4)

subjected to the boundary conditions

$\lim_{|x|arrow\infty}\nabla\phi(x, z, t)=0, \lim_{|x|arrow\infty}\phi_{z}(x, z,t)=0, -1+\beta b<z<\epsilon\eta, \lim_{|x|arrow\infty}\eta(x,t)=0$ . (1.5)

Here, $\phi=\phi(x, z,t)$ is the velocity potential with $x=(x, y)$ being a vector in the horizontal plane and
$z$ the vertical coordinate pointing upwards, $\nabla=(\partial/\partial x, \partial/\partial y)$ is the $2D$ gradient operator, $\eta=\eta(x,t)$

is the profile of the free surface, $b=b(x)$ specifies the bottom topography, and the subscripts $z$ and $t$

appended to $\phi$ and $\eta$ denote partial differentiations.
The dimensional quantities, with tildes, are related to the corresponding dimensionless ones by the

relations $\tilde{x}=lx,$ $\tilde{z}=h_{0}z,$ $\tilde{t}=(l/c_{0})t,$ $\tilde{\eta}=a\eta,$ $\phi=(gla/c_{0})\phi$ and $b=b_{0}b$ , where $l,$ $h_{0},$ $a$ , and $b_{0}$ denote
a characteristic wavelength, water depth, wave amplitude and bottom profile, respectively. $g$ is the
acceleration due to the gravity, and $c_{0}=\sqrt{gh_{0}}$ is the long wave phase velocity. There arise the following
three independent dimensionless parameters from the above scalings of the variables:

$\epsilon=\frac{a}{h_{0}}, \delta=\frac{h_{0}}{l}, \beta=\frac{b_{0}}{h_{0}}$ . (1.6)
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The nonlinearity parameter $\epsilon$ characterizes the magnitude of nonlinearity whereas the dispersion pararn-
eter $\delta$ characterizes the dispersion or shallowness, and the parameter $\beta$ measures the variation of the
bottom topography. What is meant by full nonlinearity” is that no restriction is imposed on the mag-
nitude of $\epsilon$ . Actually, $\epsilon$ is assumed to be of order 1 in our analysis. On the other hand, we impose the
condition $\delta\ll\lambda$ for the dispersion parameter which features the shallow water model equations.

In \S 2, we reformulate the water wave problem posed by equations. $(1.1)-(1.5)$ in terms of the total
depth of fluid $h$ and the depth-averaged horizontal velocity $\overline{u}$ which will be defined later. The system of
equations thus constructed consists of the exact evolution equation for $h$ and an infinite-order Boussinesq-
type equation for $\vec{u}$ . By truncating the latter equation at order $\delta^{2n}$ , we obtain the extended GN equations
which are accurate to $\delta^{2n}$ , where $n$ is an arbitrary positive integer. We call it the $\delta^{2n}$ model hereafter.
The lowest-order approximation $n=1$ yields the GN equations. We then derive the linear dispersion
relation for the extended GN system, and $\mathfrak{i}$nvestigate its characteristics in detail. In \S 3, we derive, as
illustrative examples, various $ap$}) $\zeta\langle$)ximate model equations which include the $20\delta^{4}$ model with a flat
bottom topography and the $2D\delta^{2}$ model (or the GN model) with an uneven bottom topography. The
$1D$ $\delta^{6}$ model with a flat bottom topography is briefly described. In \S 4, we show that the extended GN
equations can be formulated as a Hamiltonian form by introducing an appropriate LiePoisson bracket
as well as the momentum density in place of $\overline{u}$ , and they have the same Hamiltonian structure as that of
the GN equations. In \S 5, we demonstrate that the extended GN equations are equivalent to Zakharov’s
equations of motion for surface gravity waves. Finally, \S 6 is devoted to conclusion.

2. Derivation of the extended Green-Naghdi equations
2.1. Extended $GN$ system

The GN model is a system of equations for the total depth of fluid $h$ and the depth-averaged (or mean)
horizontal velocity $\tilde{u}=(\overline{u}_{\}}\overline{v}).$ Ttre latter variable is (iefine$(it)y$

$\overline{u}=\frac{1}{h}\int_{-1+\beta b}^{\epsilon\eta}\nabla\phi(x, z, f)dz,h=1+\epsilon\eta-\beta b$ . (2.1)

The horizontal component $u=(u, v)$ and verical component $w$ of the surface velocity are given respec-
tively by

$u(x,t\rangle=\nabla\phi(x, z, t\rangle|_{z=e\eta}, w(x,t)=\phi_{z}(x, z, t)|_{z=\epsilon\eta}$ . (2.2)

First, we derive the equation for $h$ . It follows from (1.1), (1.4) and (2.1) that

$w=\delta^{2}\{-\nabla\cdot\langle h$萄 $)+\epsilon u\cdot\nabla\eta\}$ . (2.3)

Substituting (2.3) into (1.2), we obtain the evolution equation for $h=h(x, t)$

$h_{t}+\epsilon\nabla\cdot(h\tilde{u})=0. (2.4\rangle$

It is $im\iota)$ortant that (2.4) is an exact equation without any approximation.
The equation for $\overline{u}$ can be derived from the equation for $u$ . A direct computation yields

� $(\phi_{t}|_{z=e\eta})=u_{t}+\epsilon w_{t}\nabla\eta-\epsilon\eta_{t}\nabla w$ . (2.5)

We apply the gradient operator to (1.3) and use $\langle$2.5) together with the definition of $u$ and $w$ . This leads
to

$u_{t}+ \epsilon w_{t}\nabla\eta+\frac{\epsilon}{2}\nabla u^{2}+\epsilon(-\eta_{t}+\frac{1}{\delta^{2}}w)\nabla\iota v+\nabla\eta=0$ . (2.6)

It follows by eliminating the term $\nabla\cdot(h\overline{u})$ from (2.3) and (2.4) that $-\eta_{i}+_{\delta}\pi^{1}w=\epsilon u\cdot\nabla\eta$ . If we substitute
this expression into the fourth term on the left-hand side of $(2.6\rangle$ , we arrive at the evolution equation for
$u$ :

$u_{t}+ \epsilon w_{t}\nabla\eta+\frac{\epsilon}{2}\nabla u^{2}+\epsilon^{2}(u\cdot\nabla\eta)\nabla w+V\eta=0$ . (2.7)
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Now, we introduce the new quantity $V$ by

$V=u+\epsilon w\nabla\eta$ . (2.8)

It then turns out from (2.7) that the evolution equation for $V$ can be written in the form

$V_{t}- \epsilon w\nabla\eta_{t}+\frac{\epsilon}{2}\nabla u^{2}+\epsilon^{2}(u\cdot\nabla\eta)\nabla w+\nabla\eta=0$ . (2.9)

Last, we substitute the relations

$-w \nabla\eta_{t}=\epsilon w\nabla(u\cdot\nabla\eta)-\frac{1}{2\delta^{2}}\nabla w^{2}, \epsilon\langle u\cdot\nabla\eta)w=u\cdot V-u^{2}$ , (2.10)

which follow from (1.2) and $(2.8\rangle,$ respectively, into $the$ corresponding terms $in (2.9)$ to obtain an alter-
native form of the evolution equation for $V$ :

$V_{t}+ \epsilon\nabla(u\cdot V-\frac{1}{2}u^{2}-\frac{1}{2\delta^{2}}w^{2}+\frac{\eta}{\epsilon})=0$ . (2.11)

Equation (2.11) represents an exact conservation law for the vector $V$ . To $inte1^{\cdot}P^{ret}$ the physical
meaning of $V$ , we introduce the velocity potential evaluated at the free surface

$\psi(x, t)=\phi(x, \epsilon\eta, t)$ . (2.12)

In view of the definition (2.2) of the surface velocity, the gradient of $\psi$ is found to be

$\nabla\psi=(\nabla\phi+\epsilon\phi_{z}\nabla\eta)|_{z=\epsilon\eta}=u+\epsilonw\nabla\eta$ . (2.13)

It immediately follows from $(2.12\rangle$ and (2.13) that

$V=\nabla\psi$ , (2.14)

implying that $V$ is equal to the $2D$ gradient of the velocity potential evaluated at the free surface, and
it lies in the $(x,y)$ plane.

The system of equations (2.4) and (2.7) (or $\langle$2.11)) is a consequence deduced from the basic Euler
system $(1.1)-(1.4)$ . The extended GN equations are obtained if one can express the variables $u,w$ in
equation (2.7) in terms of $h$ and $\overline{u}$ . As will be shown below, this is always possible. Consequently, the
evolution equation for $\overline{u}$ can be recast in the form of an infinite-order Boussinesq-type equation

$\overline{u}_{t}=\sum_{n=0}^{\infty}\delta^{2n}K_{n}$ , (2.15)

where $K_{n}\in \mathbb{R}^{2}$ are vector functions of $h$ and $\nabla\cdot\overline{u},$ $\nabla\cdot\overline{u}_{i}$ as well as the spatial derivatives of these
variables. If one truncates the right-hand side of equation (2.15) at order $\delta^{2n}$ , then equation (2.15) yields
the evolution equation for $\overline{u}$ which is accurate to $\delta^{2n}$ . The special case $n=1$ coupled with equation (2.4)
reduces to the original GN equations. In accordance with this fact, we call the system of equations (2.4)
and (2.7) (or (2.11), $(2,15)$ ) with $h$ and $\overline{u}$ being the dependent variables the extended GN system.

2.2. $Exp\dagger \mathfrak{r}$ssions of the velocities $u,$ $w$ and $V$ in terms of $h$ and $\overline{u}$

2.2.1. Flat bottom topography
Under the assumption $\delta^{2}\ll 1$ which is relevant to the shallow water models, the solution of equation

(1.1) subjected to the boubdary condition (1.4) with $b=0$ can be written explicitly in the form of an
infinite series

$\phi(x,z,t)=\sum_{n=0}^{\infty}\frac{(-1)^{n}\delta^{2n}}{(2n)!}(z+1)^{2n}\nabla^{2n}f$ , (2.16)
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where $f=f(x, t)$ is the velocity potential $at$ the fluid bottom. We substitute this expression into (2.1)

and perform the integration with respect to $z$ to obtain

$\overline{u}=\nabla f+\sum_{n=1}^{\infty}\frac{(-1\rangle^{n}\delta^{2n}h^{2n}}{(2n+1)!}\nabla\nabla^{2n}f, h=1+\epsilon\eta$ . (2.17)

Using the formula $\nabla^{2}f=\nabla\cdot(\nabla f)$ , we can rewrite $\langle$2.17) in an alternative form

$\nabla f=\overline{u}-\sum_{n=1}^{\infty}\frac{\langle-1)^{n}\delta^{2n}h^{2n}}{(2n+1)!}\nabla\nabla^{2(n-1)}(\nabla\cdot\nabla f)$ . (2.18)

To derive the expansion of $\nabla f$ in terms of $h$ and $\overline{u}$ , we look for the solution in the form of an infinite
series in $\delta^{2}$

$\nabla f=\overline{u}+\sum_{n=1}^{\infty}(-1)^{n}\delta^{2n}F_{n\rangle}$ (2.19)

where $P_{n}\in \mathbb{R}^{2}$ are unknown vector functions to be determined below. Substituting this expression into
(2.18) and comparing the coefficients of $\delta^{2n}\langle n=1$ , 2, on both sides, we obtain $F_{n}$ , first three of which
read

$F_{1}=- \frac{h^{2}}{6}\nabla\langle\nabla\cdot\overline{u}\rangle, F_{2}=-\frac{h^{4}}{120}\nabla\nabla^{2}(\nabla\cdot\overline{u})+\frac{h^{2}}{36}\nabla\nabla\cdot\{h^{2}\nabla(\nabla\cdot\overline{u})\},$

塊 $=- \frac{h^{6}}{5040}\nabla\nabla^{4}(\nabla\cdot\overline{u})-\frac{h^{2}}{6}\nabla(\nabla\cdot F_{2})-\frac{h^{4}}{120}\nabla\nabla^{2}(\nabla\cdot F_{1})$ . (2.20)

The series expansions of $u,$ $w$ and $V$ can be derived simply by substituting $\langle$2.18) with $F_{n}$ from (2.20)

into $(2.2)and(2.8)$ , respectively. We write them up to order $\delta^{4}$ for later use:

$u= \overline{u}-\frac{\delta^{2}}{3}h^{2}\nabla(\nabla\cdot\overline{u}\rangle+\delta^{4}[-\frac{1}{18}h^{2}\nabla\nabla\cdot\{h^{2}\nabla\langle\nabla\cdot\overline{u})\}+\frac{1}{30}h^{4}\nabla\nabla^{2}(\nabla\cdot\overline{u}\rangle]+O(\delta^{6}\rangle,$ (2.21)

$w=- \delta^{2}h\nabla\cdot\overline{u}-\frac{\delta^{4}}{3}h^{2}\nabla h\cdot\nabla(\nabla\cdot\overline{u})+O(\delta^{6}\rangle,$ (2.22)

$V= \overline{u}-\frac{\delta^{2}}{3h}\nabla(h^{3}\nabla\cdot\overline{u})-\frac{\delta^{4}}{45h}\nabla[\nabla\cdot\{h^{5}\nabla(\nabla\cdot\overline{u}\rangle\}]+O(\delta^{6})$ . $(2.23\rangle$

2.2.2. Uneven bottom topography

The effect of an uneven bottom topography on the propagation characteristics of water waves is
prominent in the coastal zone. Here, we provide the formulas of $u,w$ and $V$ in terms of $h,$ $u$ and $b$ . In
this case, the solution of the Laplace equation (1.1) subjected to the boundary condition $(1.5\rangle$ can be
written in the form

$\phi(x,z,t)=\sum_{n=0}^{\infty}(z+1-\beta b)^{n}\phi_{n}(x,t)$ , $\langle$2.24$)$

where the orders of unknown functions $\phi_{n}$ are to be determined. Performing the similar procedure to
that has been done for the flat bottom case, we obtain the approximate expressions of $u,$ $w$ and $V$ in
terms of $\overline{u},$

$h$ and $b$ :

$u= \overline{s\iota}+\delta^{2}[-\frac{h^{2}}{3}\nabla(\nabla\cdot\overline{u})+\frac{\beta}{2}\{h\nabla(\nabla b\cdot\overline{u}\rangle+(h\nabla\cdot\overline{u})\nabla b\}]+O(\delta^{4}\rangle,$ (2.25)

$w=\delta^{2}(-h\nabla\cdot\overline{u}+\beta\nabla b\cdot\overline{u})+O\langle\delta^{4})$ . (2.26)
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$V= \overline{u}+\frac{\delta^{2}}{h}[-\frac{1}{3}\nabla(h^{3}\nabla\cdot\overline{u})+\frac{\beta}{2}\{\nabla(h^{2}\nabla b\cdot\overline{u})-h^{2}\nabla b(\nabla\cdot\overline{u})\}+\beta^{2}h\nabla b(\nabla b\cdot\overline{u})]+O(\delta^{4})$ . (2.27)

2.3. Linear dispersion relation for the extended $GN$ system

Here, we show that the exact linear dispersion relation for the current water wave problem can be derived
from the extended GN system, and discuss its structure. We consider the flat bottom case for simplicity.
Linearization of equations (2.4) and (2.7) about the uniform state $h=1$ and $\overline{u}=0$ yields the system of
linear equations for $\eta$ and $\overline{u}$ . Explicitly, $\eta_{t}+\nabla\cdot\overline{u}=0,$ $u_{t}+\nabla\eta=0$ . We eliminate the variable $\eta$ from
this system of equations and obtain the linear wave equation for $\overline{u}$

$u_{tt}-\nabla(\nabla\cdot\overline{u})=0$ . (2.28)

In the linear approximation, the expression $u$ corresponding to (2.21) can be written in the form

$u= \overline{u}+\sum_{n=1}^{\infty}(-1)^{n}\delta^{2n}\{\frac{1}{(2n)!}+\sum_{r=0}^{n-1}\frac{\alpha_{n-r}}{(2r)!}\}\nabla\nabla^{2(n-1)}(\nabla\cdot\overline{u})$ , (2.29)

where $\alpha_{n}$ are unknown constants which are determined by the recursion relation

$\alpha_{1}=-\frac{1}{6}, \alpha_{n}=-\frac{1}{(2n+1)!}-\sum_{r=1}^{n-1}\frac{\alpha_{n-r}}{(2r+1)!}, n, 2$ . (2.30)

In order to examine the linear dispersion characteristics of equation (2.28) with $u$ from (2.29), we
assume the solution of the form $\overline{u}=\overline{u}_{0}e^{i(k\cdot x-wt)}$ , where $\overline{u}_{0}$ is a $2D$ constant vector, $k$ is the $2D$

wavenumber vector and $\omega$ is the angular frequency. We substitute (2.29) into equation (2.28) and find
that the linear dispersion relation takes the form

$\omega^{2}=\frac{k^{2}}{D(k\delta)}, (k=|k|) , D(k\delta)=1+\sum_{n=1}^{\infty}(k\delta)^{2n}\{\frac{1}{(2n)!}+\sum_{r=0}^{n-1}\frac{\alpha_{n-r}}{(2r)!}\}$ . (2.31)

Using (2.30), we can derive the relation $D(k\delta)=k\delta\coth k\delta$ which, substituted into (2.31), leads to the
linear dispersion relation for the extended GN system

2
$k$

$\omega=\overline{\delta}^{\tanh k\delta}$. (2.32)

The above expression coincides perfectly with that derived from the linearized system of equations for
the current water wave problem $(1.1)-(1.5)$ .

The $\delta^{2n}$ GN model incorporates the dispersive terms of order $\delta^{2n}$ . Referring to equations (2.4) and
(2.15), one can write it in the form

$h_{t}+ \epsilon\nabla\cdot(h\overline{u})=0, \overline{u}_{t}=\sum_{m=0}^{n}\delta^{2m}K_{m}$ . (2.33)

To detail the dispersion characteristics of this model, we introduce the function $D_{2n}(\kappa)$ by

$D_{2n}( \kappa)=1+\sum_{r=1}^{n}\frac{(-1)^{r-1}2^{2r}}{(2r)!}B_{r}\kappa^{2r},B_{r}=\frac{2(2r)!}{(2\pi)^{2r}}\sum_{j=1}^{\infty}\frac{1}{j^{2r}}, r\geq 1$ , (2.34)

where $B_{r}$ are Bernoulli’s numbers. The linear dispersion relation for the $\delta^{2n}$ model (2.33) is represented
by

$\omega^{2}=\frac{k^{2}}{D_{2n}(k\delta)}$ . (2.35)
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On the other hand, $D_{2n}$ models with even $n$ exhibit single positive zero. For example, the positive zeros
of $D_{4},$ $D_{8}$ and $D_{i0}$ are found to be 4.19, 3.63 and 3.33, respectively. An asymptotic analysis shows that
the zero of $D_{2n}$ with even $n$ approaches a constant value $\pi$ as $n$ tends to infinity. These results imply
that $\omega$ from $(2.35\rangle$ has a singularity and becomes pure imaginary for values of $k\delta$ exceeding the zero. It
turns out that the $\delta^{2n}$ models with even $n$ exhibit an unphysical dispersion characteristic which leads to
the ill-posedness result for the linearized systems of equations, and may cause instabilities in short wave
solutions in practical numerical computatioms. In accordance with these observations, the $\delta^{2n}$ models
with odd $n$ may be more tractable as the practical model equations than the $\delta^{2n}$ models w\’ith even $n.$

3. Approximate model equations
3.1. The $6^{4}$ model

3.1.1. Derivation of the $\delta^{4}$ model with a flat bottom topography
For the purpose of deriving the $\delta^{4}$ model with a flat bottom topography, we only need the evolution

equation for $\overline{u}$ since the equation for $h$ is already at hand, as indicated by equation (2.4). The procedure

for obtaining the equation for $\overline{u}$ can be performed straightforwardly. Actually, substituting the $ex\iota$)$xes-$

sions (2.21)-(2.23) into equation (2.11) and rearranging terms, we finally arrive at the evolution equation

for $\overline{u}$ :
$\overline{u}_{t}+\epsilon(\overline{u}\cdot\nabla)\overline{u}+\nabla\eta=\delta^{2}R_{1}+\delta^{4}R_{2}+O(\delta^{6}) , (3.1a\rangle$

with
$R_{1}= \frac{1}{3h}$� $[h^{3}\{\nabla\cdot\tilde{u}_{t}+e(\overline{u}\cdot\nabla)(\nabla\cdot\overline{u})-\epsilon(\nabla\cdot\overline{u})^{2}\}],$ $(3.1b)$

$R_{2}= \frac{1}{45h}$� $[\nabla\cdot\{h^{5}\nabla(\nabla\cdot\overline{u}_{t})+\epsilon h^{5}(\nabla^{2}(\nabla\cdot\overline{u}))\overline{u}-5\epsilon h^{5}(\nabla\cdot\overline{u})\nabla(\nabla\cdot\overline{u})+\epsilon\nabla h^{s}\cross(\overline{u}\cross\nabla(\nabla\cdot\overline{u}))\}$

$-2 \epsilon h^{5}\{\nabla(\nabla\cdot\overline{u})\}^{2}]-\frac{\epsilon}{45h}[\nabla\cdot\{h^{5}\nabla(\nabla\cdot\overline{u})\}\nabla(\nabla\cdot\overline{u})+\frac{h^{8}}{2}\nabla\{\nabla(\nabla\cdot\overline{u})\}^{2}]. (3.1c)$

Various reductions are possible for the $\delta^{4}$ model. Indeed, if we neglect the $\delta^{4}$ terms in equation (3.1),
then it reduces to the $2D$ GN system when coupled with equation (2.4)

$h_{t}+\epsilon\nabla\cdot(h\overline{u})=0,$
$\overline{u}_{t}+\epsilon(\overline{u}\cdot\nabla)\overline{u}+\nabla\eta=\frac{\delta^{2}}{3h}\nabla[h^{3}\{\nabla\cdot\overline{u}_{t}+\epsilon(\overline{u}\cdot\nabla)(\nabla\cdot\overline{u})-\epsilon(\nabla\cdot\overline{u})^{2}\}]$ , (3.2)

whereas the $6^{4}$ model reduces to the classica12D Boussinesq system

$h_{t}+ \epsilon\nabla\cdot(h\overline{u})=0, \overline{u}_{t}+\epsilon(\overline{u}\cdot\nabla)\overline{u}+\nabla\eta=\frac{\delta}{3}\nabla(\nabla\cdot\overline{u}_{t})$ , (3.3)

after neglecting the $\epsilon\delta^{2}$ and higher-order terms. On the other hand, the ID forms of equations (2.4) and
(3.1) become

$h_{t}+\epsilon(h\overline{u}\rangle_{x}=0, (3.4a)$

$\overline{u}_{t}+\epsilon\overline{v}\overline{u}_{x}+\eta_{x}=\frac{\delta^{2}}{3h}\{h^{3}(\overline{u}_{xt}+\epsilon\overline{u}\overline{u}_{xx}-\epsilon\overline{u}_{x}^{2})\}_{x}$

$+ \frac{\delta^{4}}{45h}[\{h^{6}(\overline{u}_{xxt}+\epsilon\overline{u}\overline{u}_{xxx}-5\epsilon\tilde{u}_{x}\overline{u}_{xx})\}_{x}-3\epsilon h^{5}\overline{u}_{xx}^{2}]_{x}+O(\delta^{1i}) , (3.4b)$

which are in agreement with equations ( $2.5\rangle$ and (2.22) of Matsuno $(2015\rangle$ , respectively.
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3.1.2. Conserwation laws
The $\delta^{4}$ model derived here exhibits the following four conservation laws:

$M=$

飛 2

$(h-1)dx$, (3.5)

$P= \int_{R^{2}}h\overline{u}dx$ , (3.6)

$H= \frac{\epsilon^{2}}{2}\int_{\mathbb{R}^{2}}[h\overline{u}^{2}+\frac{\delta^{2}}{3}h^{3}(\nabla\cdot\overline{u})^{2}-\frac{\delta^{4}}{45}h^{5}\{\nabla(\nabla\cdot\overline{u}\rangle\}^{2}+\frac{1}{\epsilon^{2}}(h-1)^{2}]dx$ , (3.7)

$L= \epsilon\int_{\mathbb{R}^{2}}[\overline{u}-\frac{\delta^{2}}{3h}\nabla(h^{3}\nabla\cdot\overline{u})-\frac{\delta^{4}}{45h}\nabla[\nabla\cdot\{h^{5}\nabla(\nabla\cdot\overline{u}\}]]dx,$ (3.8)

where we have used the notation $\int_{R^{2}}F(x, t)dx=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}F(x, t)$dxdy for any function $F$ decreasing
rapidly at infinity. The factors $\epsilon^{2}$ and $\epsilon$ attached in front of the integral sign in $H$ and $L$ , respectively
are only for convenience. The quantities $M,$ $P$ and $H$ represent the conservation of the mass, momentum
and total energy, respectively, which can be confirmed directly by using equations (2.4) and (3.1). The
fourth conservation law $L$ follows from (2.11) and (2.23). The geometrical interpretation of $L$ has been
discussed in detail in the ID case. See Remark 6 of Matsuno (2015).

3.2. The $GN$ model with an uneven bottom topography
In accordance with the method developed in \S 2, let us derive the GN model which takes into account
an uneven bottom topography. Since its derivation is almost parallel to that of the flat bottom case, we
describe only the final result. The evolution equation for $\overline{u}$ can be written in the form

$(1+ \frac{\delta^{2}}{h}\mathcal{L}(h,b))\overline{u}_{t}+\epsilon(\overline{u}\cdot\nabla)\overline{u}+\nabla\eta=\frac{\epsilon\delta^{2}}{3h}\nabla[h^{3}\{(\overline{u}\cdot\nabla)\nabla\cdot\overline{u}-(\nabla\cdot\overline{u})^{2}\}]+\epsilon\delta^{2}Q, (3.9a)$

with
$Q=- \frac{\beta}{2h}[\nabla\{h^{2}\overline{u}\cdot\nabla\langle\nabla b\cdot\overline{u})\}-h^{2}\{\overline{u}\cdot\nabla(\nabla\cdot\overline{u})-(\nabla\cdot\overline{u})^{2}\}\nabla b]-\beta^{2}\{(\overline{\tau\iota}\cdot\nabla)^{2}b\}\nabla b, (3.9b)$

where $\mathcal{L}(h, b)$ is a linear differential operator defined by

$\mathcal{L}(h,b)f=-\frac{1}{3}\nabla(h^{3}\nabla\cdot f)+\frac{\beta}{2}\{\nabla(h^{2}\nabla b\cdot f)-h^{2}\nabla b(\nabla\cdot f\rangle\}+\beta^{2}h\nabla b(\nabla b\cdot f) , (3.9c)$

for any vector function $f\in \mathbb{R}^{2}$ . This equation coincides perfectly with that obtained by different methods.
See Green& Naghdi (1976), Miles&Salmon (1985), Bazdenkov et al. (1987), Lannes&Bonneton (2009)
and Lannes (2013).

3.3. Remark
As already demonstrated in \S 2.3, the $\delta^{2n}$ models with even $n$ have singularities in their linear dispersion
relations, although the dispersion characteristics for small values of the dispersion parameter have been
improved considerably when compared with those of the original GN model. The simplest extended GN
model which avoids this undesirable behavior in higher wavenumber is the $1D$ $\delta^{6}$ model with a flat bottom
topography. Its derivation can be made straightforwardly by means of the procedure developed in this
section.

The evolution equation for $\overline{u}$ which extends $equat_{\grave{1}}on(3.4b)$ to order $\delta^{6}$ can now be written in the
form

$\overline{u}_{t}+\epsilon\overline{u}\overline{u}_{x}+\eta_{x}=\frac{\delta^{2}}{3h}\{h^{3}\langle\overline{u}_{xt}+\epsilon\overline{u}\overline{u}_{xx}-\epsilon\overline{u}_{x}^{2})\}_{x}+\frac{\delta^{4}}{45h}[\{h^{5}(\overline{u}_{xxt}+\epsilon\overline{u}\overline{u}_{xxx}-5\epsilon\overline{u}_{x}\overline{u}_{xx})\}_{x}-3\epsilon h^{6}\overline{u}_{xx}^{2}]_{x}$
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$+ \frac{\delta^{6}}{945h}[\{h^{7}(2\overline{u}_{xxxxt}+2\epsilon\overline{u}\overline{u}_{xxxxx}-14\epsilon\overline{u}_{x}\overline{u}_{xxxx}-30\epsilon\overline{u}_{xx}\overline{u}_{xxx})\}_{x}$

$+\{h^{6}h_{x}(14\overline{u}_{xxxt}+14$磁$\overline{u}_{xxxx}-112\epsilon\overline{u}_{X}\overline{u}_{xx.x}+42\epsilon\overline{u}_{xx}^{2})\}_{X}.$

$+\{h^{5}(hh_{x})_{x}(7\overline{u}_{xxt}+7\epsilon\overline{u}\overline{u}_{xxx}-63c\overline{u}_{x}\overline{u}_{xx})\}_{x}+\epsilon\{10h^{7}\overline{u}_{xxx}^{2}-35h^{5}(hh_{x})_{fj}\overline{u}_{xx}^{2}\}]_{x}$ . (3.10)

The linear dispersion relation for the system of equations $(3.4a)$ and $(3.10\rangle$ is then given by

$\omega^{2}=\frac{k^{2}}{1+\frac{1}{3}(k\delta)^{2}-\frac{1}{46}(k\delta)^{4}+\frac{2}{94b}(k\delta)^{6}}$ . (3.11)

Obviously, the singularity does not occur in $\omega$ for arbitrary values of $k\delta$ , as opposed to the $\delta^{4}$ model.
This ensures the well-posedness of the system of linearized equations for the model. Various features of
the $\delta^{6}$ model are worth studying in comparison with those of the $\delta^{4}$ model, as well as those of the $\delta^{2}$ (or
GN) model.

4. Hamiltonian structure
4.1. Hamiltonian

In this section, we show that the $2D$ extended GN system derived in \S 2 can be formulated as a Hamiltonian
form. First, recall that the basic Euler system of equations $(1.1)-(1.4\rangle$ conserves the total energy (or
Hamiltonian) $H$ which is the sum of the kinetic energy $K$ and the potential energy $U$ :

$H=K+U= \frac{\epsilon^{2}}{2}\int_{\mathbb{R}^{2}}[/-1+\beta b\epsilon\eta\{(\nabla\phi)^{2}$ 十 $\frac{1}{\delta^{2}}\phi_{z}^{2}\}dz]dx+\frac{\epsilon^{2}}{2}\int_{\mathbb{R}^{2}}\eta^{2}dx$ . (4.1)

Using (1.1) and (1.4), this Hamiltonian can be put into a simple form

$H= \frac{\epsilon^{2}}{2}\int_{1R^{2}}[h$魏 $\cdot\nabla\psi+\frac{i}{\epsilon^{2}}(h-1+\beta b)^{2}]dx$ , (4.2)

Inserting the expression of $\nabla\psi(=V)$ from (2.27) into (4.2), we obtain a series expansion of $H$ in powers
of $\delta^{2}$

$H= \epsilon^{2}\sum_{n=0}^{\infty}\delta^{2n}H_{n}, (4.3a\rangle$

with the first two of $H_{r\iota}$ being given by

$H_{0}= \frac{1}{2}\lambda_{2}[h\overline{u}^{2}+\frac{1}{\epsilon^{2}}(h-1+\beta b\rangle^{2}]dx, H_{1}=\frac{\lambda}{6}I_{1R^{2}}[h^{3}(\nabla\cdot\overline{u})^{2}-3\beta h^{2}(\nabla b\cdot\overline{u})\nabla\cdot\overline{u}+3\beta^{2}h(\nabla b\cdot\overline{u})^{2}]dx.$

$(4.3b)$

4.2. Momentum density
In formulating the extended GN system as a Hamiltonian form, it is crucial to introduce the momentum
density $m$ . It is given by the following relation

$\epsilon m=\frac{\delta H}{\delta\overline{u}}$ , (4.4)

where the operator $\delta/\delta\overline{u}$ is the variational derivative defined by

$\frac{\partial}{\partial\epsilon}H(\overline{u}+\epsilon w)|_{\epsilon=0}=\int_{R^{2}}\frac{\delta H}{\delta\overline{u}}\cdot wdx$ , (4.5)
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for arbitrary vector function $w\in \mathbb{R}^{2}$ . As seen from (4.3) and its higher-order analog, the integrand of
$K$ is quadratic in $\overline{u}$ , and hence $K$ obeys the scaling law $K(\epsilon\overline{u}, h, b)=\epsilon^{2}K(\overline{u}, h, b)$ . This leads, after
introducing $m$ from (4.4), to the relation $K= \frac{\epsilon}{2}\int_{\mathbb{R}^{2}}m\cdot\overline{u}dx$ , so that $H$ is expressed compactly as

$H= \frac{1}{2}\int_{\mathbb{R}^{2}}[\epsilon m\cdot\overline{u}+(h-1+\beta b)^{2}]dx$ . (4.6)

Comparing (4.2) and (4.6), we obtain the key relation which connects the variable $\nabla\psi$ with the momentum
density $m$ :

$m=\epsilon h\nabla\psi$ . (4.7)

Note that the kinetic energy obeys the scaling law $K(\epsilon m, h, b)=\epsilon^{2}K$ $b$), and hence $K=$

$\frac{1}{(2}\int_{4.7)}R^{2}\delta H/\delta m\cdot mdx$
. This exprcssion must be equal to $K= \frac{\epsilon}{2}\int_{R^{2}}m\cdot\overline{u}dx$ , giving the dual relation to

$\epsilon\overline{u}=\frac{\delta H}{\delta m}$ . (4.8)

4.3. Evolution equation for the momentum density

To derive the evolution equation for the momentum density $m$ , we ftrst compute the variational derivative
of $H$ with respect to $h$ . It is given by

$\frac{\delta H}{\delta h}=\epsilon^{2}(\frac{1}{2}u^{2}+\frac{w^{2}}{2\delta^{2}}-u\cdot\overline{u}+hw\nabla\cdot\overline{u}-\beta w\nabla b\cdot\overline{u})+h-1+\beta b$ . (4.9)

Now, we proceed to derive the evolution equation for $m$ . We start from the evolution equation for $V$

from (2.11). After a few manipulations using (2.4) and $(4.7\rangle$ , we obtain

$m_{t}+ \epsilon\nabla(\overline{u}\cdot m)+\epsilon(\nabla\cdot\overline{u})m+\frac{\epsilon}{h}\{(\nabla h\cdot\overline{u})m-(\overline{u}\cdot m)\nabla h\}+h\nabla(\frac{\delta H}{\delta h})=0$ . (4.10)

Furthermore, if we divide (4.10) by $h$ and use (2.4), we can write it in the form of local conservation law

$( \frac{m}{h})_{t}+\nabla(\frac{\epsilon\overline{u}\cdot m}{h}+\frac{\delta H}{\delta h})=0$ . (4.11)

4.4. Hamiltonian formulation

In this section, we demonstrate that the $2D$ extended GN system can be formulated as a Hamiltonian
system. To this end, we introduce the noncanonical Lie-Poisson bracket between any pair of smooth
functional $F$ and $G$

$\{F, G\}=-\int_{\mathbb{R}^{2}}[\sum_{\dot{\iota},j=1}^{2}\frac{\delta F}{\delta m_{i}}(m_{j}\partial_{i}+\partial_{j}m_{i})\frac{\delta G}{\delta m_{j}}+h\frac{\delta F}{\delta m}\cdot\nabla\frac{\delta G}{\delta h}+\frac{\delta F}{\delta h}\nabla\cdot(h\frac{\delta G}{\delta m})]dx$ , (4.12)

where we have put $m=(m_{1}, m_{2})$ and $\partial_{1}=\partial/\partial x,$ $\partial_{2}=\partial/\partial y$ . Note that the partial derivatives $\partial_{i}(i=1,2)$

operate on all terms they multiply to the right. Then, our main result is given by the following theorem.

Theorem 1. The $2D$ extended $GN$ system (2.4) and (2.11) $(or$ equivalently, $(4\cdot 10)$) can be written
in the form of Hamilton’s equations

$h_{t}=\{h, H\}, (4.13a)$
$m_{i,t}=\{m_{i},H\},$ $(i=1,2)$ . $(4.13b)$
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We recall that the bracket (4.12) has been introduced by Holm (1988) to formulate the $2I$) GN
equations as a Hamiltonian system. Combining this fact with Theorem 1, we conclude that the extended
GN system has the same Hamiltonian structure as that of the GN system. Hence, its truncated version
like the $\delta^{2n}$ model shares the same property.

5. Relation to Zakharov’s Hamiltonian formulation
5.1. Zakharov’s formulation

Zakharov (1968) (see also Zakharov& Kuznetsov (1997)) showed that the water wave problem $(1.1)-(1.5)$

permits a canonical Hamiltonian formulation. Specifically, the equations of motion for the variables $h$

and $\nabla\psi$ are written in the form

$h_{t}=- \frac{1}{\epsilon}\nabla\cdot\frac{\delta H}{\delta\nabla\psi}, \nabla\psi_{i}=-\frac{1}{\epsilon}\nabla\frac{\delta H}{\delta h}$ , (5.1)

$\{F, G\}=-\tilde{\epsilon}1\int_{\mathbb{R}^{2}}[\frac{\delta F}{\delta h}(\nabla\cdot\frac{\delta G}{\delta\nabla\psi})-(\nabla\cdot\frac{\delta F}{\delta\nabla\psi})\frac{\delta G}{\delta h}]dx$ , (5.2)

$h_{t}=\{h, H\}, \nabla\psi_{\theta}=\{\nabla\psi, H\}$ . (5.3)

5.2. Transformation of the Zakharov system to the extended $GN$ system
Here, we establish the following theorem.

Theorem 2. $Zakharov^{y}s$ system of equations (5.3) is equivalent to the extended $CN$ system $(4\cdot 13)$ .

This theorem follows by rewriting the Zakharov system in terms of the variable $m$ in place of $\nabla\psi$

while $h$ remains the common variable for both systems. The proof can be performed by using the relations

$\frac{\delta F}{\delta h}|_{\nabla\psi}=\frac{\delta F}{\delta h}|_{m}+\frac{1}{h}\frac{\delta F}{\delta_{7}n}|_{h}\cdot m, \frac{\delta F}{\delta\nabla\psi}|_{h}=\epsilon h\frac{\delta F}{\delta m}|_{h}\backslash (5.4\rangle$

$\frac{\delta H}{\delta h}|_{\nabla\cdot\psi}=\frac{(fH}{\delta h}|_{m}+\frac{e\overline{u}\cdot m}{h}, \frac{\delta H}{\delta\nabla\psi}|_{h}=\epsilon^{\sim}h\overline{u}$ . (5.5)

6. Conclusion

In this paper, we have developed a systematic procedure for extending the $2D$ GN model to include
higher-order $dispers\dot{i}V6$ effects while preserving full nonlinearity of the original GN model, and presented
various model equations for both flat and uneven bottom topographies. A detailed analysis of the
linearized system of equations for the extended GN models reveals that the linear dispersion relation
for the $\delta^{2n}$ model coinc\’ides with the exact linear dispersion relation for the water wave problem up to
order $\delta^{2n}$ for small values of the dispersion parameter. For odd $n$ , the dispersion relation have a nice
property in the sense that they exhibit no singularities for all values of the dispersion parameter. It
turns out that the $\infty$rresponding model equations are linearly well-posed. When $n$ is even, however, the
dispersion relations were found to exhibit a singularity, \’indicating the possibility of instabilities in short
wave solutions. Although the value of the dispersion parameter at which the singularity occurs is greater
than $\pi$ and hence it is beyond the range of applicability of the extended GN models, they may not be
appropriate to use as the basis for practical applications to real water wave phenomena. Hence, in order
to verify the validity of the models, the rigorous mathematical justification is necessary for $t\}_{1e}$ formal
derivation of the models, and it will become an important issue to be pursued in a future work.

We have demonstrated that the extended GN equations have the same Hamiltonian structure as
that of the GN equations. In the process, we have introduced the momentum density in place of the
depth-averaged horizontal velocity, and found a key relation which connects the momentum density with
the gradient of the surface potential. Last, the equivalence of the extended GN system and Zakharov’s
Hamiltonian system was also proved whereby the key relation mentioned above played the central role.
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