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CURVE COMPLEXES AND THE DM-COMPACTIFICATION OF
MODULI SPACES OF RIEMANN SURFACES

YUKIO MATSUMOTO

1. INTRODUCTION

Let M, be the moduli space of Riemann surfaces of genus g with n punctures. In
this report, we study the DM (=Deligne-Mumford) compactification M, , of M,,. Our
purpose is three-fold: (1) to construct a “natural” atlas of orbifold-charts on M, ,,, making
use of N. V. Ivanov’s “scissored Teichmiiller space” Py, [9], (2) to clarify the role of W. J.
Harvey’s curve complex C,,, [7] in the compactification process, and finally (3) to point
out a natural connection between Teichmiiller spaces and crystallographic groups.

2. BASIC DEFINITIONS

We consider a pair (S, w) of a Riemann surface S and an orientation preserving home-
omorphism w : £, — S, where ¥, ,, is an oriented surface of type (g,n). Two such pairs
(S,w) and (S, w') are equivalent (S, w) ~ (&', w’) if and only if there exists a biholomor-
phic map ¢ : S — &’ such that the following diagram homotopically commutes:

Cgn — S
id.l lt
Zgn — S’
The Teichmiiller space T, ,, is defined by
Ton = {(S,w)}/ ~.
We denote the mapping class group of ¥, , by I'y ., and define its action on T}, by
[£1u[S,w] = [S,wo £,

where [f] € Ty, and [S,w] € T,

Tyn is & complex analytic space ([22], [3]), and is a bounded domain [4] of dim¢ Typ =
39 — 3+ n.

We define the length function L : T,, — R as follows: Let C be an essential simple
closed curve on % ,. For any point p = [S, w] € Ty, let [,(C) be the length of the simple

closed geodesic C' on S homotopic to w(C). Define L : Ty,, — R by
def. .
L(p) = min L(C).

The length function L is a piecewise real analytic function on Ty, (Fenchel-Nielsen, Abikoff
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3. IVANOV’S SCISSORED TEICHMULLER SPACE P,

Let € > 0 be a sufficiently small number. In his cohomological study on the mapping
class groups, N. V. Ivanov [9] introduced the following space, which we would like to call
Ivanov’s scissored Teichmiiller space and to denote by F; .

P E {pe T, | Lp) 2¢).

P¢,, is a real analytic manifold with corners. (The author was pointed out by Hiroshige

Shiga that P;,, is usually known as a thick part of Tgn. )
To what extent should € be small? To answer this question, let us recall the following

Theorem 3.1. (Keen [12], Abikoff [2]) There is an universal constant M such that two
distinct simple closed geodesics on S are disjoint, if their lengths are smaller than M.

The number ¢ should be taken as ¢ < M.

3.1. Facets of P¢,. Suppose a point po = [So, wo| is on the boundary OF;, of F;,, then

we have
L(po) = €.
There exist a finite number of simple closed curves
Cla T Ck

on X, , such that [,,(C;) =€, i = 1,---,k. (Recall this means that the geodesics o
have hyperbolic length ¢ on Sy, where C; is the simple closed geodesic homotopic to
wo(Cy), ¢ = 1,--- ,k.) The geodesics Cy, - - ,Cy are disjoint, because ¢ < M, and we
may assume that Cy, .-, Cy are disjoint on X,,. We have

k£3g~-3+mn,

because 3g — 3 + n is the maximum number of the simple closed curves on Xy, which are
essential, disjoint, and mutually non-isotopic.
Let o be the set of these simple closed curves on %,

o={C,-,Ci}.
Define the facet F¢(o) corresponding to o by
Fo)={pe Py, | b(Ci)=¢,1=1,--- ,k}.

For all points p = [S, w] on F¢(0), we assume that other simple cosed geodesics on S have
length greater than . (The point pg is on this facet.)

In general, for any set o of essential, disjoint, and mutually non-isotopic simple closed
curves on Y,.,, the corresponding facet F¢(o) is a real analytic manifold homeomorphic

to
R2(3g—— 3+n)—k

where k = #o0. Facets are analogous to open faces of a finite polyhedron.
Here is an incidence relation: If ¢ C ¢/, then we have

Fe(o) D F*(o').

If #0 < 3g — 3 + n, the facet F¢(o) is surrounded by an infinite number of facets. Thus
in this case, a facet is itself an infinite polyhedron.
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3.2. Abelian subgroups I'(¢). Let o denote {Ci,---,Ci} as before. Let 7(C;) be the
right handed (i.e. negative) Dehn twist aboutC;, and define I'(¢) to be the subgroup of
I’y » generated by

(C), i=1,--- k.

The group I'(o) is a free abelian group of rank k. Since the action of I'y,, on T}, ,, preserves
the Poincaré metric on Riemann surfaces (hence preserves the length function L), and

(C)( ) Ja i)jzlv"')ka
the twists 7(C;) preserve F*(o). This action of I'(¢) on F*(o) is real analytic and properly
discontinuous.

4. COMPLEX OF CURVES AND Py,

W. J. Harvey (1977) [7] introduced an abstract simplicial complex called the complex
of curves Cgp = C(X,,):

Definition 4.1. A vertez of C,, is an isotopy class of an essential simple closed curve on
Y, and a simplez o of C, ,, is a set of vertices represented by a disjoint union of essential
simple closed curves which are mutually non-isotopic.

Facets F**(0) are in one-to-one correspondence with the simplices o of C,,

Proposition 4.2. The totality of the facets {F*(0)}sec,, makes a complez (facet com-
plex) analogous to a simplicial complex. The flag complex associated with the facet complex
is isomorphic to the barycentric subdivision of the complex of curves Cyp,.

Proof. A flag in the facet complex F¢(o) D F#(¢’) D F¢(0”) corresponds to a flag in
the complex of curves C,,, 0 C ¢’ C o”. The latter corresponds to a simplex of the
barycentric subdivision of C, . O

4.1. Automorphisms of C,,. We need the following theorem:

Theorem 4.3. (Ivanov [10], Korkmaz [13], Luo [15]) Ezcept for a few sporadic cases
(spheres with < 4 punctures, tori with < 2 punctures and o closed surface of genus 2),
the following holds:

Aut(Cym) =Ty,
where I'y ,, stands for the extended mapping class group (containing orientation reversing
homeomorphisms) .

The scissored Teichmiiller space P;, together with the Teichmiiller metric becomes
a metric (infinite) polyhedron. The following proposition is a corollary to the above
theorem:

Proposition 4.4. With the same exceptions as above, we have
Isom,(P;,) = Tgpn.

Proof. An isomorphism of P; ,, induces on 0F;, an automorphism of the facet complex,
thus that of the barycentric subdlwsxon of Cg s and finally an automorphism of Cy,. The
automorhism of Cy, in turn corresponds (by Ivanov-Korkmaz-Luo’s theorem) to an action
of the mapping class group I'y,,, hence an (orientation preserving) isometry of Ty,. [0

Essentially the same arguments have been done in Papadopoulos [21] and Ohshika [20].

111



Proposition 4.5. The subgroup of I'y, which preserves a facet Fy,, is precisely N I'(o),
the normalizer of I'(c) in Tgp.

Proof. If a mappmg class [f] € Ty, peserves Fy, then [f] induces on Iy, a permutation

of o = {C1, - ,Ck}, and vice versa. Such mapping classes form the normalizer NT'(0)
of I'(0). 0O

4.2. “Fringe” FR*(0) bounded by F*(s). The fringe FR*(0) is defined by
FR(o) = U Fi(0).

0<d<e
Then we have

Corollary 4.6. The subgroup of 'y, which preserves the fringe F R(0) is the normalizer
NT'(0). The action of NI'(g) on FR¢(0) is properly discontinuous.

Proof. FR*(c) is foliated by the facets F%(c), and the corollary holds for each leaf F*(0).

O
Define the augmented fringe as follows:
FR(o)= |J F(o R*(0) U FO(0)).
0S6<e

NT (o) acts on FRe(o) continuouly, but not properly discontinuously, because the infinite
subgroup ['(¢) (C NT(0)) fixes the points of the added ideal boundary F°(c). Abikoff[1]
attached to T, all ideal boundaries, and considered the augmented Teichmiiller space

Ton=Tynl |J F0).

0€Cqn

Yamada [24] identified T, with the Weil-Petersson completion of Ty, and proved the
geodesic convexity of the ideal boundaries F°(c). It is well-known that the quotient
space of T n under the action of I'y, is the compactified moduli space M, .. Note that
the union of the augmented frmges Uaec FRe(o) gives an open neighborhood of the
singular divisors when divided out by the ‘action of

5. CONTROLLED DEFORMATION SPACES

To analyse the orbifold structure of M, ,, the fringes F'R¢(0) are not necessarily ade-
quate, because they are pairwise disjoint:

FRe(o)NFRe(o') =0, if o#0.

(Recall that the facets are like open faces of a polyhedron.) Namely the fringes do not
make an open covering of the singular divisors |J, ¢, °(0).

To remedy the deficiency, we introduce controlled deformation spaces. But before going
to them, let us recall Bers’ deformation spaces.

Let o € C,y, be any simplex o = {C}, - C’k} € Cyn- Let £yn(0) denote the surface
with nodes obtained by pinching each C; (e or) in £y, to a point. Bers [5] introduced the
deformation space D(o) associated with ¥, ,(c). The following fact is known:

Proposition 5.1. (See Kra [14] §9, Matsumoto [18] §6.) D(o) is homeomorphic to
(Tyn/T(0)) UL, TL;, where IT; = Ci=1 x {0} x C39~3+n—1 , and (-, II; corresponds to F°.
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(II; is mentioned as a “distinguished subset”in Bers [5].) Bers announced in 1970’s that
D(o) is a bounded domain (see [5]), but without proof. Recently, Hubbard and Koch [8]
gave a proof.

Theorem 5.2. The deformation space D(o) is a complex manifold of dim¢ = 3g —3+n.

Their arguments are a little bit complicated, but the geometry is conceptually clear.
The space FO(o) is the Teichmiiller space of the nodal surface ¥,,(c) and serves as the
“core”of D(o) (Masur [17]). It is thickened in the transverse direction by the “plumbing
coordinates” (Marden [16], Earle and Marden [6]).

5.1. The groups W(c). Define
W(o) = NTI'(0)/T(0).
The groups W (o) are not finite groups in general.

Proposition 5.3. (i) W (o) is the mapping class group of the nodal surface X;,(0).
(it) W(o) acts on D(c) holomorphically and properly discontinuously.

5.2. Controlled deformation spaces. Let M be a constant of Keen and Abikoff. We
take an ¢ satisfying 0 < ¢ < M. We insert 6g — 6 + 2n numbers between ¢ and M:

E<er <My <o < E3g-34n < Mg—34n < M.

Let € denote this sequence. We define the controlled deformation space Dg(o) as follows
( o being {C1,---,Ck}):

De(o) = {p=[S,w] € D(o) | [,(C}) <ex, i=1,...,k,
and other simple closed geodesics on S are longer than 7}

Why do we need the controlled deformation spaces D:{(0)? Because Bers’ deformation
spaces D(o) do not naturally descend to M, but Ds(c) do. For a proof of this fact, see
18], §7

Proposition 5.4. (i) D:(0) is a bounded domain of C3973+"

(it) The group W (o) acts on Dg(o) holomorphically and properly discontinuously.

(i) De(a) /W (0) is an open subset of My,,.

() De(0)/W (c) contains the “main part”of the quotient of the augmented fringe FRE (o) /W (o).
(v) The family {D(0)/W (0)}oec,. 95 an open covering of the “boundary”singular divi-

5078 Usec, , F°(0)/Tgn-

Summarizing the above, we have our main theorem:

Theorem 5.5. (Matsumoto [18]) The family {(D:(0), W(0))}sec,.. gives orbifold-charts
containing the boundary singular divisors in M.

Remark 5.6. If o/ = f(0) by a mapping class [f] € [y, we consider that (Ds(c), W(0))
and (Dg(o"), W(o")) are the identical charts. Thus the index set of the family of charts is
actually Cypn /Iy,



6. CRYSTALLOGRAPHIC GROUPS

Definition 6.1. A crystallographic group in Euclidean m-space E™ is a group G of isome-
tries of E™ whose translation vectors form a lattice L C E™.

The image of G under linearization I'som(E™) — O(E™) is called the point group of G
and denoted by 2'3 This is a finite group. There is a canonical exact sequence

1T->G— 3 — 1,
where T is the translation subgroup of G. See [11].

6.1. Crystallographic groups in Teichmiiller theory. For simplicity, we consider a
closed surface I, (i.e. n = 0), and in what follows, we assume that o is a maximal simplex
of Gy, i.e., 0 = {C;}i=1,. 3g-3. Then the group W (o) is finite. In this case, the facet F*(o)
is defined by

li=¢, i=1,...,3g—3
by the Fenchel-Nielsen coordinates associated with o,

(l,-,ﬁ), 2=1,,3g-—3

By Wolpert’s formula, the Weil-Petersson symplectic form is written as follows:
1
Wwp = -2- 212 dl; A dTi.

We see wwp|F¢(0) = 0, thus F*(0) is a Lagrangian submanifold of dimg = 3g — 3.

F¢(0) is homeomorphic to R3~3 on which I'(0) acts as translations. The action of
NT(o) on F¢(o) preserves the Weil-Petersson metric (-,-). From Wolpert’s lecture note
[23], we have

1
Mo A) = =0 + O"), for X = grad/l.
On F*¢(o), we have
1
(A, Ag) = 5635 + O(e?),
because I; = I; = ¢ on F*(0). F¢(o) has twist coordinates 7y, ..., 73,_3. Wolpert’s twist-
length duality [23] asserts that
2t = J grad l,‘,
where 2¢; is the Hamiltonian vector field (along 7;) corresponding to dl;.
Thus

t, = —;-Jgrad l; = \/e_Jgrad\/Z; = \/{;:J)\,',

and
(.ﬁ. fl.) - 1
VE' Ve o
Therefore, the facet F(o) together with the (normalized) Weil-Petersson metric
2m
—(toty) =05+ O(%)
converges to Euclidean space 3973 as ¢ — 0, on which NT'(g) acts as a crystallographic
group.
In our case where o is maximal, W (o) is a finite group. This group is nothing but the
automorphism group of a finite trivalent graph (the pants graph, i.e., the dual graph of

<J/\,JA]> = 5,']' -+ 0(63).
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the pants decomposition associated with o). Conversely, given any finite trivalent graph,
a crystallographic group appears exactly in the same manner as above.

The group W (o) is somewhat similar to the “Weyl group”, and a pants graph has an
atomosphere of a “root system”. Details of this report will appear in [19].

Here are the trivalent graphs for g = 3 (with 4 vertices and 6 edges) and the corre-
sponding point groups N I‘(or; (n.b. not their groups W(o)):

ALY

Ds Sy (Z2)? (Zo)?  (Zp)*
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