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1. INTRODUCrfiON

Let $M_{g,n}$ be the moduli space of Riemann surfaces of genus $g$ with $n$ punctures. In
this report, we study the DM ( $=$Deligne Mumford) compactification $\overline{M_{g,n}}\circ fM_{g,n}$ . Our
purpose is tkree-fold: (1) to construct a“natural” atlas of orbifold-charts on $\overline{M_{i1,n}}$ , making
use of N. V. Ivanov’s “scissored Teichmttller space” $P_{g,n}^{\epsilon}[9]$ , (2) to clarify the role of W. J.
Harvey’s curve complex $C_{g,n}[7]$ in the compactification process, and finally (3) to point
out a natural connection between Teichm\"ullcr spaces and crystallographic groups.

2. BASIC DEFINITIONS

We consider a pair $(S, w)$ of a Riemann surface $S$ and an orientation preserving home-
omorphism $w:\Sigma_{g,n}arrow S$ , where $\Sigma_{g,n}$ is an oriented surface of type $(g, n)$ . Two such pairs
$(S, w)$ and $(S’, w’\rangle are$ equivalent $(S, w)\sim(S’, w’)$ if and only if there exists a biholomor-
phic map $t:Sarrow S’$ such that the following diagram homotopically commutes:

$\Sigma_{g,n}arrow^{w}S$

$id.\downarrow \downarrow t$

$\Sigma_{g.n}arrow^{w’}S’.$

The Teichm\"ulter space $T_{g,n}$ is defined by

$T_{g,n}=\{(S, w \sim.$

We denote the mapping class group of $\Sigma_{g,n}$ by $\Gamma_{g,n}$ , and define its action on $T_{g,n}$ by

$[f]_{*}[S, w]=[S, w\circ f^{-1}],$

where $[f]\in\Gamma_{g,n}$ and $[S, w]\in T_{g,n}.$

$T_{5^{n}},$, is a complex analytic space ([22], [3]), and is a bounded domain [4] of $\dim_{\mathbb{C}}T_{g,n}=$

$3g-3+n.$
We define the length function $L$ : $T_{g,n}arrow \mathbb{R}$ as follows: Let $C$ be an essential simple

closed curve on $\Sigma_{g,/\iota}$ . For any point $p=[S, w]\in T_{g,n}$ , let $l_{p}(C)$ be the length of the simple

closed geodesic $\hat{C}on,9$ homotopic to $w(C)$ . Define $L:T_{g,r\iota}arrow \mathbb{R}$ by

$L(p)^{def}= \min_{cc\Sigma_{gn}},t_{p}(C)$ .

The length function $L$ is a piecewise real analytic function on $T_{g,n}$ (Fenchel-Nielsen, Abikoff
[2]).
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3. $I\fbox{Error::0x0000}ANOV’ S$ SCISSORED TEICHM\"ULLER SPACE $P_{g_{1}n}^{\epsilon}$

Let $\epsilon>0$ be a sufficiently small number. In his cohomological study on the mapping
class groups, N. V. Ivanov [9] introduced the following space, which we would hke to call
Ivanov’s scissored Teichm\"uller space and to denote by $P_{g,n}^{\epsilon}$ :

$P_{g,n}^{\epsilon}=\{p\in T_{g,n}|L(p)\geqq\epsilon\}def..$

$P_{g,n}^{\epsilon}$ is a real analytic manifold with corners. (The author was pointed out by Hiroshige
Shiga that $P_{g,n}^{\epsilon}$ is usually known as a thick part of $T_{g,n}$ . )

To what extent should $\epsilon$ be small? To answer this question, let us recall the following

Theorem 3.1. (Keen [12], Abikoff [2]) There is an universal constant $M$ such that two
distinct simple closed geodesics on $S$ are disjoint, if their lengths are smaller than $M.$

The number $\epsilon$ should be taken as $\epsilon<M.$

3.1. Facets of $P_{g,n}^{\epsilon}$ . Suppose a point $p_{0}=[S_{0}, w_{0}]$ is on the boundary $\partial P_{g,n}^{\epsilon}$ of $P_{g,n}^{\epsilon}$ , then
we have

$L(p_{0})=\epsilon.$

There exist a finite number of simple closed curves

$C_{1}, \cdots, C_{k}$

on $\Sigma_{g,n}$ such that $l_{P0}(C_{i})=\epsilon,$ $i=1,$ $\cdots,$
$k$ . (Recall this means that thc geodesics $\hat{C}_{l}\prime$

have hyperbolic length $\epsilon$ on $S_{0}$ , where $\hat{C}_{i}$ is the simple closed geodesic homotopic to
$w_{0}(C_{i})$ , $i=1,$ $\cdots,$

$k.)$ The geodesics $\hat{C}_{1}$ , )

$\hat{C}_{k}$ are disjoint, because $\epsilon<M$ , and we
may assume that $C_{1},$

$\cdots,$
$C_{k}$ are disjoint on $\Sigma_{g,n}$ . We have

$k\leqq 3g-3+n,$

because $39-3+n$ is the maximum number of the simple closed curves on $\Sigma_{g,n}$ which are
essential, disjoint, and mutually non-isotopic.

Let $\sigma$ be the set of these simple closed curves on $\Sigma_{g,n}$ :

$\sigma=\{C_{1}, \cdots, C_{k}\}.$

Define the facet $F^{\epsilon}(\sigma)$ corresponding to a by

$F^{\epsilon}(\sigma)=\{p\in P_{g,n}^{\epsilon}|l_{p}(C_{i})=\epsilon, i=1, \cdots, k\}.$

For all points $p=[S, w]$ on $F^{\epsilon}(\sigma)$ , we assume that other simple cosed geodesics on $S$ have
length greater than $\epsilon$ . (The point $p_{0}$ is on this facet.)

In general, for any set $\sigma$ of essential, disjoint, and mutually non-isotopic simple closed
curves on $\Sigma_{g,n}$ , the corresponding facet $F^{\epsilon}(\sigma)$ is a real analytic manifold homeomorphic
to

$\mathbb{R}^{2(3g-3+n)-k},$

where $k=\#\sigma$ . Facets are analogous to open faces of a finite polyhedron.
Here is an incidence relation: If $\sigma\subseteq\sigma’$ , then we have

$\overline{F^{\epsilon}(\sigma)}\supset F^{\epsilon}(\sigma’)$ .

If $\#\sigma<3g-3+n$ , the facet $F^{e}(\sigma)$ is surrounded by an infinite number of facets. Thus
in this case, a facet is itself an infinite polyhedron.
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3.2. Abelian subgroups $rく\sigma\rangle$ . Let $\sigma$ denote $\{C_{1}, \rangle C_{k}\}$ as before. Let $\mathcal{T}(C_{i})$ be the
right handed (i.e. negative) Dehn twist $aboutC_{i}$ , and define $\Gamma(\sigma\rangle$ to be the subgroup of
$\Gamma_{g,n}$ generated by

$\prime r(C_{i}) , i=1, \cdots, k.$

The group $\Gamma(\sigma)$ is a free abelian group of rank $k$ . Since the action of $\Gamma_{g,n}$ on $T_{g,n}$ preserves
the Poincar\’e metric on Riemann surfaces (hence preserves the length function $L$), and

$\tau(C_{i})(C_{j})=C_{j}, i,j=1, )k,$

the twists $\tau(C_{i})$ preserve $F^{\epsilon}(\sigma)$ . This action of $\Gamma(\sigma)$ on $F^{\epsilon}(\sigma)$ is real analytic and properly
discontinuous.

4. COMPLEX OF CURVES AND $P_{g}^{\epsilon},$

W. J. Harvey (1977) [7] introduced an abstract simplicial complex called the complex
of curves $C_{g,n}=C(\Sigma_{g,n})$ :

Definition 4.1. A vertex of $C_{g,n}$ is an isotopy class of an essential simple closed curve on
$\Sigma_{g,n}$ , and a simplex $(f$ of $C_{g,n}$ is a set of vertices represented by a disjoint union of essential
simple closed curves which are mutually non-\’isotopic.

Facets $F^{\epsilon}(\sigma)$ are in one-to-one correspondence with the simplices $\sigma$ of $C_{g,n}.$

Proposition 4.2. The totality of the facets $\{F^{e}(\sigma)\}_{\sigma\in \mathcal{C}_{g,n}}$ makes a complex (facet com-
plex) analogous to a simplicial complex. The flag complex associated with the facet complex
is isomorphic to the barycentric subdivision of the complex of curves $C_{g,n}.$

Proof. A fiag in the facet complex $\overline{F^{\epsilon}(\sigma)}\supset\overline{F^{\epsilon}(\sigma’)}\supset F^{\epsilon}(\sigma")$ corresponds to a flag in
the complex of curves $C_{g,n},$ $\sigma\subset\sigma’\subset\sigma$ The latter corresponds to a simplex of the
barycentric subdivision of $C_{g,r)}.$ $\square$

4.1. Automorphisms of $C_{g,n}$ . We need the following theorem:

Theorem 4.3. $($Ivanov $[10],$ Korkmaz $[13], Luo[\lambda 5])$ Except for a few sporadic cases
$($spheres $with\leqq 4$ punctures, $tori wnth\leqq 2$ punctures $and a$ closed surface $of genus 2)$,
the following holds:

$Aut(C_{g,n})=\Gamma_{g,n}^{*},$

where $f_{g,n}^{t\#}$ stands for the extended mapping class group (containing orientation reversing
homeomorphisms).

The scissored Teichmti}ler space $P_{g,n}^{\epsilon}$ together with the Teichm\"uller metric becomes
a metric (infinite) polyhedron. The following proposition is a corollary to the above
theorem:

Proposition 4.4. With the same exceptions as above, we have

$Isom_{+}(P_{g,n}^{\epsilon})=\Gamma_{g,n}.$

Proof An isomorphism of $P_{g,n}^{\epsilon}$ induces on $\partial P_{g,n}^{\epsilon}$ an automorphism of the facet complex,
thus that of the barycentric subdivision of $C_{g,n}$ , and finally an automorphism of $C_{g,n}$ . The
automorhism of $C_{g,n}$ in turn corresponds (by Ivanov-Korkmaz-Luo’s theore n) to an action
of the mapping class group $r_{g_{i}n}$ , hence an (orientation preserving) isometry of $T_{g,n}.$ $O$

Essentially the same arguments have been done in Papadopoulos [21] and Ohshika [20].
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Proposition 4.5. The subgroup of $\Gamma_{g,n}$ which preserves a facet $F_{g,n}^{\epsilon}$ is precisely $N\Gamma(\sigma)$ ,

the normalizer of $\Gamma(\sigma)$ in $\Gamma_{g,n}.$

Proof. If a mapping class $[f]\in\Gamma_{g,n}$ peservcs $F_{g,n}^{\epsilon}$ , then $[f]$ induces on $\Sigma_{g,n}$ a permutation

of $\sigma=\{C_{1}, \cdots, C_{k}\}$ , and vice versa. Such mapping classes form the normalizer $N\Gamma(\sigma)$

of $\Gamma(\sigma)$ . $\square$

4.2. Fringe $FR^{\epsilon}(\sigma)$ bounded by $F^{\epsilon}(\sigma)$ . The fringe $FR^{e}(\sigma)$ is defined by

$FR^{\epsilon}( \sigma)=\bigcup_{0<\delta<\epsilon}F^{\delta}(\sigma)$
.

Then we have

Corollary 4.6. The subgroup of $\Gamma_{g,n}$ which preserves the fringe $FR^{\epsilon}(\sigma)$ is the normalizer
$N\Gamma(\sigma)$ . The action of $N\Gamma(\sigma)$ on $FR^{\epsilon}(\sigma)$ is properly discontinuous.

Proof. $FR^{\epsilon}(\sigma)$ is foliated by the facets $F^{\delta}(\sigma)$ , and the corollary holds for each leaf $F^{\delta}(\sigma)$ .
$\square$

Define the augmented rmge as follows:

$\overline{FR^{\epsilon}(\sigma)}=\bigcup_{0\leqq\delta<\epsilon}F^{\delta}(\sigma)(=FR^{\epsilon}(\sigma)\llcorner\rfloor F^{0}(\sigma))$

.

$N\Gamma(\sigma)$ acts on $\overline{FR^{\epsilon}(\sigma)}$ continuouly, but not properly discontinuously, because the infinite
subgroup $\Gamma(\sigma)(\subset N\Gamma(a))$ fixes the points of the added ideal boundary $F^{0}(\sigma)$ . $Abikoff[1]$

attached to $T_{g,n}$ all ideal boundaries, and considered the augmented Teichm\"uller space

$\overline{T}_{g,n}=T_{g,n}U\bigcup_{\sigma\in C_{gn}},F^{0}(\sigma)$
.

Yamada [24] identified $\overline{T}_{g,n}$ with the $Weilarrow$Petersson completion of $T_{g,n}$ , and proved the
geodesic convexity of the ideal boundaries $F^{0}(\sigma)$ . It is well-known that the quotient

spacc of $\overline{T}_{g,n}$ under the action of $\Gamma_{g,n}$ is the compactified moduli space $\overline{M_{g,n}}$ . Note that

the union of the augmented fringes $\bigcup_{\sigma\in C_{g,n}}FR^{\epsilon}(\sigma)$ gives an open neighborhood of the

singular divisors when divided out by the action of $\Gamma_{g,n}.$

5. CONTROLLED DEFORMATION SPACES

To analyse the orbifold structure of $\overline{M_{g,n}}$ , the fringes $\overline{FR^{\epsilon}(\sigma)}$ are not necessarily ade-
quate, because they are pairwise disjoint:

$\overline{FR^{\epsilon}(\sigma)}\cap\overline{FR^{\epsilon}(\sigma’)}=\emptyset$ , if $\sigma\neq\sigma’.$

(Recall that the facets are like open faces of a polyhedron.) Namely the fringes do not
make an open covering of the singular divisors $\bigcup_{\sigma\in \mathcal{C}}F^{0}(\sigma)$ .

To remedy the deficiency, we introduce controlled deformation spaces. But before going

to them, let us recall Bers’ deformation spaces.
Let $\sigma\in C_{9^{n}}$, be any simplex $\sigma=\{C_{1}, \cdots, C_{k}\}\in C_{g,n}$ . Let $\Sigma_{g,n}(\sigma)$ denote the surface

with nodes obtained by pinching each $C_{i}(\in\sigma)$ in $\Sigma_{g_{)}n}$ to a point. Bers [5] introduced the

deformation space $D(\sigma)$ associated with $\Sigma_{g,n}(\sigma)$ . The following fact is known:

Proposition 5.1. $(See Kra[14] \S 9,$ Matsumoto $[18] \S 6.)$ $D(\sigma)$ is homeomorphic to
$(T_{g,n}/ \Gamma(\sigma))\cup\bigcup_{i=1}^{k}\Pi_{i}$ , where $\Pi_{i}=\mathbb{C}^{i-1}\cross\{0\}\cross \mathbb{C}^{3g-3+n-i}$ , and $\bigcap_{i=1}^{k}\Pi_{i}$ cowesponds to $F^{0}.$
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($\Pi_{i}$ is mentioned as $a$ “distinguished subset”in Bcrs [5].) Bers announced in $1970$’s that
$D(\sigma)$ is a bounded domain (see [5]), but without proof. Recently, Hubbard and Koch [8]
gave a proof.

Theorem 5.2. The deformation space $D(\sigma)\dot{?}S$ a complex manifold of $\dim_{\mathbb{C}}=3g-3+n.$

Their arguments are a little bit complicated, but the geometry is conceptually clear.
The space $F^{0}(\sigma)$ is the Teichmiiller space of the nodal surface $\Sigma_{g,n}(\sigma)$ and serves as the
“core”of $D(\sigma)$ (Masur $[17]\rangle$ . It is thickened in the transverse direction by the “plumbing
coordinates $(M\pi den[16],$ Earle $and$ Mardcn $[6])$ .

5.1. The groups $W(\sigma)$ . Define

$W(\sigma)=N\Gamma(\sigma)/r(\sigma)$ .

The groups $W(\sigma)$ are not finite groups in general.

Proposition 5.3. (i) $W(\sigma)$ is the mapping class group of the nodal surface $\Sigma_{g,n}(\sigma)$ .
(ii) $W(\sigma)$ acts on $D(\sigma)$ holomorphically and properly disconWinuously.

5.2. Controlled deformation spaces. Let $M$ be a constant of Keen and Abikoff. We
take an $\epsilon$ satisfying $0<\epsilon<M$ . We insert $6g-6+2n$ numbers between $\epsilon$ and $M$ :

$\epsilon<\epsilon_{1}<\eta_{1}<$ ’ . . $<e_{3g-3+n}<\eta_{3g-3+n}<M.$

Let $\hat{\epsilon}$ denote this sequence. We define the controlied deformation space $D_{\hat{\epsilon}}(\sigma)$ as follows
$(\sigma$ being $\{C_{1},$

$\cdots,$
$C_{k}$

$D_{\hat{\epsilon}}(\sigma)=\{p=[S, w]\in D(\sigma)|l_{p}(C_{f})<e_{k},$ $i=1$ , . .., $k,$

and other simple closed geodesics on $S$ are longer than $\eta_{k}$ }

Why do we need the controlled deformation spaces $D_{\hat{e}}(\sigma)$ ? Because Bers’ deformation
spaces $D(\sigma)$ do not naturally descend to $\overline{M_{9^{n)}},}$ but $D_{\hat{\epsilon}}(\sigma)$ do. For a proof of this fact, see
[18], \S 7

Proposition 5.4. (i) $D_{\hat{\epsilon}}(\sigma)$ is a bounded domain of $\mathbb{C}^{3g-3+n}.$

(ii) The group $W(\sigma)$ acts on $D_{\hat{\epsilon}}(\sigma)$ holomorphically and properly discontinuously.
(iii) $D_{\hat{\epsilon}}(\sigma)/W(\sigma)$ is an open subset of $\overline{M_{g,n}}.$

$(ivjD_{\hat{\epsilon}}(\sigma)/W(\sigma)$ contains the “main part of the quotient of the augmented fringe $\overline{FR^{\epsilon}}(\sigma)/W(\sigma)$ .
(v) The family $\{D_{\overline{\epsilon}}(\sigma)/W(\sigma)\}_{\sigma\in \mathcal{C}_{g,n}}$ is an open covering of the $boundary^{J\prime}$singular divi-
sors $\bigcup_{\sigma\epsilon c}$ $F^{0}(\sigma)/\Gamma_{g,n}.$

Summarizing the above, we have our main theorem:

Theorem 5.5. (Matsumoto [18]) The family $\{(D_{\hat{\epsilon}}(\sigma),$ $W(\sigma))\}_{\sigma\in C_{g,n}}$ gives $orbif_{0}u$-charts
containing the boundary singular divisors in $\overline{M_{g,n}}.$

Remark 5.6. If $\sigma’=f(\sigma)$ by a mapping class $[f]\in\Gamma_{g,n}$ , we consider that $(D_{\hat{\xi j}}(\sigma),$ $W(\sigma\rangle)$

and $(D_{\hat{\epsilon}}(\sigma’), W(\sigma^{J}))$ are the identical charts. Thus the index set of the family of charts is
actually $C_{g,n}/\Gamma_{g,n}.$
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6. CRYSTALLOGRAPHIC GROUPS

Definition 6.1. A crystallographic group in Euclidean $m$-space $E^{m}$ is a group $G$ of isome-
tries of $\mathbb{E}^{m}$ whose translation vectors $foI^{\cdot}m$ a lattice $L\subset E^{m}.$

The image of $G$ under linearization Isom$(E^{m})arrow O(E^{m})$ is called the point group of $G$

and denoted by 6. This is a finite group. There is a canonical exact sequence

$1arrow Tarrow Garrow\partialarrow 1,$

where $T$ is the translation subgroup of $G$ . See [11].

6.1. Crystallographic groups in Teichm\"uller theory. For simplicity, we consider a
closed surface $\Sigma_{g}$ $(i.e. n=0)$ , and in what follows, we assume that $\sigma$ is a maximal simplex
of $C_{g}$ , i.e., $\sigma=\{C_{i}\}_{i=1,\ldots,3g-3}$ . Then the group $W(\sigma)$ is finite. In this case, the facet $F^{\epsilon}(\sigma)$

is defined by
$l_{i}=\epsilon,$ $i=1$ , . .., $3g-3$

by the Fenchel-Nielsen coordinates associated with $\sigma,$

$(l_{i}, \tau_{i}) , i=1, \cdots, 3g-3.$

By Wolpert’s formula, the Weil-Petersson symplectic form is written as follows:

$\omega_{WP}=\frac{1}{2}\sum_{i}dl_{i}\wedge d\tau_{i}.$

We see $\omega_{WP}|F^{\epsilon}(\sigma)=0$ , thus $F^{\epsilon}(\sigma)$ is a Lagrangian submanifold of $\dim_{R}=3g-3.$
$F^{\epsilon}(\sigma)$ is homeomorphic to $\mathbb{R}^{3g-3}$ on which $\Gamma(\sigma)$ acts as translations. The action of

$N\Gamma(a)$ on $F^{e}(\sigma)$ preserves the Weil-Petersson metric From Wolpert’s lecture note
[23], we have

$\langle\lambda_{t},$ $\lambda_{j}\rangle=\frac{1}{2\pi}\delta_{ij}+O(l_{i}^{3/2}l_{j}^{3/2})$ , for $\lambda_{i}=grsd\sqrt{l_{i}}.$

On $F^{e}(\sigma)$ , we have

$\langle\lambda_{i_{\rangle}}\lambda_{j}\rangle=\frac{1}{2\pi}\delta_{ij}+O(\epsilon^{3})$ ,

because $l_{i}=l_{j}=\epsilon$ on $F^{e}(\sigma)$ . $F^{e}(\sigma)$ has twist $\infty$ordinates $\tau_{1}$ , . . . , $\tau_{3g-3}$ . Wolpert’s twist-
length duality [23] asserts that

$2t_{i}=$ Jgrad l $,$

where $2t_{i}$ is the Hamiltonian vector field (along $\tau_{i}$ ) corresponding to $dl_{i}.$

Thus
$t_{i}= \frac{1}{2}$ Jgrad $l_{i}=\sqrt{\epsilon}Jgrad\sqrt{l_{i}}=\sqrt{\epsilon}J\lambda;,$

and
$\langle\frac{t_{i}}{\sqrt{\epsilon}}, \frac{t_{J}\prime}{\sqrt{6}}\rangle=\langle J\lambda_{l}\prime J\lambda_{j}\rangle=\frac{1}{2\pi}\delta_{1j}+O(\epsilon^{3})$ .

Therefore, the facet $F^{\epsilon}(\sigma)$ together with the (normalized) Weil-Petersson metric

$\frac{2\pi}{\epsilon}\langle t_{i}, t_{j}\rangle=\delta_{ij}+O(\epsilon^{3})$

converges to Euclidean space ]$E^{3g-3}$ as $\epsilonarrow 0$ , on which $N\Gamma(\sigma)$ acts as a crystallographic
group.

In our case where a is maximal, $W(\sigma)$ is a finite group. This group is nothing but the
automorphism group of a finite trivalent graph (the pants graph, $i.e_{\mathfrak{j}}$ the dual graph of

114



the pants decomposition associated with a). Conversely, given any finite trivalent graph,
a crystallographic group appears exactly in the same manner as $a$})$ove.$

The group $W(\sigma)$ is somewhat similar to the “Weyl group and a pants graph has an
atomosphere of a “root system”. Details of this report will appear in [19].

Here are the trivalent graphs for $g=3$ (with 4 vertices and 6 edges) and the corre-

sponding point groups $N\Gamma(\sigma)$ (n.b. not their groups $W(\sigma)$ ):

$D_{6} S_{4} (\mathbb{Z}_{2})^{2} (\mathbb{Z}_{2})^{2} (\mathbb{Z}_{2})^{4}$
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